18/든ํํ

Wecon PLC LX5V

Series Programming
 Manual

(V2.2)

Website: http://www.we-con.com.cn/en
Phone: 86-591-8786886
Time: 26 September 2022

Content summary

This manual has a comprehensive introduction to the basic functions of WECON PLC Editor and the actual use. This book is completely aimed at zero-based readers, is an essential reference book for entry-level readers to quickly and fully grasp WECON PLC and WECON PLC Editor.

This book starts from the basic product of WECON PLC and the basic concept and operation of WECON PLC Editor. It combines with a large number of cases and graphic analysis to comprehensively and deeply explain the use of WECON PLC Editor Software, as well as PLC program.

WECON technology Co., Ltd. All rights reserved.

PLC LX5V Series Programming Manual (V2.2)

* Safety Note

Before the installation, operation, maintenance and repair of the micro programmable control, please read this manual and other related manuals to ensure correct use. Please use it after you have mastered the operation method, safety information and all

* Note:

(1) Design considerations

In the event of an abnormality in the external power supply or failure of the programmable controller, to ensure the safe operation of the entire system, be sure to install a safety circuit outside the programmable controller.

1) Be sure to install an emergency brake circuit, a protection circuit, an interlock circuit for reverse operation, such as an emergency brake circuit, a protection circuit, a forward and reverse circuit, and an interlock circuit for the upper and lower positioning limits to prevent machine damage, in the external circuit of the programmable controller.
2) When the programmable controller CPU detects abnormal conditions such as WDT errors through self-diagnosis, all outputs are shut off. In addition, when the programmable controller CPU cannot detect abnormalities in the input/output control part, etc., it cannot control the output. At this time, in order to make the machine operate safely, please design the external circuit and mechanism.
3) Due to the failure of the relay and transistor of the output unit, it is impossible to control the state of the output to ON or OFF. In order to ensure the safe operation of the machine, please design external circuits and mechanisms for output signals related to major accidents.

(2) Installation Precautions

1) Please use it in the general specification environment described in the manual.

Do not use in the following places: places with dust, oily smoke, conductive dust, corrosive gas, flammable gas; places exposed to high temperature, condensation, wind and rain; places with vibration or impact. Electric shock, fire, and misoperation can also cause product damage.
2) When processing screw holes and wiring, do not let iron filings or wire ends fall into the ventilation window of the programmable controller. It may cause fire, malfunction, or misoperation.
3) Please insert the connecting cable and display module accurately into the specified sockets. Poor contact may cause misoperation.

- To prevent the temperature from rising, do not install at the bottom, top or vertical direction.Be sure to install it horizontally on the wall as shown on the right.
- Please leave a space of more than 50 mm between the host and other equipment or structures. Try to avoid high-voltage lines, high-voltage equipment, and power equipment.

(3) Wiring considerations

The signal input and output lines of the programmable controller cannot pass through the same cable.
In addition, signal input lines and output lines cannot pass through the same pipeline with other power lines and output lines, and cannot be bundled together.

If implemented according to the above precautions, even if the input and output wiring is as long as 50 to 100 m , there is almost no noise problem. But generally for safety, the wiring length should be within 20 m .

- The installation and wiring must be performed when the external power supply is cut off. Otherwise, it may cause electric shock or product damage.
- After installation and wiring, etc., the terminal cover must be installed before power-on operation to avoid electric shock.

! Danger		It is very dangerous to close the positive and negative contactors at the same time. For loads like this, in addition to the interlock set by the internal program of the programmable controller, the interlock shown above must also be set outside the programmable controller.
Attention	Do not connect the empty terminal to the outside, otherwise th	product will be damaged.

- Please connect the AC power supply to the dedicated terminal according to the content in the manual.

If the $A C$ power supply is connected to the DC input/output terminal or the DC power supply terminal, the programmable controller will be burnt out.

- Please do not supply power to the $24+$ terminal of the basic unit from the external power supply, and to the empty terminal \qquad Do not wire from the outside, otherwise the product will be damaged.

Please ground the ground terminal of the basic unit according to the third method. But please do not share the ground with the strong current system.

- The programmable controller will continue to work if there is an instantaneous power failure of less than 10 ms .
- When the power is cut for a long time or the voltage is low, the programmable controller will stop working and the output will turn OFF, but once the power supply is restored, it will automatically restart.

(4) Precautions for startup and maintenance

\square Danger

- Please do not touch the terminals when the power is on, otherwise it may cause electric shock or misoperation.
- Please clean and disassemble the terminal after the power is turned off. Performing it while the power is on may cause electric shock.
- Please read the manual thoroughly and fully confirm the safety before proceeding with program changes, forced output, RUN/STOP, etc. during machine operation.

Operation errors can damage the machine and cause accidents.

Caution

- Please do not disassemble or modify, otherwise it may cause malfunction, malfunction, fire.
※For repair matters, please contact Fuzhou Wecon Electronic Technology Co., Ltd.
- After the power is turned off, perform the installation and disassembly of the extension cables and other connecting cables, otherwise it may cause malfunctions and malfunctions.

(5) Maintenance

- Regular inspection: Whether the programmable controller is equipped with consumables with a shorter life.
- For relay output type, if the output relay works abnormally at a high frequency or drives a large-capacity load, you must pay attention to its impact on the service life.
- Check with other equipment, please pay attention to the following points:

Whether there is an abnormal increase in the temperature inside the machine due to other heating elements or direct sunlight.
Whether dust or conductive dust has penetrated into the machine.
Whether there are loose wiring and terminals or other abnormalities

Contents

1 Execution of the program 1
1.1 The composition of the scan 1
Initialization 1
Input and output point refresh 1
Operation of the program 1
END processing 1
1.2 Scan time 2
Initial scan time 2
1.3 The flow of each procedure 2
1.4 Types of program execution 3
Scan execution program 3
Event execution program 4
Interrupt execution program 7
Subroutine 16
Positioning instructions 17
2 Description of devices 19
2.1 User device 19
Input relay (X) 19
Output relay (Y) 19
Internal relay (M) 20
Status relay (S) 20
Timer (T) 20
Counter (C) 21
Long counter (LC) 22
High-speed counter (HSC) 22
Data register (D \& R) 22
2.2 System device 23
Special Relay (SM) 23
Special Register (SD) 23
2.3 Index Register 23
Index register ([D]) 23
2.4 Nesting 24
Nesting (N) 24
2.5 pointer 24
Pointer (P) 24
2.6 Constant 24
Decimal constant (K) 24
Hexadecimal constant (H) 24
Real number constant (E) 24
String constant 25
2.7 Power-down retention setting 25
2.8 Special use of device 25
3 Sequence control program instructions 26
3.1 Contact instructions 26
Operation start, series connection, parallel connection 26
Pulse calculation starts, pulse series connection, pulse parallel connection 30
3.2 Combining instructions 33
Series connection and parallel connection of Circuit program blocks 33
Push, read, and pop of calculation results 34
Invert the result of operation 35
Pulse operation result 36
3.3 Output instructions 37
OUT instruction (except timers and counters) 37
SET instruction 38
RST instruction 40
PLF/Falling edge output 42
PLS/Rising edge output 43
3.4 END/Sequence control program end instruction 43
4 Program flow instructions 44
4.1 Program jump 44
CJ/Conditional jump 44
4.2 Subroutine jump 48
CALL/Subroutine call 48
4.3 Interrupt disable, interrupt enable 50
DI and EI/Interrupt prohibited and allowed 50
SIMASK/Interrupt mask 54
4.4 Cycle instructions 55
FOR to NEXT/Cycle 55
BREAK/Break cycle 57
4.5 Master Control Instructions 58
MC and MCR instructions 58
4.6 Watchdog reset 61
WDT/watchdog timer 61
5 Timer and counter output instructions 62
5.1 Timer output instruction 62
OUT T/Timer output 62
5.2 Counter output instructions 63
OUT C/Counter output 63
OUT LC instruction/Long counter output 64
6 High-speed input counter 65
6.1 Specifications of high-speed counter 65
Types of high-speed counters 65
Highest frequency 66
High-speed counter allocation 66
High-speed counter use steps 67
6.2 High-speed counter instructions 69
OUT HSC/High-speed counter switch 69
DHSCS/High-speed comparison set 70
DHSCR/High-speed comparison reset 72
DHSZ/High-speed zone comparison 73
7 Basic instructions 76
7.1 Transfer comparison instruction 76
MOV/16-bit transmission 76
DMOV/32-bit transmission 77
BMOV/Batch transmission 78
FMOV/16-bit multicast 79
DFMOV/ 32-bit multicast 80
SMOV/Bit shift 81
CML/16-bit invert transmission 83
DCML/32-bit invert transmission 84
CMP/16-bit data comparison output 85
DCMP/32-bit data comparison output 86
XCH/16-bit data exchange 87
DXCH/32-bit data exchange 88
ZCP/16-bit data interval comparison 89
DZCP/32-bit data interval comparison 90
7.2 Cycle shift instruction 92
ROR/16-bit cycle shift right 92
DROR/32-bit cycle shift right 93
RCR/16-bit cycle shift right with carry 94
DRCR/32-bit cycle shift right with carry 96
ROL/16-bit cycle shift left 97
DROL/32-bit cycle shift left 98
RCL/16-bit cycle shift left with carry 99
DRCL/32-bit cycle shift left with carry 100
SFTR/n-bit shift right of n-bit data 101
SFTL/n-bit shift left of n-bit data 102
WSFR/n-word shift right of n-word data 103
WSFL/n-word shift left of n-word data 104
SFR/n-bit shift right of 16 -bit data 105
DSFR/n word data shift right by 1 word 106
SFL/n-bit shift left of 16-bit data 107
DSFL/one word shift left of n word data 108
7.3 Arithmetic operation instructions 109
ADD/16-bit addition operation 109
DADD/32-bit addition operation 110
SUB/16-bit subtraction operation 112
DSUB/32-bit subtraction operation 113
MUL/16-bit multiplication 115
DMUL/32-bit multiplication 116
DIV/16-bit division operation 117
DDIV/32-bit division operation 118
INC/16-bit data increment 119
DINC/32-bit data increment 120
DEC/16 bit data decrement 121
DDEC/32-bit data decrement 122
7.4 Logic Operation Instructions 123
NEG/16-bit complement 123
DNEG/32-bit complement 124
WOR/16-bit data logical OR 125
DOR/32-bit data logical OR 126
WAND/16-bit data logic AND 127
DAND/32-bit data logic AND 128
WXOR/16-bit data logic exclusive OR 129
DXOR/32-bit data logic exclusive OR 130
PRUN/8 digit transmission (16-bit data) 131
7.5 Data processing instructions 133
BCC/BIN16 and BIN8 bit data addition, subtraction and exclusive check 133
MAX/BIN16 bit the maximum value of 16 -bit data 136
DMAX/BIN32 bit the maximum value of 32-bit data 137
MIN/BIN16 bit the minimum value of 16 -bit data 138
DMIN/BIN32 bit the minimum value of 32-bit data 139
ANS/alarm settings 140
ANR/Alarm reset 142
BON/16-bit data bit judgment 143
DBON/32-bit data bit judgment 144
ENCO/Encode 145
DECO/Decode 146
SUM/The ON bits of 16-bit data 147
DSUM/The ON bits of 32-bit data 148
MEAN/Mean value of 16 -bit data 149
DMEAN/Mean value of 16 -bit data 150
SQR/16-bit square root 151
DSQR/32-bit square root 152
WSUM/The sum value of 16 -bit data 153
DWSUM/The sum value of 32 -bit data 154
SORT/16-bit data sorting 155
SORT2/16-bit data sorting 158
DSORT2/32-bit data sorting 161
SWAP/16-bit data high and low byte swap 164
DSWAP/32-bit data high and low byte swap 165
BTOW/Byte unit data merge 166
WTOB/Byte unit data separation 168
DIS/4-bit separation of 16 -bit data 170
UNI/4-bit combination of 16-bit data 171
ZRST/Data batch reset 172
ZSET/Data batch set 174
CRC/cyclic redundancy check instruction 175
7.6 Matrix input instructions 177
MTR/Matrix input 177
7.7 Convenient instructions 179
ABSD/BIN 16-bit data absolute method 179
DABSD/BIN 32-bit data absolute method 181
SER/16-bit data search 183
DSER/32-bit data search 184
ALT/Bit device output inversion 186
INCD/BIN 16-bit data relative method 188
RAMP/Control ramp signal 190
ROTC/Rotary table proximity control 192
STMR/Special function timer 195
TTMR/Demonstration timer 197
TRH/Conversion of wet and dry bulb temperature and humidity 199
7.8 External IO instructions 201
ARWS/Arrow switch 201
DSW/Numeric key input 204
HKY/Hexadecimal numeric key input 206
DHKY/32 system numeric key input 209
PR/ASCII code printing 211
SEGD/Numeric key input 213
SEGL/7SEG code hour and minute display 214
TKY/Numeric key input 217
DTKY/Numeric key input 219
7.9 Data conversion instruction 221
BCD/BIN \rightarrow BCD 221
BIN/4-bit BCD \rightarrow BIN 222
DBIN/8-bit BCD \rightarrow BIN 224
FLT/BIN integer \rightarrow binary floating point number 225
DFLT/BIN integer \rightarrow binary floating point number 227
VAL/ String \rightarrow BIN 16-bit data conversion 228
DVAL/String \rightarrow BIN32-bit data conversion 229
ASCI/HEX code data \rightarrow ASCII conversion 231
HEX/ASCII \rightarrow HEX code data conversion 234
CCD/Check code 236
GBIN/Gray code \rightarrow BIN 16-bit data conversion 239
DGBIN/Gray code \rightarrow BIN32-bit data conversion 240
GRY/BIN 16-bit data \rightarrow Gray code conversion 241
DGRY/BIN 32-bit data \rightarrow Gray code conversion 242
DPRUN/Otal digit transmission (32-bit data) 243
7.10 Floating point instructions 244
DACOS/Single precision real number COS-1 operation 244
DASIN/Single precision real number SIN^{-1} operation 245
DATAN/Single precision real number TAN ${ }^{-1}$ operation 246
DCOS/Single precision real number COS operation 247
DCOSH/Single precision real number COSH operation 248
DSIN/Single precision real number SIN operation 249
DSINH/Single precision real number SINH operation 250
DTAN/Single precision real number TAN operation 251
DATANH/Single precision real number TANH operation 252
DDEG/Single precision real number radian \rightarrow angle conversion 253
DRAD/Single precision real number conversion angle \rightarrow radian conversion 254
DEADD/Single precision real number addition operation 255
DESUB/Single precision real number subtraction operation 256
DEMUL/Single precision real number multiplication operation 257
DEDIV/Single precision real number division operation 258
DEMOV/Single precision real data transmission 260
DEBCD/Binary floating point \rightarrow decimal floating point conversion 261
DEBIN/Decimal floating point \rightarrow binary floating point conversion 262
DENEG/Single precision real number sign inversion 263
DECMP/Single precision real number comparison 264
DEZCP/Binary floating point bandwidth comparison 265
DESQR/Single precision real square root 267
DESTR/Single precision real number \rightarrow string conversion 268
DEVAL/String \rightarrow single precision real number conversion 273
DEXP/Single precision real number exponential operation 277
INT/Single precision real number \rightarrow signed BIN 16-bit data 278
DINT/Single precision real number \rightarrow signed BIN 32-bit data 279
DLOG10/Single precision real number common logarithmic operation 280
DLOGE/Single precision real number natural logarithm operation 281
7.11 Contact comparison instruction 282
Signed 16-bit contact comparison instruction 282
Signed 32-bit contact comparison instruction 284
Single precision real number contact comparison instruction 286
String comparison 288
7.12 Clock operation instruction 290
TADD/The addition of clock data 290
TSUB/The subtraction of clock data 292
TRD/Clock data reading 294
TWR/Clock data writing 295
HTOS/16-bit data conversion of time data (hour, minute, second \rightarrow second) 297
DHTOS/32-bit data conversion of time data (hour, minute, second \rightarrow second) 298
HOUR/Hour measuring 16-bit 299
DHOUR/Hour measuring 32 bits 301
STOH/16-bit data conversion of time data (second \rightarrow hour, minute, second) 303
DSTOH/32-bit data conversion of time data (second \rightarrow hour, minute, second) 304
TCMP/Clock data comparison 305
TZCP/Clock data bandwidth comparison 307
7.13 Data control instructions 309
BAND/BIN 16-bit data dead zone control 309
DBAND/BIN 32-bit data dead zone control 310
BINDA/BIN 16-bit data \rightarrow Decimal ASCII conversion 312
DBINDA/BIN 32-bit data \rightarrow Decimal ASCII conversion 313
DABIN/Decimal ASCII \rightarrow BIN conversion 314
DDABIN/Decimal ASCII \rightarrow BIN32-bit data conversion 315
LIMIT/ BIN 16-bit data high and low limit control 317
DLIMIT/BIN 32-bit data high and low limit control 318
SCL/BIN 16-bit unit scale (coordinate data of each point) 319
DSCL/32-bit unit scale (coordinate data of each point) 322
SCL2/BIN 16-bit unit scale (X/Y coordinate data) 325
DSCL2/BIN 32-bit unit scale (X/Y coordinate data) 328
ZONE/BIN 16-bit data zone control 331
DZONE/BIN 32-bit data zone control 332
7.14 Data block instructions 333
BK+/BIN 16-bit block data addition operation 333
DBK+/BIN 32-bit block data addition operation 335
BK-/BIN 16-bit block data subtraction operation 337
DBK-/BIN 32-bit block data subtraction operation 339
BKCMP=/BIN 16-bit block data comparison 341
DBKCMP=/BIN32-bit block data comparison 342
BKCMP<>/BIN 16-bit block data comparison 343
DBKCMP<>/BIN32-bit block data comparison 345
BKCMP>/BIN 16-bit block data comparison 346
DBKCMP>/BIN32-bit block data comparison 347
BKCMP>=/BIN 16-bit block data comparison 349
DBKCMP>=/BIN32-bit block data comparison 350
BKCMP</BIN 16-bit block data comparison 351
DBKCMP</BIN 32-bit block data 353
BKCMP<=/BIN16-bit block data comparison 354
DBKCMP<=/BIN32-bit block data comparison 355
7.15 Data table operation instructions 357
SFRD/shift read 357
POP/Read from the back of the data table 359
SFWR/Shift write 361
FINS/Data table data insertion 363
FDEL/Data deletion of data sheet 364
7.16 IO refresh instruction 366
REF/IO refresh 366
REFF/Input refresh (with filter setting) 368
7.17 Timing measure instruction 369
DUTY/Clock pulse generation instruction 369
7.18 Random number instruction 371
RND/Random number instruction 371
7.19 Preferred instruction 372
DEXMN/Preferred instruction 372
8 High-speed pulse output 377
8.1 High-speed pulse output instruction 377
ZRN/DZRN/Origin return 377
DSZR/DDSZR/Origin return 379
DVIT/DDVIT/16-bit data relative positioning 381
DRVI/DDRVI/Relative positioning 383
DRVA/DDRVA/Absolute positioning 385
PLSR/DPLSR/Pulse output with acceleration and deceleration 387
PLSR2/Multi-speed positioning 389
PLSV/DPLSV/Variable speed operation 395
PLSY/DPLSY/Pulse output 397
PWM/BIN 16-bit pulse output 399
PWM/PWM permil mode 400
G90G01 Absolute position line interpolation instruction 402
G91G01 Relative position line interpolation instruction 404
G90G02 Absolute position clockwise circular interpolation instruction 406
G91G02 Relative position clockwise circular interpolation instruction 409
G90G03 Absolute position counterclockwise circular interpolation instruction 412
G91G03 Relative position counterclockwise circular interpolation instruction 415
G90G02H Absolute position clockwise circular helical interpolation instruction 418
G91G02H Relative position clockwise circular helical interpolation instruction 421

G90G03H Absolute position counterclockwise circular helical interpolation instruction 424
G91G03H Relative position counterclockwise circular helical interpolation instruction 427
8.2 General matters of high-speed pulse output instruction ... 430

Related bit devices .. 430
Related word devices .. 433
9 Electronic cam ... 440
9.1 Electronic CAM (ECAM) instruction ... 440

DEGEAR/Electronic gear/32 bit hand wheel instruction .. 440
DECAM/32-bit electronic cam instruction ... 444
ECAMCUT/Electronic cam table switching instruction ... 447
ECAMTBX/Electronic cam table generation instruction ... 450
9.2 Instruction manual of Electronic CAM (ECAM) ... 452

Principle of ECAM ... 452
Description of ECAM function ... 452
The application of ECAM .. 469
Special address .. 489
Appendix... 490
10 Communication instruction ... 495
10.1 Communication port protocol setting... 495

PROTOCOL/communication port protocol setting.. 495
10.2 Modbus serial port parameter setting ... 497

PORTPARA/Modbus serial port parameter setting.. 497
10.3 Modbus station number setting ... 499

STATION/Modbus station number setting ... 499
10.4 RS instruction .. 501

RS/External communication instruction .. 501
10.5 RS2 instruction .. 505

RS2/External communication instruction .. 505
10.6 Expansion module communication .. 510

Single word data writing from TO/PLC to the module (16-bit specification) 510
Double word data write from DTO/PLC to the module (32-bit specification) 512
FROM/Read single word data from the module (16-bit specification) 514
DFROM/single word data read from the module (32-bit specification) 516
10.7 RS and RS2 instructions corresponding protocol description .. 518
10.7.1 Custom protocol description ... 518
10.7.2 Modbus protocol description ... 527
10.8 PLCLINK/Fast interconnect function ... 537

Create a table .. 537
10.9 Wecon Modbus protocol description .. 549

11 Special instructions ... 550
PID/PID calculation 550
CCPID/CCPID calculation 553
FPID/FPID calculation 554
CCPID instruction introduction manual 558
CCPIN_SHT operation 568
LAGCDL Large time-delay temperature control instruction 571
12 String instructions 574
LEN/string length detection 574
LEFT/Extract from the left side of the string 575
RIGHT/Extract from the right side of the string 577
Any extraction from MIDR/string 579
\$MOV/ string transfer 581
Arbitrary replacement in MIDW/string 583
STR/BIN 16-bit data \rightarrow character string conversion 586
DSTR/BIN 32-bit data \rightarrow string conversion 588
\$+/ Combination of strings 591
INSTR/string search 593
ASC/ASCII data input 595
13 step ladder diagram instruction 597
13.1 STL/RET step ladder diagram instruction 597
13.2 IST/Initialization state 601
14 Ethernet communication 609
14.1 Ethernet overview 609
IP address 609
Set PC network address 609
Test the network connection status 610
PLC Editor2 connect to PLC with Ethernet 612
PLC Editor2 Ethernet search funtion 613
14.2 Ethernet configuration 614
Hardware interface 614
Total numbers of links supported 614
IP address settings 614
TCP protocol 616
UDP protocol 616
Socket 616
Establish an Ethernet link by socket 616
LX5V-N socket configuration instructions 617
14.3 Ethernet instruction 619
SOCOPEN/Create a socket link 619
SOCCLOSE/Close socket link 621
SOCSEND/Ethernet free-form communication sending 622
SOCRECV/Ethernet free-form communication reveiving 623
SOCMTCP/Ethernet ModbusTCP communication 624
14.4 Ethernet applications 625
Data exchange between two PLCs through ModbusTCP 625
Data exchange between two PLCs through Free TCP 626
Data exchange between two PLCs through Free UDP 629
14.5 List of special device related to Ethernet 632
14.6 Ethernet error codes table 637
Operational error 637
Appendix 641
Attachment 1 Special Relay (SM) 641
Error message 641
System message 641
Clock information 641
Scan information 642
Instruction related 642
Interrupt prohibited 644
High-speed input and output 644
Pulse output (positioning axis) 646
BD board module 651
Communication 652
List of Special devices related to Ethernet 653
Appendix 2 Special Register (SD) 654
Error message 654
System message 655
Clock information 655
Scan information 656
Instruction related 657
Interrupt prohibited 657
High-speed input and output 658
Pulse output (positioning axis) 661
BD board module 668
Right expansion module 669
Input filtering 669
Communication 669
List of special devices related to Ethernet 671
Log information 673
Appendix 3 Error code Sorting 674
PLC hardware error 674
Circuit program execution error 674
PLC parameter error 674
PLC communication error 676
PLC operation error 678
Right expansion module error (communication error reported) 682
Appendix 4 ASCII code comparison table 682
ASCII code comparison table 682
Appendix 5 Instruction list 685
Application instruction (by instruction type) 685
Application instruction (by alphabetical order) 695

1 Execution of the program

1.1 The composition of the scan

The scan configuration of the CPU module is as follows.

Initialization

The initialization based on the status of the CPU module is as follows.
\mathbf{V} : execute. \times : not execute

Processing item	Status of the CPU module		
	When the power is ON	STOP	When STOP RUN
Initialization of input and output modules	V	\times	\times
CPU parameter check	V	\times	\times
Check of system parameters	V	\times	\times
Device initialization	V	\times	V
Error clear	V	\times	V

Input and output point refresh

Perform the following before starting program calculation.
Update the actual input point of the PLC to the input relay X.
The following is executed after the END instruction is executed.
Update the PLC output relay Y to the actual output point

Key points

When performing a constant scan, the I/O refresh is performed after the waiting time of the constant scan.

Operation of the program

According to the program setting, the execution starts from step 0 of each program to the END instruction. This program is called the main program.

END processing

Perform the following processing.

1) Completion processing of partial instructions
2) Watchdog timer reset

3 Communication processing
4 Setting the value of special relay/special register (when the setting timing is END processing)

1.2 Scan time

The CPU module repeats the following processing, and the scan time is the total of the following processing and execution time.

The initial scan time indicates the time including this processing.

Initial scan time

It is the first scan time of the CPU module in RUN.
Process as the following way:
The value stored in SD134 (initial scan time (ms unit)) and SD135 (initial scan time (s unit)).

1.3 The flow of each procedure

When the CPU module changes to the RUN state, the programs are executed in sequence according to the program execution type and execution sequence settings.

Key points

When the execution types of the programs are the same, they are executed in the order set in the execution order.

* Note:

When executing instructions that can be completed with multiple cycles (such as OUT T, RAMP, RS, etc.), they should be programmed in the scan program. If it is used in event execution type programs and mid-stage execution type programs, these instructions may not be executed in multiple scan cycles, causing actual results to be different from the ideal results. Therefore, unless events, interrupts and subroutines can be executed in each scan cycle. It is not recommended to use multi-cycle execution instructions in other situations.

1.4 Types of program execution

Scan execution program

Each scan is executed only once from the next scan of the initial execution type program.

When multiple scan execution type programs are executed, the execution time of the scan execution type program is the time until all scan execution type programs are executed. In addition, before the execution of the scan execution type program is completed, if an interrupt program/event execution type program/subroutine is executed, the execution time will also be included.

Creation of multiple scanners

"Project Management" \rightarrow "Program" \rightarrow "Scan" \rightarrow Right click to create

New-Scanning
Program name
MAINO
programming
Ladder
creator
 Creation date 2021/03/01 13:51:27 Remarks

(1) Scan the program name: the program name requires to match case, and the program name cannot use the same name with device name (the device name does not match case).

2 The input of $/ \% \$ @ \&=\sim^{\wedge}<>?:\{ \}[],!^{*} . \backslash \backslash 1 "$ is not supported. It cannot exceed 64 characters. The default name is MAINx.
(3) The number of scan programs that can be built is limited to 100.
4) Each scan program has been END ended, but only the last END instruction is completed to calculate a scan cycle.
(5) The execution sequence runs from top to bottom in the order of creation.

Event execution program

It uses the event specified by the user as a condition to trigger the program to start execution.

Trigger type

The trigger of event execution type program is as follows.

(1) ON event of bit data (TRUE)

(1) After the ON event is specified, if the contact that sets the trigger condition in the ON event is turned ON during the scan program, the ON event program will be executed in the scan program page*1 or before the END instruction is executed.
(2) The ON event program will only be executed once in a single scan cycle.
(3) After the ON event is executed, you can set whether to clear the current value of the output (Y) and timer (T) used in the program.
*1: Scan program paging: multiple scan programs are established, and each scan program is called a paging. After scan program A is executed, before scan program B is executed, it will be judged whether an event program needs to be executed.

When it is the turn of the execution sequence of event execution type program C and Y 50 is ON , the program is executed. The devices that can be specified are as follows.

Project		Content
Device *1	Bit Device	X, Y, M, SM
	Bit specification of word device	D.b

*1 The indexed device cannot be specified.

(2) TIME event

After the program is to RUN state and the specified time has elapsed, event is executed one time when it comes to the execution sequence of the first corresponding program. For the second and subsequent executions, the time is re-measured from the start of the last event execution type program. After the specified time has elapsed, the program is executed repeatedly when it comes to the execution sequence of the first corresponding program. In addition, in the next scan after the corresponding program is executed, the current value of the output (Y) and timer (T) used in the corresponding program can be cleared. It can be used for programs that do not need to respond in a fixed period of time.

After the specified time has elapsed, when it comes to the first execution sequence, the event execution type program C is executed.

Key points

When set to clear the current value of output and timer, and the scan time is longer than the set value of elapsed time, the current value of output and timer will not be cleared.

Operational steps

(1) New event

Project management \rightarrow Program \rightarrow Event \rightarrow Right click to create.

Event program name:
(1) The program name requires to match case, and the program name with the same name as the device cannot be used (the device name does not match case).
(2) The program name does not support $/ \% \$ @ \&=\sim^{\wedge}<>?:\{ \}[], ;!^{*} . \backslash \backslash{ }^{\prime \prime}$ character input.
(3) The length of the program name cannot exceed 64 characters. The default name is EVENTx.

A maximum of 100 new event programs could be created.

(2) Execution type

There are two ways to configure the event execution type:

1) Configure when creating a new event program, as shown in the figure above.w
2) Project management \rightarrow Program \rightarrow Parameter \rightarrow Program parameter \rightarrow Configuration

Configuration instructions:

1) Configuration interface:

2) Parameter content:

Project		Content	Setting range	Default
Execution type		Select event type	Not set/ON event/TIME event	Not set
$\begin{aligned} & \text { ON } \\ & \text { event } \end{aligned}$	Contact	The event type can be set when ON event is selected. Set the bit device as the trigger condition.	X/Y/M/SM/D.b	
	Whether to clear	When the bit device of the trigger condition set by the ON event is turned OFF, whether to clear the current value of the output (Y) and timer (T) used in the execution program of the ON event in the next cycle.	True False	False
TIME event	Time	Set how long to execute the event program once.	1 to 2147483647 (100us unit)	
	Whether to clear	When the TIME event is executed, if the event is not executed in the next scan cycle, select whether to clear the output (Y) used in the TIME event execution program and the current value of the timer (T).	True False	False

Key points

When "ON event" or "TIME event" is specified, if "Clear or not" is set to "Clear", the event program will not be executed in one scan cycle, and all the internal outputs (Y) and current value of timer (T) will all be cleared (except for the cumulative type and subroutine type T). If the time set by the TIME event is less than the scan period, it is equivalent to executing the TIME event every scan period.

Even if the clear output is set, the output and timer data in the event program will not be cleared.

Interrupt execution program

In the process of executing the scan program, the program that can interrupt the priority execution of the scan program is called an interrupt execution program.

- When an interrupt cause occurs, the interrupt program corresponding to the interrupt pointer number will be executed. However, the execution needs to be set to the interrupt enabled state by the El instruction.

- An interrupt name corresponds to an interrupt program, and the interrupt name cannot be repeated. Each interrupt has its own trigger condition and execution program, and each interrupt program ends with END.
- Interrupt has the characteristic of interrupting the original execution program and executing the interrupt first, but it cannot interrupt the interrupt program being executed.
- The interrupt program has the concept of priority. The smaller the priority value, the more priority the response. The priority setting range is 0 to 2 .

The actions when an interruption cause occurs are as follows:

1) Interrupt prohibition (DI) when an interruption cause occurs.

If the interrupt execution condition is triggered in a program that is forbidden by DI, the interrupt will not be executed. Even if the subsequent program uses the EI instruction to allow interruption, the previously shielded interrupt program will not be executed. Only the interrupt execution condition is triggered again. The interrupt program will be executed.
2) When multiple interrupt causes occur simultaneously in the interrupt enabled state.

The interrupt program with higher priority will be executed sequentially. In addition, when multiple interrupts with the same priority occur at the same time, the actions are executed in the order of interrupt priority.

If three interrupt programs $I 0, I 10, I 16$ are created, the priority of $I 0$ is 1 , the priority of $I 10$ is 0 , and the priority of $I 16$ is 1 . The execution logic is shown in the figure below: 110 has the smallest priority and is executed first; 10 and $I 16$ have the same priority and are executed in the order of program establishment.

3) When an interrupt occurs during the waiting time when performing constant scan.

Execute the interrupt program for this interrupt.
4) When other interrupts occur during the execution of the interrupt program.

In the interrupt program (including the specification when the interrupt occurs in the event execution program), when other interrupts occur, the original interrupt execution program will not be interrupted. After the original interrupt execution program is completed, the new interrupt program is executed. After the execution is completed Then return to the scanning procedure.
5) During the execution of the interrupt program, when an interrupt cause with a low priority or the same priority occurs.

The interruption cause that occurred is stored, and after the interrupt program in execution ends, the interrupt program corresponding to the stored interruption cause is executed. Even if the same interruption cause occurs multiple times, the interruption cause is stored only once.

6) When the same interruption cause occurs during the execution of the interrupt program;

The interruption cause that occurred is stored, and after the interrupt program in execution ends, the interrupt program corresponding to the stored interruption cause is executed. Even if the same interruption cause occurs multiple times, the interruption cause is stored only once.

Interrupt trigger condition classification

(1) External input (X) interrupt

1) Description of external input interrupt

- The external input interrupt is triggered by the rising or falling edge of the fixed X point input.
- Supports the rising and falling edge interrupts of a total of 8 input points of $X 0$ to $X 7$, and supports a total of 16 external input interrupts.
- The same interrupt trigger condition cannot create multiple interrupt programs.
- External input interrupt and high-speed counter cannot use the same X point.
- You must use EI in the scan program to allow interrupts before the interrupt execution program will be executed.

2) External input interrupt steps.

Project management \rightarrow Program \rightarrow Interrupt \rightarrow right click to create

- The interrupt program name requires to match case, and the program name with the same name as the device cannot be used (the device name does not match case),
- The interrupt program name does not support the input of /\%\$@\&=~^<>>?:\{\}[];!!*. $\backslash \backslash$ '" characters,
- The length of the interrupt program name cannot exceed 64 characters and cannot be typed. The default name is INTx.

Click Configure, and select external interrupt for execution type, as shown in the figure below (it can also be configured in "program parameters" in "parameters" in project management):

Project		Content	Setting range	Default
Execution type		Select the type of interrupt	Not set, External input interrupt, Timer event, high-speed counter interrupt	Not set
External input interrupt	Trigger edge type	Choose to trigger on rising edge or falling edge	X0 to X7	X0
	priority	When multiple interrupts arrive at the same time, the order of priority execution, the smallest value is executed first	Rising edge; Falling edge	Rising edge

	Filter time (0.01us)	Set the filter time of X point, the unit is 0.01 us. Note: X rising edge interrupt and X falling edge interrupt use the same X filter, so after the filter setting is changed in the X rising edge configuration, the X falling edge will also change. If the filter time is set to 1000, you must ensure that the high level and low level of the input signal are maintained for more than 10 us before the interrupt can be triggered.	0 to 1700	1

3) Write interrupt execution program

Double-click the newly created interrupt program in the project management to start writing the interrupt execution program. As shown in the figure above, a newly created interrupt program is INT_XO_UP, and the trigger condition is configured to execute the interrupt program when the XO rising edge is configured. If the El instruction is used in the main program to allow interrupts, all programs in INT_XO_UP will be executed whenever XO changes from OFF to ON , That is, DO will increment once.

(2) Timer interrupt

1) Timer interrupt description

- Timer interrupt is based on the set time, execute the interrupt program every this time, the minimum time interval can reach 100 us.
- Up to 100 timer interrupt execution programs can be created.
- Each timer interrupt program is independent of each other and does not affect each other.
- Each timer interrupt program should be configured with priority. When triggered at the same time, it is executed in the order of priority, but when the priority is the same, it is executed in the order of the established program.
- The interrupt execution program is executed only after El is used in the scanner to allow the interrupt

2) Timer interrupt step

Project management \Rightarrow Program \Rightarrow Interrupt \Rightarrow Right click to create. Enter the program name. The program name only supports the combination of English letters, numbers, and underscores, and must start with an English letter. The default is INTx. Click Configure and select Timer Interrupt as the execution type, as shown in the figure below (it can also be configured in "program parameters" in "parameters" in project management).

EI Interrupt configuration-INTO \times	
Parameter	Value
Trisger type	Timer interrupt
\square External Interrupt	
channel	X0
Upper and lower edges	Rising edge
Priority	0
Filter time(0.01us)	1
\square Timer interrupt	
Time (0.1 ms)	
Priority	0
\square High-speed counting	interrupt
High-speed counting...	High-speed compare in...
channel	HSCO
Comparison value	
Priority	0
Contact	

Project		Content	Setting range	Default
Execution type		Select the type of interrupt	Not set/External input interrupt/Timer event/high-speed counter interrupt	Not set
Timer interrupt	Time	Set the interval time for interrupt triggering	1 to 2147483647 (100us unit)	
	priority	When multiple interrupts arrive at the same time, the order of priority execution, the smallest value is executed first	0 to 2	0

3) Write interrupt execution program

Double-click the newly created timer interrupt program in the project management to start writing the interrupt execution program. As shown in the figure above, a newly created timer interrupt program is INTO, and the trigger condition is configured to execute the interrupt program every 10ms. If the main program uses El to enable interrupts, all instruction programs in INTO will be executed every 10 ms , namely DO It will add 1 to 10 ms .

(3) High-speed counter interrupt

1) Description of high-speed counter interrupt

- The high-speed counter interrupt triggers an interrupt condition after the set value of the high-speed counter HSCO to HSC7 provided by the PLC and executes the interrupt program.
- It can support up to 100 high-speed counter interrupt programs, but the number that can be supported by each channel does not need to be fixed.
- When using the high-speed counter interrupt, project must configure the high-speed counter and use the OUT HSC instruction to enable the corresponding counting channel to count before it can be used (see the high-speed counter description section for the specific configuration method).
- Each high-speed counter interrupt program should be configured with priority. When triggered at the same time, it will be executed in the order of priority. When the priority is the same, it will be executed in the order of channels HSCO-HSC7. When the channel is also the same, it is executed in order according to the creation promise.
- Project must use EI in the scan program to allow interrupts before the interrupt execution program will be executed.

Note: Both the HSC channel and the external input interrupt channel must use the PLC input point X. It should be noted that it cannot be reused during configuration. For details, please refer to the configuration chapter of the high-speed counter.
2) high-speed counter interrupt steps
"Project management" \Rightarrow "Program \Rightarrow "Interrupt" \Rightarrow Right click to create. Enter the program name. The program name only supports the combination of English letters, numbers, and underscores, and must start with an English letter. The default is INTx. Click Configure, select high-speed interrupt for execution type, as shown in the figure below (it can also be configured in "program parameters" in "parameters" in project management).

Project		Content	Setting range	Default
Execution type		Select the type of interrupt	Not set, External input interrupt, Timer event, high-speed counter interrupt	Not set
High count interrupt	Mode	Select the type of high-speed counter interrupt: (1) High-speed comparison interrupt: The interrupt program is executed after the trigger condition is reached. (2) High-speed comparison setting: After reaching the trigger condition, the set contact is set. (3) High-speed comparison reset: reset the set contact after reaching the trigger condition.	High-speed compare interrupt High-speed comparison set High-speed comparison reset Not set	High-speed compare interrupt
	Channel	Select the high-speed counter channel used	HSCO to HSC7	HSCO

PLC LX5V Series Programming Manual (V2.2)

Comparison value	Set the comparison value of the high-speed counter. When the high-speed counter value of the set channel passes this value, the trigger condition is reached.	When multiple interrupts arrive at the same time, the order of priority execution, the smallest value is executed first	-2147483648 to 2147483647	0 to 2

3) Description of triggering rules

Mode	Configuration	The current value	Action
High-speed compare interrupt (INTO)	Comparison value: 10000	$9999 \rightarrow 10000$	Execute all programs in interrupt INTO
		$10001 \rightarrow 10000$	Execute all programs in interrupt INTO
High-speed comparison set (INT1)	Comparison value: -50,000 Contact: Y10	$-50001 \rightarrow-50000$	Y 10 is immediately set and mapped to the actual output (not affected by the scan period) The program in INT1 will not be executed
		$-49999 \rightarrow-50000$	Y 10 is immediately set and mapped to the actual output (not affected by the scan period) The program in INT1 will not be executed
High-speed comparison reset (INT2)	Comparison value: 400000 Contact: Y10	$399999 \rightarrow 400000$	Y10 is reset immediately and mapped to the actual output (not affected by the scan period) The program in INT2 will not be executed
		$400001 \rightarrow 400000$	Y 10 is reset immediately and mapped to the actual output (not affected by the scan period) The program in INT2 will not be executed

Note: Both HSC channel and external input interrupt channel need to use the INPUT point X, so it should be noted that it cannot be reused in configuration. For details, please refer to the configuration section of high-speed counter.
4) Write interrupt execution program
(1) New interrupt program

Create three new interrupt programs under the interrupt of project management, namely HSCO_20000, HSCO_30000, HSCO_40000.
Configure the interrupt program in the "program parameters", as shown in the figure below.

(2) High-speed counter configuration

Configure HSCO for use in the high-speed counter configuration. After selecting the working mode, click the "Check" button. After the correct configuration box pops up, click Enter.

High-speed counting configuration								
Configuration options	HSCO	HSC1	HSC2	HSC3	HSC4	HSC5	HSC6	HSC7
Use or not	Use	Unused						
Pulse input mode	Single phase...							
Counting direction	Up counting ...							
Frequency multiplication	1 times freq...	1 times frequen	ncy times freq...	1 times freq...				
Input frequency measu...	1000	1000	1000	1000	1000	1000	1000	1000
Filter time(0.01us)	1	1	1	1	1	1	1	1
Max frequency(HZ)	150k							
Occupy X points	ingle phase: Xi (B phase: XO, X	ingle phase: X IB phase: $\mathrm{X} 2, \mathrm{X}$	ingle phase: X_{i} IB phase: X4, X	ingle phase: X , B phase: $\mathrm{X} 6, \mathrm{X}$	ingle phase: x. 3 phase: X10, x	ingle phase: X 3 phase: X12, X	ingle phase: X_{1} 3 phase: X14, X	ingle phase: X 3 phase: X16, X
				t (x) description	Check	Reset	ок	Cancel

Call the high-speed counter in the main program and enable interrupts:

Program operation:
Assuming that the High-speed counter channel 0 has been receiving pulses:
When the count value of HSCO accumulates from 0 to 20000, all procedures of HSCO_20000 are executed.
When the count value of HSCO is accumulated from 20000 to 30000 , all procedures of HSCO_30000 are executed.
When the count value of HSCO is accumulated from 30000 to 40000 , all procedures of HSCO_40000 are executed.

Mask interrupt

(1) Mask through application instructions

The PLC interrupt is in the shielded state by default when it is powered on, and can only be used after the interrupt is allowed through the El instruction.

The interrupt mask instruction DI masks all interrupts without parameters, and masks some priority interrupts with parameters (refer to the program flow instruction DI/EI for details).
(2) Mask through special registers SM and SD

1) External input interrupt mask register

External input interrupt mask register							
Special register number	Type of interrupt	Instruction	Defaults				
SM352	X0 rising edge interrupt	ON: shield interrupts; OFF: interrupt allowed	OFF				
SM353	X0 falling edge interrupt	ON: shield interrupts; OFF: interrupt allowed	OFF				
SM354	X1 rising edge interrupt	ON: shield interrupts; OFF: interrupt allowed	OFF				
SM355	X1 falling edge interrupt	ON: shield interrupts; OFF: interrupt allowed	OFF				
SM356	X2 rising edge interrupt	ON: shield interrupts; OFF: interrupt allowed	OFF				
SM357	X2 falling edge interrupt	ON: shield interrupts; OFF: interrupt allowed	OFF				
SM358	X3 rising edge interrupt	ON: shield interrupts; OFF: interrupt allowed	OFF				
SM359	X3 falling edge interrupt	ON: shield interrupts; OFF: interrupt allowed	OFF				
SM360	X4 rising edge interrupt	ON: shield interrupts; OFF: interrupt allowed	OFF				

18/튼ํN
PLC LX5V Series Programming Manual (V2.2)

SM361	X4 falling edge interrupt	ON: shield interrupts; OFF: interrupt allowed	OFF
SM362	X5 rising edge interrupt	ON: shield interrupts; OFF: interrupt allowed	OFF
SM363	X5 falling edge interrupt	ON: shield interrupts; OFF: interrupt allowed	OFF
SM364	X6 rising edge interrupt	ON: shield interrupts; OFF: interrupt allowed	OFF
SM365	X6 falling edge interrupt	ON: shield interrupts; OFF: interrupt allowed	OFF
SM366	X7 rising edge interrupt	ON: shield interrupts; OFF: interrupt allowed	OFF
SM367	X7 falling edge interrupt	ON: shield interrupts; OFF: interrupt allowed	OFF

2) Timer interrupt mask register

Timer interrupt mask register		Default	
Special register number	Type of interrupt	Instruction	0
SD350	1st to 16th timer interrupt	Each bit can control the mask of an interrupt. ON: shield interrupts; OFF: interrupt allowed	0
SD351	17th to 32th timer interrupt	Each bit can control the mask of an interrupt. ON: shield interrupts; OFF: interrupt allowed	0
SD352	33th to 48th timer interrupt	Each bit can control the mask of an interrupt. ON: shield interrupts; OFF: interrupt allowed	0
SD353	49th to 64th timer interrupt	Each bit can control the mask of an interrupt. ON: shield interrupts; OFF: interrupt allowed	0
SD354	65th to 80th timer interrupt	Each bit can control the mask of an interrupt. ON: shield interrupts; OFF: interrupt allowed	0
SD355	81st to 96th timer interrupt	Each bit can control the mask of an interrupt. ON: shield interrupts; OFF: interrupt allowed	0
SD356	97th to 100th timer interrupt	Each bit can control the mask of an interrupt. ON: shield interrupts; OFF: interrupt allowed	0

3) high-speed counter interrupt mask register

High-speed counter interrupt mask register			
Special register number	Type of interrupt	Instruction	Default
SD382	1st to 16th high-speed counter interrupt	Each bit can control the mask of an interrupt. ON: shield interrupts; OFF: interrupt allowed	0
SD383	17th to 32nd high-speed counter interrupt	Each bit can control the mask of an interrupt. ON: shield interrupts; OFF: interrupt allowed	0
SD384	33th to 48th high-speed counter interrupt	Each bit can control the mask of an interrupt. ON: shield interrupts; OFF: interrupt allowed	0
SD385	49th to 64th high-speed counter interrupt	Each bit can control the mask of an interrupt. ON: shield interrupts; OFF: interrupt allowed	0
SD386	65th to 80th high-speed counter interrupt	Each bit can control the mask of an interrupt. ON: shield interrupts; OFF: interrupt allowed	0
SD387	81st to 96th high-speed counter interrupt	Each bit can control the mask of an interrupt. ON: shield interrupts; OFF: interrupt allowed	0
SD388	97th to 100th high-speed counter interrupt	Each bit can control the mask of an interrupt. ON: shield interrupts; OFF: interrupt allowed	0

Subroutine

During the execution of the scan program, the executed program can be called by the CALL instruction. You can create up to 100 new subprograms.

A subroutine is to split a certain module in the main program for the main program to call, which is conducive to the modularization of the program. Such as other high-level language functions, but this function has no parameters and no return value.

(1) Instructions for calling subroutines

After a new subroutine is created, the content of the program is not executed. It is executed only when the CALL(P) instruction is used to call the subroutine in the scan, event, and interrupt programs, and the call is executed once. Three new subroutines SUB0, SUB1, SUB2 are created as shown in the figure below. In the main program MAIN, the subprogram can be called by using the CALL(P) subprogram program name.

Through this programming method, the use of the same logic program for different conditions can reduce the number of Circuit program steps and improve the readability of the Circuit program.

(2) Note:

1) When using the timer (OUT T), note that the output will not be reset when the subroutine is not called, and a specific subroutine register must be used.
2) It is not allowed to call recursively between subprograms, that is, call SUB1 in SUB0, and then call SUB0 in SUB1. This is not allowed.
3) The subroutine can be nested up to 32 levels. If the level exceeds 32 levels, a serious error will be reported and the Circuit program operation will be forcibly stopped.
4) Unlike the LX3V series mainframe, the subroutine in the LX5V series mainframe ends with the END instruction instead of SRET.

Positioning instructions

(1) Event

1) $O N$ event

If the high-speed pulse instruction is turned on during the $O N$ event, the high-speed pulse instruction will be sent as normal. If the ON contact of the trigger event in the scan period is turned OFF during the pulse sending, select whether to continue sending the pulse or stop the pulse according to the unscanned processing flag bit.

Output shaft	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
Not scanned flag bit	SM899	SM959	SM1019	SM1079	SM1139	SM1199	SM1259	SM1319

When the flag bit is 0 (continue to send pulse), if the instruction is not scanned in the current scan cycle, continue to send pulses until it stops. At this time, it should be noted that if the trigger event OFF contact turns ON after the pulse is sent, the pulse will be sent again.

When the flag bit is 1 (stop sending pulses), if the trigger event ON contact turns OFF in a certain scan period, it will decelerate and stop.

2) TIME event

If the high-speed pulse instruction is turned on in the TIME event, the high-speed pulse instruction will be sent as normal. If the instruction is not scanned in a certain scan period during the pulse transmission, select whether to continue sending the pulse or stop the pulse according to the unscanned processing flag bit.

Output shaft	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
Not scanned flag bit	SM899	SM959	SM1019	SM1079	SM1139	SM1199	SM1259	SM1319

When the flag bit is 0 (continue to send pulse), if the instruction is not scanned in the current scan cycle, the pulse will continue to be sent until it stops. In the TIME event, it is impossible to ensure that the instruction is scanned in every scan cycle, so you should avoid using high-speed pulse instructions in the TIME time, otherwise the pulse will be sent again after the pulse is sent.

When the flag bit is 1 (stop sending pulses), if the instruction is not scanned in the current scan cycle, it will decelerate and stop. In the TIME event, if the flag bit is set to 1 (stop sending pulses), there will be no pulse sending.

(2) Subroutine

If the high-speed pulse instruction is turned on in the subroutine, the high-speed pulse instruction will be sent as normal. If the scanning period is closed during pulse sending, select whether to continue sending or stop the pulse according to the unscanned processing flag.

Output shaft	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
Not scanned flag bit	SM899	SM959	SM1019	SM1079	SM1139	SM1199	SM1259	SM1319

When the flag bit is 0 (continue to send pulse), if the instruction is not scanned in the current scan cycle, the pulse will continue to be sent until it stops. At this time, it should be noted that if the subroutine is called again after the pulse is sent, the pulse will be sent again.

When the flag bit is 1 (stop sending pulses), if the subroutine is closed during high-speed pulse sending, the speed will decelerate and stop. If the subroutine is closed before sending the pulse, then no pulse is sent.

(3) Interrupt

1) External interrupt

If the high-speed pulse instruction is enabled in the external interrupt, the high-speed pulse instruction selects whether the pulse continues to be sent or the pulse stops according to the unscanned processing flag bit.

Output shaft	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
Not scanned flag bit	SM899	SM959	SM1019	SM1079	SM1139	SM1199	SM1259	SM1319

When the flag bit is 0 (continue to send pulse), continue to send high-speed pulses until it stops.
When the flag bit is 1 (stop sending pulse), the high-speed pulse decelerates and stops.

2) Timer interrupt

If the high-speed pulse instruction is turned on in the timer interruption, the high-speed pulse instruction is sent as normal. If the instruction is not scanned in a certain scan period in the pulse transmission, the pulse continues to be sent or the pulse stops is selected according to the unscanned processing flag.

Output axis	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
Not scanned flag bit	SM899	SM959	SM1019	SM1079	SM1139	SM1199	SM1259	SM1319

When the flag bit is 0 (continue to send pulse), if the instruction is not scanned in the current scan cycle, continue to send pulses until it stops. In the timer interrupt, it is impossible to ensure that the instruction is scanned in every scan cycle, so it is necessary to avoid using high-speed pulse instructions in the T timer interrupt. Otherwise, after the pulse transmission is completed, the pulse will be sent again.

When the flag bit is 1 (stop sending pulses), if the instruction is not scanned in the current scan cycle, it will decelerate and stop. In the TIME event, if the flag bit is set to 1 (stop sending pulses), there will be no pulse sending.

3) High-speed comparison interrupt

If the high-speed pulse instruction is enabled in the high-speed comparison interrupt, the high-speed pulse instruction selects whether the pulse continues to be sent or the pulse stops according to the unscanned processing flag.

Output axis	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
Not scanned flag bit	SM899	SM959	SM1019	SM1079	SM1139	SM1199	SM1259	SM1319

When the flag bit is 0 (continue to send pulse), continue to send high-speed pulses until it stops.
When the flag bit is 1 (stop sending pulse), the high-speed pulse decelerates and stops.

2 Description of devices

Device list

Classification	Type	Device name	Sign	Range	Mark
User device	Bit	Input	x	0 to 1777	Octal number
	Bit	Output	Y	0 to 1777	Octal number
	Bit	Internal relay	M	0 to 7999	Decimal number
	Bit	Step relay	S	0 to 4095	Decimal number
	Bit/word	Timer	T	0 to 511	Decimal number
	Bit/word	Counter	C	0 to 255	Decimal number
	Bit/double word	Long counter	LC	0 to 255	Decimal number
	Bit/double word	High-speed counter	HSC	0 to 15	Decimal number
	Word	Data Register	D	0 to 7999	Decimal number
	Word	Data Register	R	0 to 29999	Decimal number
System software	Bit	Special	SM	0 to 4095	Decimal number
	Word	Special register	SD	0 to 4095	Decimal number
Index register	Word	Index register	[D]	0 to 7999	Decimal number
	Word	Index register	V	0 to 7	Decimal number
	Double word	Long index register	Z	0 to 7	Decimal number
Nested	Bit	Nested	N	0 to 7	Decimal number
Pointer	-	Pointer	P	0 to 4095	Decimal number
Constant	-	Decimal constant	K	-	Decimal number
	-	Hexadecimal constant	H	-	Hexadecimal number
	Single precision floating point	Real constant	E	-	-

2.1 User device

Input relay (X)

The input relay represents the original PLC external input signal status, and the external signal status is detected through the input X port. 0 represents the external signal is open, and 1 represents the external signal is closed.

Using the program instruction method, the state of the input relay cannot be modified, and its node signals (normally open, normally closed) can be used indefinitely in the user program.

The relay signal is identified by Signs such as $\mathrm{X} 0, \mathrm{X} 1, \ldots \ldots \mathrm{X} 7, \mathrm{X} 10, \mathrm{X} 11 \ldots . .$. and its serial number is numbered in octal.
When an expansion module is connected, the extended X point will also use the X point as the component of the input signal state, and the occupied X point is the starting position of the X point used by the PLC with 0 as the end of the X point, such as PLC Occupy 17 to 24 X points (X 0 to $\mathrm{X} 21, \mathrm{X} 0$ to X 27), at this time the X points of the expansion module will be stored starting from X 30 .

Output relay (Y)

The output relay is a Devices directly connected to the hardware port of the external user control device, and logically corresponds to the physical output port of the PLC. After the PLC scans the user program each time, the component status of the Y relay will be transmitted to the hardware port of the PLC. 0 means the output port is open; 1 means the output port is closed.

Y relay numbers are identified by Signs such as Y0, Y1,...Y7, Y10, Y11, etc., and their serial numbers are numbered in octal format. Y relay components can be used indefinitely as promised by users

In terms of hardware, according to the different output components, it can be divided into relay type, transistor type, solid state relay type, etc. If there are output expansion module ports, they are numbered in sequence starting from the main module.

Internal relay (M)

The auxiliary relay M element is used as an intermediate variable in the execution of the user program, just like the auxiliary relay in the actual electronic control system, used for the transmission of status information, and multiple M variables can also be combined into word variables. M variables and external ports There is no direct connection, but you can copy X to M through program statements, or copy M to Y to connect with the outside world. An M variable can be used unlimited times.

The auxiliary relay M is identified by Signs such as M0, M1. \qquad M7999, and its serial number is numbered in decimal system.

Status relay (S)

The state relay S is used for the design and execution of the step program. The STL step instruction is used to control the transfer of the step state S, simplifying the programming design. If STL programming is not used, S can be used as an M variable. State S variables are identified by Signs such as S0, S1...S4095, and their serial numbers are numbered in decimal system.

Timer (T)

The timer T is equivalent to the time relay in the relay system and is used to complete the timing function. The timer is an addition expression. When the timer expires, the current value and the set value are the same value.

The measurement starts when the timer coil turns ON. When the current value of the timer is consistent with the set value, it will become the time limit, and the timer contact will turn ON. When the timer coil is turned OFF, the current value will become 0 , and the timer contact will also become OFF.

The T value range of the timer is 0 to 32767 .
When the timer coil (OUT T instruction) is executed, the timer coil is turned on/off, the current value is updated, and the contact is turned on/off.

Device number	Timer	Device number	Timer
T0 to T191	100ms timer	T246 to T249	1ms accumulative timer
T192 to T199	100ms subroutine timer (used in the subroutine, even if the subroutine is not called, it will still be updated)	T250 to T255	10ms cumulative timer
	T256 to T383	1 ms timer	
T200 to T245	10ms timer	T384 to T511	0.1 ms timer

(1) General-purpose timer (T0 to T245)

As shown in the figure above: when the normally open contact of $X 0$ is turned on, the current value counter of T200 starts timing from zero and counts up the 10 ms clock pulse. When the current value is equal to the set value 223 , the timer's normally open contact is turned on and the normally closed contact is turned off, that is, the output contact of T200 will act after its coil is driven for 2.23s. After the normally open contact of XO is disconnected, T200 is reset because the coil is de-energized. After reset, its normally open contact is disconnected, and the normally closed contact is connected, and the current value returns to zero.
(2) Accumulative timer (T246 to T255)

When the X1 normally open contact in Figure b is turned on, the current value counter of T250 accumulates the 10ms clock pulse. When the normally open contact of X 1 is disconnected or stopped, the counting stops, and the current value remains unchanged. When the normally open contact of X 1 is turned on again, counting continues. When the accumulated time $\mathrm{t} 1+\mathrm{t} 2$ is 4.2 s , the current value is equal to the set value of 420 , the normally open contact of 2250 is turned on and the normally closed contact is turned off. When the normally open contact of X 2 is turned on, T250 will reset (because the coil of the accumulative timer will not reset when the power is off, you need to use the normally open contact of X 2 and the reset instruction to force T 250 to reset).
(3) Setting value

The timer time can use the constants (K, H) in the program memory as the set value, or can be specified indirectly by the content of the data register (D).

After PLC is powered on, multiplication is performed, D3=D0*2. Use the data of D3 as the timing time value of T10.

Counter (C)

The counter is used to complete the counting function. Each counter contains a coil, a contact, and a timer value register. Whenever the driving signal of the counter coil changes from OFF to $O N$, the counter reading value increases by 1 . If the timer value reaches the preset time value, its contact action, a contact (NO contact) is closed, b contact (NC contact) is opened; If the timing value is cleared, the output a contact will be opened, and b contact (NC contact) will be closed. Some timers have features such as power-down retention, accumulation, etc., and maintain the value before power-down after power-on again.

The counters are identified by $\mathrm{CO}, \mathrm{C} 1, \ldots, \mathrm{C} 255$, and the order is numbered in decimal.
The counter (C) is a 16 -bit counter.

The setting value of the 16 -bit up counter is 1 to 32767 . As shown in the working process of the up counter in Figure c, after the normally open contact of X 1 in the figure is turned on, CO is reset, its corresponding bit storage unit is set to 0 , the normally open contact of $C 0$ is disconnected, and the normally closed contact Point is turned on, and its current counter value is set to 0 at the same time. X2 provides a counting input signal. When the reset input circuit of the counter is disconnected and the counting input circuit changes from disconnected to connected (that is, the rising edge of the counting pulse), the current value of counter CO is increased by 1 . After 10 count pulses, the current value of $C 0$ is equal to the set value of 10 , and its corresponding bit storage unit is set to 1 , and the YO contact is turned on at this time. When counting pulses again, the current value does not change until the reset input signal is turned on, and the current value of the counter is set to 0 .

Long counter (LC)

The long counter (LC) is basically the same as the counter (C), but compared to the counter (C), the long counter (LC) is a 32-bit register, and the range of values that can be counted is larger.

The long counter is identified by LCO, LC1,...,LC255, and the sequence is numbered in decimal.

High-speed counter (HSC)

High-speed counter (HSC) is a device used for counting through external input of high-speed pulse signals. HSC is a 32-bit register.
The corresponding parameter configuration can be configured through: "project management" -> "parameters" -> "high-speed counter configuration"

Project Manager	$4 \times$
Device Comment Parameter © PLL Parameter \{ ${ }^{(G)}$ Program parameters (S) High-speed counting configuration ($\}$ Channel occupancy Device Memory Extended Function Electronic CAM table	

High-speed counting configuration

Configuration options	HSCO	HSC1	HSC2	HSC3	HSC4	
Use or not	Use	Use	Use	Use	Use	
Pulse input mode	Single phase input	Single phase input	$A B$ phase input	$A B$ phase input	$A B$ phase input	Sin
Counting direction	Up counting mode	Down counting mode	Up counting mode	Up counting mode	Up counting mode	Up
Frequency multiplication	1 times frequency	1 times frequency	1 times frequency	2 times frequency	4 times frequency	1.
Input frequency measu...	1000	1000	1000	1000	1000	
Filter time(0.01us)	1	1	1	1	1	
Max frequency(HZ)	150 K	150 K	01H	01H	01H	
Occupy X points	Single phase: $X 0$ AB phase: $\mathrm{X0}, \mathrm{X} 1$	Single phase: X1 AB phase: $\mathrm{X} 2, \mathrm{X}_{3}$	Single phase: X 2 $A B$ phase: $X 4, X 5$	Single phase: X3 AB phase: $\mathrm{X} 6, \mathrm{X7}$	Single phase: X4 AB phase: X10, X11	$\begin{aligned} & \text { ing } \\ & 3 \mathrm{p} \\ & \hline \end{aligned}$
$<$						
		Input (X) description		Reset	OK Cancel	Cancel

Data register (D \& R)

Registers are used for data calculation and storage, such as the calculation and calculation of timers, counters, and analog parameters. The width of each register is 16 bits. If 32 bit instructions are used, the adjacent registers are automatically formed into 32 bit registers for use, the lower address is the low byte, and the higher address is the high byte.

The address range of D register: D0 to D7999; the address range of R register: R0 to R29999.
The data involved in operations in most of our series PLC instructions are processed as signed numbers. For 16-bit registers, bit15 is the sign bit (0 represents a positive number, 1 represents a negative number); for a 32-bit register, the high byte bit15 It is the sign bit, and the value range is -32768 to 32767 .

When 32-bit data needs to be processed, the two adjacent D registers can be formed into a 32-bit double word. For example, when accessing D100 in 32-bit format, use the high address D101 register as the high word and the high byte bit 15 as The sign bit of a double word can handle values from - 2147483648 to 2147483647.

2.2 System device

Special Relay (SM)

The special relay SM is an internal relay with a certain specification inside the programmable controller, so it cannot be used in the program like ordinary internal relays. It can be turned ON/OFF as needed to control the PLC

For details, please refer to Special relays (SM) list.

Special Register (SD)

The special register SD is an internal register whose specifications are determined within the programmable controller, so it cannot be used in the program like a normal internal register, and the corresponding data can be written as needed to control the PLC.

For details, please refer to Special register (SD) list.

2.3 Index Register

Index register ([D])

The index register is used to modify the index of the Devices. [D] The index register is actually the same as the data register D , ranging from DO to D7999. The input method is as follows, just add [D] directly after the Devices:

The supported soft components for index modification are as follows:

- Constant K, H plus index modification, such as D0 $=10, \mathrm{~K} 10$ [D0] result $=10+10=20$.
- Constant E and character strings do not support index modification.
- Add index modification to the data device, such as $D 0=10$, the result of $D 10[D 0]$ is the value of D20. Even if D10[D0] is used in a double word instruction, the double word value is the value of D20 (low word) and D21 (high word).
- Bit device plus index modification, such as $D 0=10$, the result of $M 0$ [D0] is the value of M10.
- Bits are combined into words with index modification. For example, $\mathrm{D} 0=10, \mathrm{~K} 4 \mathrm{M} 10[\mathrm{D} 0$] first takes M 10 offset by 10 addresses, and then combines them. The result is equivalent to K 4 M 10 .

Whether the index modification can be used depends on whether each instruction supports the format, you can check the "offset modification" in the description of the available device for each instruction.

2.4 Nesting

Nesting (N)

Nesting is a device used in master station control instructions (MC/MCR instructions)*1 to program operating conditions through a nested structure. Specify with a small number (order from NO to N7) from the outside of the nested structure.

*1 is an instruction used to create an efficient ladder switching program by opening and closing the common bus of the Circuit program.

2.5 pointer

Pointer (P)

The pointer is the device used in the jump instruction (CJ instruction).
At present, the CALL instruction directly uses the subroutine name to call, and no longer uses the P pointer.

2.6 Constant

The constants are explained below.

Decimal constant (K)

" K " is a Sign that represents a decimal integer and is specified by $K \square$ (for example: K123). It is mainly used to designate the set value of a timer or counter or the value in the operand of an application instruction. In 16bit instructions, the value range of constant K is -32768 to 32767 ; in 32bit instructions, the value range of constant K is -2147483648 to 2147483647.

Hexadecimal constant (H)

" H " is the Sign of hexadecimal number, specified by $\mathrm{H} \square$ (example: H 123), mainly used to designate the value of the operand of the application instruction. The value range of the constant H is 0000 to FFFF; in the 32 -bit instruction, the value range of the constant K is 0000,0000 to FFFF, FFFF.

Real number constant (E)

" E " is the single-precision floating-point number representation Sign, specified by Ea (example: E1.23), mainly used to specify the
value of the operand of the application instruction, the value range of the single-precision floating-point number E is $\pm 1.175495^{*} 10$ -38 to $\pm 3.402823 * 10+38(\pm 1.175495 \mathrm{E}-38$ to $\pm 3.402823 \mathrm{E}+38)$ and 0 (7 effective digits).

(The address occupies D1 and D0)

String constant

The character string constant is the device that specifies the character string, and only supports the ASCII code character set, and any character string ends with a NULL character (00 H). To use string devices, you must use double quotation marks to modify the characters, as follows to convert the string to ASCII characters and fill in the device starting with DO:

2.7 Power-down retention setting

The user can freely configure the power-off storage range within the range of the Devices. The constant configuration is located in:
"Project Management" \rightarrow "Parameters" \rightarrow "PLC Parameters" \rightarrow "Device Latch".

* Note: The X and Y registers do not support the power-down save function.

2.8 Special use of device

(1) Use bits to form words

Format: KnB
K is a fixed character.
The value of n is 1 to 8 , which means that ($n * 4$) bits are combined into a word, such as K4M0 is a combination of M0 to M15.
B is the bit device number.
Example: Set a total of 32 bits M0 to M31 at the same time.
$\left.\begin{array}{|cccc|}\hline \mathrm{X} 0 & {[\mathrm{DMOV}} & \text { HFFFF } & \text { K8M0 }\end{array}\right]$

Q Note: KnB type can also support index modification.
(2) Take the bit in the word

Format: D.b
D is the number of data device D (R is not available).
b is the bit number that needs to be taken, hexadecimal, and the value range is 0 to F.
Example: bit14 in D2000 is set and Y0 is output

Note: D.b type can also support index modification.

3 Sequence control program instructions

3.1 Contact instructions

Operation start, series connection, parallel connection

LD, LDI, AND, ANI, OR, ORI

- LD: Normally open contact instruction. LDI: Normally closed contact instruction.

Extract the ON/OFF information of the device specified in (s) as the result of the calculation.

- AND: Normally open contact series connection instruction. ANI: Normally closed contact series connection instruction.

Extract the ON/OFF information of the device specified in (s), and perform an AND operation with the calculation result so far as the calculation result.

- OR: Parallel connection instruction of 1 normally open contact. ORI: Parallel connection instruction of 1 normally closed contact

Extract the ON/OFF information of the device specified in (s), and perform an OR operation with the result of the operation so far as the result of the operation.

Content, range and data type

Parameter	Content	Range	Data type	Data type (tag)
(s)	Device used as contact	---	Bit	ANY_BOOL

Device used

Instruction	Parameter	Devices																			Offset modification
			Y M		SM	T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS	T/C	CDR	RSD	LC	HSC	K HE	[D]
LD	Parameter 1	- ${ }^{-}$	- -	\bullet											\bullet						
LDI	Parameter 1	- -	- -	-	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet											\bullet
AND	Parameter 1	-	- -	\bullet											\bullet						
ANI	Parameter 1	-	- -	-	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet											\bullet
OR	Parameter 1	-	- -	\bullet	\bullet	\bullet	\bullet	-	\bullet	\bullet											\bullet
ORI	Parameter 1		- -		\bullet	\bullet	\bullet	\bullet	\bullet	\bullet											\bullet

Features

- LD, LDI
- The LD instruction is a normally open contact instruction, and the LDI instruction is a normally closed contact instruction. The ON/OFF information *1 of the specified device is extracted as the operation result.
*1: When the bit of the word device is specified, it is turned on/off according to $1 / 0$ of the specified bit.
- AND, ANI
- The AND instruction is a normally open contact serial connection instruction, and the ANI instruction is a normally closed contact serial connection instruction. It extracts the ON/OFF information*1 of the specified bit device and performs an AND operation with the result of the operation so far. This value is used as the result of the operation.
*1: When the bit of the word device is specified, it is turned on/off according to $1 / 0$ of the specified bit.
- There is no limit to the number of serial contacts, and this instruction can be used any time continuously.
- After the OUT instruction, it is called cascade output through the contact OUT to other coils. As long as the sequence is good, it can be repeated any number of times.

- OR, ORI

- The OR instruction is a parallel connection instruction for a normally open contact, and the ORI instruction is a parallel connection instruction for a normally closed contact. It extracts the ON/OFF information*1 of the specified device and compares it with the calculation result so far. Perform an OR operation and use the value as the result of the operation.
*1: When the bit of the word device is specified, it is turned on/off according to $1 / 0$ of the specified bit.
- OR and ORI instructions start from the step where the instruction is located, and connect in parallel to the step where the previous LD and LDI instructions are located.
- There is no limit to the number of parallel connections.

Key point

When specifying the bit of a word device, the bit is specified with a hexadecimal number. (For example, b11 of D0 will become "D0.B")

Error code

Error code	Content
4085 H	(S) read address exceeds the device range

Example

1) LD instruction (the logic operation of a contact starts)

2) LDI instruction (the logic operation of contact b starts)

3) AND instruction (a contact in series)

Sequence diagram

4) ANI instruction (series b contact)

Sequence diagram

5) $O R$ instruction (a contact in parallel)

6) ORI instruction (a contact in parallel)

7) Offset modification

The devices used in the LD, LDI, AND, ANI, OR, ORI instructions can all be indexed with D data devices (the status register S cannot be modified).

D0 to D7999 can be used in index modification.
When the devices are input (X) and output (Y), the value of the index register is converted into an octal number and then added.

Example

When the value of D0 is 10, X012 determines LD contact ON (conduction)/OFF (non-conduction).
8) Bit specification in the data register

Among the devices used in the LD, LDI, AND, ANI, OR, and ORI instructions, the bits of the data register (D) can be specified. When executing the bit specification of the data register, enter "." after the number of the data register (D), and then enter the bit number (0 to F). The usable data registers are specified in bits, but only 16 -bit data registers are valid.

Please specify the bit number in the order of $0,1,2, \ldots 9, A, B, \ldots F$ starting from the lower bit.

Example

The third bit of DO determines the LD contact ON (conduction)/OFF (non-conduction).

Pulse calculation starts, pulse series connection, pulse parallel connection

LDP, LDF, ANDP, ANDF, ORP, ORF

- LDP: Rising edge pulse operation start instruction.

Turns on only at the rising edge (OFF \rightarrow ON) of the bit device specified in (s).

- LDF: Falling edge pulse operation start instruction.

Turns on only at the falling edge (ON \rightarrow OFF) of the bit device specified in (s).

- ANDP: Rising edge pulse series connection instruction, ANDF: Falling edge pulse series connection instruction. The previous operation result up to that time is ANDed with the bit device specified in (s) as the operation result.
- ORP: Parallel connection instruction for rising edge pulse/ORF: Parallel connection instruction for falling edge pulse. The operation result up to that time is ORed with the bit device specified in (s) as the operation result.

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	Devices used as contacts	-	Bit	ANY_BOOL

Device used

Instruction	Parameter	Devices																			Offset modification
		X Y			SM	T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS		CDR	RSD	LC	HSC	KHE	[D]
LD	Parameter 1	- -	-	-	-	\bullet	\bullet	-	\bullet	\bullet											\bullet
LDI	Parameter 1	- -	-	\bullet											\bullet						
AND	Parameter 1	- -	-	-	\bullet	\bullet	\bullet	-	\bullet	\bullet											\bullet
ANI	Parameter 1	- -	-	-	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet											-
OR	Parameter 1	- -	-	-	-	\bullet	\bullet	-	-	\bullet											\bullet
ORI	Parameter 1	-	-	-	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet											\bullet

Features

- LDP, LDF
- The LDP instruction is a rising edge pulse operation start instruction, which turns on only at the rising edge (OFF $\rightarrow O N$) of the specified bit device. When the bit of the word device is specified, it turns on only when the specified bit changes from $0 \rightarrow 1$. In the case of only the LDP instruction, it is the same as the pulsed instruction (P) of the instruction executed while ON.

When the circuit that uses the LDP instruction is replaced with a circuit that does not use the LDP instruction, the situation is as follows.

- The LDF instruction is a falling edge pulse instruction, which turns on at the falling edge (ON \rightarrow OFF) of the specified bit device. When the bit of the word device is specified, it turns on only when the specified bit changes from $1 \rightarrow 0$.
- ANDP, ANDF
- The ANDP instruction is a series connection instruction for rising edge pulses, and the ANDF instruction is a series connection instruction for falling edge pulses. The AND operation is performed with the operation result up to that time as the operation result. The ON/OFF information used in ANDP instructions and ANDF instructions is shown in the table below.

Device specified in ANDP, ANDF		ANDP status	ANDF status
Bit device	Bit specification of word device		
OFF \rightarrow ON	$0 \rightarrow 1$	ON	OFF
OFF	0	OFF	OFF
ON	1	OFF	OFF
ON \rightarrow OFF	$1 \rightarrow 0$	OFF	ON

- ORP, ORF

- The ORP instruction is a parallel connection instruction for rising edge pulses, and an ORF instruction is a parallel connection instruction for falling edge pulses. The OR operation is performed with the operation result up to that time as the operation result. The ON/OFF information used in ORP instructions and ORF instructions is shown in the table below.

Device specified in ORP, ORF		ORP status	ORF status
Bit device	Bit specification of word device		
OFF \rightarrow ON	$0 \rightarrow 1$	ON	OFF
OFF	0	OFF	OFF
ON	1	OFF	OFF
ON \rightarrow OFF	$1 \rightarrow 0$	OFF	ON

Error code

There is no operation error.

Example

1) LDP, ANDP, ORP instructions (calculation starts when a rising edge is detected, serial connection, parallel connection)

In the above figure, when X 000 to X 002 changes from OFF to ON, MO or M 1 only maintains ON for 1 operation cycle.
2) LDF, ANDF, ORF instructions (calculation starts when a falling edge is detected, serial connection, parallel connection)

In the above figure, when X000 to X002 changes from ON to OFF, MO or M1 only maintains ON for 1 operation cycle.
3) Bit specification of data register (D)

In the devices used for LDP, LDF, ANDP, ANDF, ORP, ORF instructions, the bits of the data register (D) can be specified.
To specify the bit of the data register, enter "." after the number of the data register (D), and then enter the bit number (0 to F). The usable data registers are specified in bits, but only 16-bit data registers are valid.

Please specify the bit number in the order of $0,1,2, \ldots 9, A, B, \ldots F$ starting from the low order.

Example:

The third bit of DO determines the LDP contact ON (conduction)/OFF (non-conduction) when it changes from OFF to ON.

3．2 Combining instructions

Series connection and parallel connection of Circuit program blocks

ANB，ORB

Perform AND operation or OR operation between block A and block B ，and use it as the result of the operation．

Circuit program

Features

－ANB
－Perform AND operation of block A and block B and use it as the result of the operation．
－The Sign of the ANB instruction is not a contact Sign，but a connection Sign．
－ORB
－Perform OR operation of block A and block B，and use it as the result of the operation．
－The ORB instruction connects circuit blocks with 2 or more contacts in parallel．The parallel connection of only 1 contact uses OR instruction and ORI instruction，without ORB instruction．
－The Sign of the ORB instruction is not a contact Sign，but a connection Sign．

Error code

There is no operation error．

Example

Push, read, and pop of calculation results

MPS, MRD, MPP

- MPS: Store the calculation result (ON/OFF) before the MPS instruction.
- MRD, MPP: Read the operation result stored by the MPS instruction, and start the operation from the next step with the operation result.

Circuit program

Features

- MPS
- Store the operation result (ON/OFF) before the MPS instruction.
- The MPS instruction can be used continuously up to 11 times. If the MPP instruction is used in the middle, the number of uses of the MPS instruction will be -1.
- MRD
- Read the operation result stored by the MPS instruction, and start the operation from the next step with the operation result.
- MPP
- Read the operation result stored by the MPS instruction, and start the operation from the next step with the operation result.
- Clear the operation result stored by the MPS instruction.
- The used number of MPS instructions will be -1 .

Error code

There is no operation error.

Example

MPS, MRD, MPP instructions (push stack, read stack, pop stack)

- After using the MPS instruction to store the intermediate result of the operation, it drives the output Y002.
- After reading the storage content using MRD instruction, drive output Y003.

The MRD instruction can be programmed multiple times.

- Use the MPP instruction to replace the MRD instruction in the final output loop, so as to reset it while reading the above-mentioned stored content.

Invert the result of operation

INV

Invert the results of operations up to the INV instruction.

Circuit program

Features

Invert the results of operations up to the INV instruction.

Operation result before INV instruction	Operation result after INV instruction is executed
OFF	ON
ON	OFF

Error code

There is no operation error.

Point

- The INV instruction executes the operation as a result of the previous operation, so it should be used in the same position as the AND instruction. INV instruction cannot be used in the position of LD and OR instructions.
- When the INV instruction and ANB instruction are used together for ladder operation, pay attention to the inverted range.

------: Inverted range

Example

INV instruction (reverse operation result)

Circuit program	List program	Timing chart		
		ON		
X000	$0 \text { LD X000 }$	X000 OFF	OFF	
	2 OUT Y000	Y000 ON OFF	ON	
		Before execution		After execution
		OFF	\longrightarrow	ON
		ON	\rightarrow	OFF
			verse	个

Pulse operation result

MEP, MEF

- MEP: Turns on when the operation result before the MEP instruction is a rising edge, and turns off when it is not a rising edge.
- MEF: Turns on when the operation result before MEF instruction is a falling edge, and turns off when it is not a falling edge.

Circuit program

Features

- MEP
- When the operation result before the MEP instruction is a rising edge (OFF \rightarrow ON), it becomes ON (conduction state). When the operation result before the MEP instruction is other than the rising edge, it turns off (non-conduction state).
- When using the MEP instruction, if multiple contacts are connected in series, pulse processing will be easier.
- MEF
- When the operation result before the MEF instruction is a falling edge (ON \rightarrow OFF), it becomes ON (conduction state). When the operation result before the MEF instruction is other than the falling edge, it turns OFF (non-conduction state).
- When using the MEF instruction, if multiple contacts are connected in series, pulse processing will be easier.

Error code

There is no operation error.

Point

- For MEP instructions and MEF instructions, if the indexed contacts are pulsed by subroutines, FOR to NEXT instructions, etc., they may not operate normally.
- The MEP instruction and MEF instruction perform actions based on the previous calculation results, so they should be used in the same position as the AND instruction. The MEP instruction and MEF instruction cannot be used in the position of LD instruction and OR instruction.

Example

1) MEP instruction (ON at the rising edge of the operation result)

Circuit program		List program			Timing chart		
$\xrightarrow{\text { X000 X001 }}$	M0		LD AND MEP	$\begin{aligned} & \text { X000 } \\ & \text { X001 } \\ & \text { M0 } \end{aligned}$	X000	OFF	ON
					X001	OFF	ON
					M0	OFF	ON

2) MEF instruction (ON at the falling edge of the operation result)

3.3 Output instructions

OUT instruction (except timers and counters)

Output the results of the previous OUT instruction to the specified device.
Circuit program

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(d)	ON/OFF device number	-	Bit	ANY_BOOL

Device used

- Refer to OUT T instruction when using T;
- Refer to OUT C instruction when using C, LC, HSC;
- Offset modification cannot be used when using S device.

Features

Outputs the results of the previous OUT instruction to the specified device.

Condition	Calculation result	Coil / specified position
When using bit devices	OFF	OFF
	ON	ON
When using word devices	OFF	0
	ON	1

Error code

Error code	Content
4086 H	(D) write address exceeds the device range

Example

1) When using bit devices

The device programmed with the OUT instruction executes ON/OFF according to the state of the drive contact, and the parallel OUT instruction can be used continuously for many times.

In the following program example, OUT M101 followed by OUT M100 means this.
However, if multiple OUT instructions are used for the same device number, it will become a dual output (double coil). Please be careful.

List program

2) Offset modification

All the devices used in the OUT instruction can be indexed with the D data device (the status register S cannot be modified).
D0 to D7999 can be used in index modification.
When the devices used are input (X) and output (Y), the value of the index register is converted to an octal number and then added.
Example:

When the value of DO is 10 , when XO is ON (conducting), the Y 12 contact is ON (conducting).
3) Bit specification in the data register

Among the devices used in the OUT instruction, the bit of the data register (D) can be specified.To specify the bit of the data register, enter "." after the number of the data register (D), and then enter the bit number (0 to F). The usable data registers are specified in bits, but only 16-bit data registers are valid.

Please indicate the positioning number in the order of $0,1,2, \ldots 9, A, B, \ldots F$ starting from the low order.

Example:

In the example on the left, the state of X1 determines the ON (conduction)/OFF (non-conduction) of the third bit in D0.

SET instruction

When the execution instruction turns ON, the device specified in (d) will be in the following state.

- Bit device: Turn on the coil and contact.
- Bit specification of word device: Set the specified position to 1 .

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(d)	Set (ON) bit device number/bit specification of word device	-	Bit	ANY_BOOL

Device used

Instruction	Parameter	Devices																			Offset modification
			Y M		SM	T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS	TC	CDR	SD	LC	HSC	KHE	[D]
SET	Parameter 1		- -		-					-											-

*1: Offset modification cannot be used when using S devices.

Features

When the execution instruction turns ON, the device specified in (d) will be in the following state.

Devices	Device status
Bit Device	Turn on the coil and contact
Bit specification of word device	Set the specified position to 1

The device that is turned on will remain on even if the execution instruction turns off. The device that is turned ON by the SET instruction can be turned OFF by the RST instruction.

* Note:

For the output relay (Y), if the SET instruction and the RST instruction are executed in the same operation, the instruction result close to the END instruction (end of program) will be output.

Error code

Error code	Content
4086 H	(d) In the case of using offset, the offset address exceeds the device range

Example

1) When using bit devices

The parallel SET instruction could be used multiple times in succession. In the following program example, this is the case for the program with SET YOOO followed by RST YOOO.

2) Offset modification

All the devices used in the SET instruction can be indexed with D data devices (the status register S cannot be modified).
D0 to D7999 can be used in index modification.
When the devices used are input (X) and output (Y), the value of the index register is converted into octal number and then added.

Example:

When the value of D0 is 10 , when XO is ON (conduction), the Y 12 contact is ON (conduction), X 0 is OFF (non-conduction), and the Y 12 contact remains unchanged.
3) Bit specification in the data register

Among the devices used in the SET instruction, the bits of the data register (D) can be specified.
To specify the bit of the data register, enter "." after the number of the data register (D), and then enter the bit number (0 to F). The usable data registers are specified in bits, but only 16-bit data registers are valid.

Please specify the bit number in the order of $0,1,2, \ldots 9, A, B, \ldots F$ starting from the lower bit.

Example:

In the example on the left, the state of X 1 is ON (conduction), and the third bit in D 0 is ON (conduction). The state of X 1 is OFF (non-conduction), and the state of the third bit in DO remains unchanged.

RST instruction

When the RST input turns ON, the device specified in (d) will change to the following state.

- Bit device: Turn off the coil and contact
- Timers and counters: Set the current value to 0 , and set the coil and contact to OFF.
- Bit specification of word device: Set the specified position to 0 .
- Word device, module access device, index register: Set the content to 0.

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(d)	Reset bit device number/bit specification of word device or reset word device number	-	Bit/word/double word	ANY_ELEMENTARY

Device used

Instruction	Parameter	Devices																		Offset modification
		XY		SM	T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS	TC	D R	RSD	LC	HSC	KHE	[D]
RST	Parameter 1	$\bullet \cdot{ }^{\bullet}$	$\bullet \cdot$		-	-	-	-	-					$\bullet \cdot \bullet$	$\cdots \cdot$,	\bullet	\bullet	-	-

*1: Offset modification cannot be used when using S devices.

Features

When the execution Instruction is ON, the specified device will be in the following state.

Devices	Device status
Bit Device	Turn on the coil and contact
Timer, counter	Set the current value to 0, set the coil and contact to OFF
Bit specification of word device	Set the specified position to 0
Word device	Set the content to 0

When the execution instruction is OFF, the device status does not change.
The function when specifying a word device with the RST instruction is the same as the following Circuit program.

Note:

For timers and counters, when the RST instruction is executed in the program, subroutine, and interrupt program where the RST instruction is jumped, the timer and counter may remain unchanged after reset, and the timer and counter will not operate.

Error code

Error code	Content
4086 H	(d) write address exceeds the device range

Example

1) Use bit device

When X0 is ON (conducting), Y0 is set to OFF, R10 is set to 0 , the word device of T10 is set to 0 , the bit device is set to OFF, and the word device of C 100 is set to 0 . The device is turned off. When XO is OFF (non-conduction), all states remain unchanged.
2) Offset modification

All the devices used in the RST instruction can be indexed with D data devices. (The status register S could not be modified)
D0 to D7999 can be used in index modification.
When the devices used are input (X) and output (Y), the value of the index register is converted into an octal number and then added.

Example

When the value of D0 is 10, when XO is ON (conduction), the Y 12 contact is OFF (conduction), XO is OFF (non-conduction), and the Y12 contact remains unchanged.
3) Bit specification in the data register

Among the devices used in the RST instruction, the bits of the data register (D) can be specified
To specify the bit of the data register, enter "." after the number of the data register (D), and then enter the bit number (0 to F). The usable data registers are specified in bits, but only 16-bit data registers are valid.

Please specify the bit number in the order of $0,1,2, \ldots 9, A, B, \ldots$... starting from the lower bit.

Example

In the example on the left, the state of X 1 is ON (conduction), and the third bit in D0 is OFF (conduction). The state of X1 is OFF (non-conduction), and the state of the third bit in DO remains unchanged.

PLF/Falling edge output

When the PLF instruction is $\mathrm{ON} \rightarrow$ OFF, one scan of the device specified in (d) is ON , and when it is other than ON \rightarrow OFF, it is OFF.

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(d)	Pulsed device	-	Bit	ANY_BOOL

Device used

Instruction	Parameter	Devices																			Offset modification
			YM		SM	T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS		CDR	RSD	LC	HSC	K HE	[D]
PLF	Parameter 1	-	- •		-					-											

Features

When the execution instruction is ON \rightarrow OFF, the specified device is turned ON, and when the execution instruction is other than ON \rightarrow OFF, it is turned OFF. When there is one PLF instruction for the device specified in (d) in one scan, the specified device will turn on one scan.

Note:

If the PLF instruction is jumped by the $C J$ instruction, or the executed subroutine is not called by the $C A L L(P)$ instruction, the device specified in (d) may be turned on for more than one scan. Be careful.

Error code

No Error code

Example

PLF instruction (differential output of falling edge)

In the above figure, when X000 changes from ON to OFF, only one operation cycle of M1 is ON.

PLS/Rising edge output

When the PLS instruction is OFF \rightarrow ON, one scan of the device specified in (d) is turned ON, and when it is other than OFF \rightarrow ON, it is turned OFF.

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(d)	Pulsed device	-	Bit	ANY_BOOL

Device used

Features

When the PLS instruction is OFF \rightarrow ON, one scan of the specified device is turned on, and when it is other than OFF \rightarrow ON, it is turned off. When there is one PLS instruction for the device specified in (d) in one scan, the specified device turns on one scan.

* Note:

If the PLS instruction is jumped by the $C J$ instruction, or the executed subroutine is not called by the $C A L L(P)$ instruction, the device specified in (d) may be turned on for more than one scan. Be careful.

Error code

No Error code

Example

PLS instruction (differential output on rising edge)

In the above figure, when XOOO changes from OFF to ON, only one operation cycle of MO is ON.

3.4 END/Sequence control program end instruction

Indicates the final end of the program.

Features

Indicates the end of the program including the main program, subprogram, interrupt program, and event. When the END instruction is executed, the CPU module will end the program being executed.

4 Program flow instructions

4.1 Program jump

$\mathrm{CJ} /$ Conditional jump

When the jump instruction is ON, the program with the specified pointer number in the same program file is executed.
-[CJ $\quad(P) \quad(P)]$
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(P)	The pointer number of the jump target	P0 to P4095	Device name	POINTER

Device used

Features

- $\mathrm{CJ}(\mathrm{P})$

When the execution instruction is ON , the program with the specified pointer number is executed.
When the execution instruction is OFF, execute the next program.

1) Execute instructions.
2) Each scan is executed.
3) One scan is executed.

(Note:

After turning ON the coil of the timer, if the timer whose coil is ON is jumped by the $\mathrm{CJ}(\mathrm{P})$ instruction, the measurement will not be performed normally.

When the OUT instruction is jumped by the $\mathrm{CJ}(\mathrm{P})$ instruction, the scan time will be shorter.
When the $C J(P)$ instruction is used to jump backward, the scan time will be longer.
For the $C J(P)$ instruction, you can jump to a step smaller than the step number being executed. However, in order to avoid the time limit of the watchdog timer, a method of jumping out of the loop during this period should be considered.

(1) While $X 3$ is $O N$, the loop is executed.
(2) When $X 7$ is set to $O N$, it jumps out of the loop.

- The device skipped by the $C J(P)$ instruction does not change.

When X 2 is ON , jump to the label of P 19.
Even if X 2 and X 4 turn ON/OFF during CJ instruction execution, Y 4 and Y 5 will not change.

- The label ($\mathrm{P} \square$) occupies 1 step.

The jump instruction can only specify the pointer number in the same program file.
When jumping to the pointer number within the jump range during jump operation, the program after the jump destination pointer number is executed.

The label procedure is shown below. When creating a loop program, move the cursor to the left of the bus bar of the Circuit program, and enter the label (P) at the beginning of the loop block.

It is also possible to program the label at the position where the step number is less than the CJ instruction, but if the scan time becomes more than 200 ms (default setting), a watchdog timer error will occur, which requires attention.

When the pointer number in the operand is the same and the label is one, the operation is as follows.

(1) When X 20 is $O N$, jump from the $C J$ instruction of $X 20$ to label P9.
(2) When X20 is OFF and X21 is ON, jump from the CJ instruction of X21 to label P9.

If the tag number is reused, it will become an error state.

SM100 is always ON during the operation of the CPU module, so the usage method shown below will jump unconditionally.

The pointer number P63 of LX3V represents the jump to the END instruction. The P63 pointer of LX5V no longer provides this function. If you need to use this function, please use the GOEND instruction.

Error code

No error message

Example

1) The situation to jump after OFF processing

After one operation cycle when X023 changes from OFF to ON, the CJ P7 instruction is valid.
With this method, the output between CJ P7 instruction and mark P7 can be turned off before jumping.

2) CJ instruction and action of contact coil

In the following program example, when X000 is ON , jump from the CJ instruction of the first loop to the mark P8. When X000 is OFF, no jump is performed, but the program is executed in order from step 1, and the CJ instruction in the 11th loop jumps to mark P9. The jumped instruction is not executed.

Double-coil action of Y001 output:
When X000=OFF, it will act through X001.
When $\mathrm{X} 000=\mathrm{ON}$, it will act through X 012 .
Even if the program is distinguished by conditional jump, if the same coil (YOOO) is programmed twice or more within or outside the jump, it will be treated as normal double coil processing.

The action of the subroutine timer (T192 to T199):
After the coil is driven, the action continues even if it jumps, and the output contact also operates.

If using the high-speed counter (HSCO to HSC7) operation

After the coil is driven, the action continues even if it jumps, and the output contact also operates.

In the above program, if each input changes during the jump, the action of each coil is shown in the following table.

Content	Contact state before jump	Coil action in jump
$\begin{gathered} \mathrm{Y}, \mathrm{M}, \mathrm{~S} \\ (\mathrm{Y} 1, \mathrm{M} 1, \mathrm{~S} 1) \end{gathered}$	X1, X2, X3 OFF	Y1, M1, S1 OFF
	X1, X2, X3 ON	Y1, M1, S1 ON
$1 \mathrm{~ms}, 10 \mathrm{~ms}, 100 \mathrm{~ms}$ timer (TO)	X4 OFF	Timer not working
	X4 ON	Timer interrupt (continue after X0 OFF)
Program timer (T192)	X5 OFF, X6 OFF	Timer not working, but the timer is reset when X 13 is ON
	X5 OFF, X6 ON	Timing continues (contact action after XO OFF)
Counter (CO)	X7 OFF, X10 OFF	Counting interrupt, but it is reset when X 13 is ON
	X7 OFF, X10 ON	Count interruption (continue after X0 OFF)
Application instructions (MOV)	X11 OFF X11 ON	Single-cycle application instructions are not executed in the jump Multi-cycle application instructions are partially executable (such as high-speed pulse instructions)

3) The relationship between $C J$ instruction and MC to MCR jump

The relationship between the main control instruction and the jump instruction and the action content are as follows.
However, since the operation of (2), (4), and (5) will become complicated, please avoid using them.

4.2 Subroutine jump

CALL/Subroutine call

When the jump instruction is ON , the program with the specified pointer number in the same program file is executed.
-[CALL (P) (P)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(P)	Subroutine name	-	Pointer	POINTER

Device used

Parameter 1 can only use the subroutine name.

Features

When the CALL (P) instruction is executed, the subroutine of the pointer (P) will be executed. (P) can only write the name of the newly created subprogram, if the program name does not exist, the Circuit program compilation fails.

CALL(P) instructions can be nested up to 32 levels.

(8) Note:

- Multiple CALL(P) instructions can call the same subprogram, but subprograms with the same program name are not allowed.
- Use program timers in subroutines (the same applies to interrupt programs). This timer counts when the coil instruction or the END instruction is executed. If it reaches the timer setting value, the output contact will act when the coil instruction or END instruction is
executed. Generally, the timer only counts when the coil instruction is executed, so if it is used in a subroutine that executes the coil instruction under certain conditions, it will not count.
- If the 1 ms accumulative timer is used in a subroutine (the same in an interrupt program), when it reaches the set value, the output contact will act when the first coil instruction is executed (when the subroutine is executed), so be careful.
- The devices that are turned on in the subprogram (the same in the interrupt program) will be retained after the program ends. Therefore, these devices should be reset in the main program after the end of the program.

Error code

Error code	Content
4102 H	$\mathrm{CALL}(\mathrm{P})$ instruction exceeds 32 levels of nesting structure

Example

1) New subroutine

Project management \rightarrow Subroutine \rightarrow Scan \rightarrow Right click to create

| Configuration-SUB1 |
| :--- | :--- |
| Program name |
| SUB1 |
| programming |
| Ladder |
| creator |
| 2021/03/08 13:49:59
 Creation date
 Remarks
 OK |

2) Subroutine call

In the scan program, turn on M10 to call the subroutine SUB0, execute the Circuit program in the subroutine SUB0, until the END instruction of the subroutine is executed, return to the scan program MAIN to execute LD M11.
3) Subroutine nesting

In the above figure, the subroutine SUB0 is called in the scan program, and the subroutine SUB1 is called in SUB0. So when the scan program M10 is turned on, after the CALL instruction is executed, the subroutine SUB0 will be executed first.And after the CALL instruction of SUB0 is executed, SUB1 will be executed first. After executing the END instruction of SUB1, return to SUB0 for execution. After executing the END instruction of SUBO, return to the scan program MAIN. The program has only 2 levels of nesting, and the number of nesting levels cannot be greater than 32 .

4.3 Interrupt disable, interrupt enable

DI and EI/Interrupt prohibited and allowed

The CPU module is usually interrupt disabled. This instruction can make the CPU module into the interrupt enabled state (EI instruction), and then become disabled again (DI instruction).

- DI: It is forbidden to interrupt program execution.
- El: Release the interrupt prohibition state.
-[DI (s)]
-[EI]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(P)	Subroutine name	-	Pointer	POINTER

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		XY	YMS	SSM	T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS	TC	DR	RSD	LC	HSC	KHE	[D]	XXP
DI	Parameter 1																				\bullet

Features

- DI
- Even if the execution interrupt condition is triggered in the program, prohibit the interrupt program execution before executing the El instruction.
- When the PLC is powered on or after STOP, it will become the state after DI instruction is executed, and the interrupt program cannot be executed.
- The DI instruction can choose whether to use parameters. When there is no parameter, it means that all interrupt programs are prohibited. With parameters, according to the value in parameter s1, interrupt programs with this priority and lower priority are prohibited.
- The priority of the interrupt ranges from 0 to 2 . The smaller the value, the higher the response priority of the interrupt. That is, the interrupt with priority 0 is the fastest to be responded.
- If there is no El instruction before the DI instruction, the DI instruction is invalid.
- EI
- Release the interrupt prohibition state when DI instruction is executed, and allow interrupt program to run.
- When the EI and DI instructions are not enabled, they all maintain the original enabled or forbidden interrupt program execution status. The currently disabled interrupt priority can be viewed in SD151.

SD151	Currently disabled interrupt priority	According to the interrupt prohibition instruction (DI instruction), the interrupt prohibition instruction (DI instruction) below the specified priority, and the interrupt enable instruction (El instruction), the priority of the interrupt prohibition will be stored. 0 : All priority interrupts are disabled (default); 1: Priority 1 and 2 interrupts are prohibited; 2: Priority 2 interrupt is prohibited; 3: All priority interrupts are allowed	R(read only)

- DI, EI nested structure

A: Sequence control program

(1) Interrupt allowable intervals of all priority levels;
(2) Interrupt forbidden zone below priority 2 (interrupt allowable zone above priority 1);
(3) Interrupt forbidden interval below priority 1 (interrupt allowable interval above priority 0);
(4) Interrupt prohibition zone below priority 2 (interrupt enable zone above priority 1);
(5) Interrupt allowable intervals of all priority levels;
(6) El paired with [DI K1];
(7) El paired with [DI K2].

- Interrupts (requests) that occur after the DI instruction are processed after the El instruction is executed.
- When the DI instruction is executed multiple times and the priority of the argument is specified to be higher than the priority currently being prohibited, interrupts below the priority of the argument are disabled.
- When the DI instruction is executed multiple times and the priority of the argument is specified to be lower than the priority currently being disabled, the interrupt disable status will not be changed.
- The nesting of DI instructions can be up to 16 levels.
- The interrupt priority of the interrupt pointer can be set by the properties of the interrupt program. Refer to the description of the interrupt program for details.
- The interrupt prohibition interval when DI instruction and EI instruction are executed is as follows.

1) When the DI instruction is executed multiple times (when the interrupt with priority higher than the currently prohibited interrupt priority is prohibited and specified)

Scan execution type program
(1) Interrupt allowable intervals of all priority levels;

2 Interrupt prohibition interval below priority 2 (interrupt allowable interval above priority 1);
(3) Interrupt prohibition section below priority 1 (interrupt enable section above priority 0).
2) When the DI instruction is executed multiple times (when the interrupt priority is lower than the currently prohibited interrupt priority is prohibited and specified)

Scan execution type program
1 Interrupt allowable intervals of all priority levels;
Interrupt prohibited interval below priority 1 (interrupt allowable interval above priority 0);
(3) The interrupts below priority 1 are already in the disabled state, so the interrupt disable priority will not be changed.
3) When DI instruction is executed through interrupt program

A: Scan execution type program
B: interrupt program
(1) Interrupt allowable intervals of all priority levels;
2. Interrupt prohibited interval below priority 3 (interrupt allowable interval above priority 1);
(3) Interrupt prohibition section below priority 2 (interrupt enable section above priority 0).
4) When only DI instructions without arguments are executed

A: Scan execution type program

1) Interrupt allowable intervals of all priority levels;

2 Interrupt prohibition interval below priority 1 (all interrupt prohibition intervals);
(3) Because the DI instruction with no argument is set to interrupt prohibition, by executing the El instruction once, all priority interrupts are set to allow.
5) In the case of executing DI instructions with arguments and DI instructions without arguments (when executing in the order of DI instructions with arguments \rightarrow DI instructions without arguments)

A: Scan execution type program

1) Interrupt allowable intervals of all priority levels;
(2) Interrupt prohibition interval below priority 2 (interrupt allowable interval above priority 1);

3 Interrupt prohibition section below priority 1 (all interrupt prohibition sections).
6) In the case of executing DI instructions with arguments and DI instructions without arguments (in the case of execution in the order of DI instructions with no arguments \rightarrow DI instructions with arguments)

A: Scan execution type program

1) Interrupt allowable intervals of all priority levels;
(2) Interrupt prohibition section below priority 1 (all interrupt prohibition sections).

Error code

Error code	Content
4085 H	(S) read address exceeds the device range
4084 H	The data set in (S) exceeds 0 to 2
4185 H	When the nesting of DI instructions exceeds 16 levels

Example

[MOM

SIMASK/Interrupt mask

Set interrupt pointer No. specified in (I) to the execution permission state/execution prohibition state according to the value of (s).
-[SIMASK
(I) (s]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(I)	Interrupt program name	-	Program name	POINTER
(s)	Specify the enable/disable of interrupt	0: Allow. 1: Prohibited	Signed BIN 16 bit	ANY16

Device used

Features

- The interrupt program of the interrupt program name specified in (I) is set to the execution permission state/execution prohibited state according to the data specified in (s).
- When (s) is 0 : Interrupt program execution permission status
- When (s) is 1 , the execution of the interrupt program is prohibited
- Regarding the interrupt program when the power is turned on or after STOP \rightarrow RUN, all interrupt programs will be executed.
- After setting interrupt prohibition, the prohibition state will be saved even if the instruction is disconnected. To restore it, write 0 to
(S), turn on the instruction again, or execute STOP \rightarrow RUN.
- The interrupted execution permission status/execution prohibition status will be stored in SM or SD, details as following:
(1) External interrupt

Register	Content	Register	Content	Register	Content	Register	Content
SM352	X0 rising edge interrupt	SM356	X2 rising edge interrupt	SM360	X4 rising edge interrupt	SM364	X6 rising edge interrupt
SM353	X0 falling edge interrupt	SM357	X2 falling edge interrupt	SM361	X4 falling edge interrupt	SM365	X6 falling edge interrupt
SM354	X1 rising edge interrupt	SM358	X3 rising edge interrupt	SM362	X5 rising edge interrupt	SM366	X7 rising edge interrupt
SM355	X1 falling edge interrupt	SM359	X3 falling edge interrupt	SM363	X5 falling edge interrupt	SM367	X7 falling edge interrupt

(2) Timer interrupt

Register	Content
SD350 to SD356	Timer interrupt mask, each bit represents an interrupt, a total of 100

(3) High-speed counter interrupt

Register	Content
SD382 to SD388	high-speed counter interrupt mask, each bit represents an interrupt, a total of 100

Error code

Error code	Content
4084 H	Data beyond 0 and 1 is input in the application instruction(s)
4085 H	(S) in the read application instruction exceeds the device range
4189 H	The SIMASK instruction specifies an interrupt program name that is not set

Example

As shown in the figure: when M 10 is turned on, the three interrupt programs of INT10, INT91 and INT70 are prohibited from running.

4.4 Cycle instructions

FOR to NEXT/Cycle

When the processing between the FOR to NEXT instruction is executed unconditionally (n) times, the next processing of the NEXT instruction will be performed.

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(n)	Number of repetitions between FOR to NEXT instructions	1 to 32767	Signed BIN 16 bit	ANY16

Features

- When the processing between the FOR to NEXT instruction is executed unconditionally (n) times, the next processing of the NEXT instruction will be performed.
- (n) can be specified in the range of 1 to 32767 . When specifying -32768 to 0 , the same processing as (n) $=1$ will be performed.
- If you do not want to execute the processing between the FOR and NEXT instructions, use the CJ instruction to jump.
- The FOR instruction can be nested up to 5 levels.
* Note:
- In the case of FOR to NEXT instruction programming with nesting between FOR to NEXT instructions, up to 5 levels can be achieved.

- Do not use IRET, SRET, RET, FEND, END and other instructions to block between FOR to NEXT instructions.
- If the number of repetitions is too large, the cycle time (operation cycle) becomes longer and the watchdog timer error occurs, you need to change the watchdog timer time or reset the watchdog timer.
- The following program will become an error.

The number of FOR instruction and NEXT instruction is inconsistent

No NEXT instruction

There is NEXT instruction after FEND instruction and END instruction

- If the FOR to NEXT instruction is repeatedly executed and ends midway, use the BREAK instruction.

Error code

Error code	Content
4085 H	(s) read address exceeds the device range
4100 H	When the nesting of FOR to NEXT instructions exceeds 5 levels or the number of FOR to NEXT does not correspond

Example

The program INC D0 will be executed 10 times, and INC D1 will be executed 100 times.
After execution, D0 will be equal to 10 and D1 will be equal to 100 .

BREAK/Break cycle

When the processing between the FOR to NEXT instruction is executed unconditionally (n) times, the next processing of the NEXT instruction will be performed.
-[BREAK]

Features

- Forcibly end the repeated processing by FOR to NEXT instructions.
- This instruction can only be between FOR to NEXT, otherwise an operation error will be reported.
- The BREAK instruction can only jump out of the loop nesting structure where the instruction itself is located.
- When the contact is connected, the loop structure of the FOR to NEXT instruction where it is located is forced to end, as shown in the figure below.

MO turns ON, no matter how many cycles are left to execute, jump directly to step 35 to execute the program.

M4 turns ON, no matter how many loops are left to execute, jump directly to step 50 to execute the program.

Error code

Error code	Content
4186 H	BREAK instruction is not used between FOR to NEXT instructions

Example

The program INC D0 will be executed 10 times, and INC D1 will be executed 100 times.
When M0 is OFF, D0 will be equal to 10 and D1 will be equal to 100 after execution.
When MO is ON, the BREAK instruction is executed, and the current loop is exited. The INC D1 instruction will not be executed, and the result $\mathrm{D} 1=0$

4.5 Master Control Instructions

MC and MCR instructions

- MC: Start main control
- MCR: End the main control.

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(N)	Nested ID N	0 to 7	Signed BIN 16 bit	ANY16
(d)	Device number that is turned ON	-	Bit	ANY_BOOL

Features

The main control instruction is used to create an efficient circuit program switching program by opening and closing the common bus of the circuit program.

The transition of ordinary Circuit program and master control Circuit program is as follows:

■MC

- When the execution instruction of the MC instruction is turned on by the start of main control, the operation result from the start of the MC instruction to the MCR instruction is the execution result of the instruction (loop). When the MC execution instruction is OFF, the calculation results from the MC instruction to the MCR instruction are as follows.

Devices	Device status
Timer	The count value becomes 0, and the coil and contact are all turned off.
Counter, cumulative timer	The coil turns off, but the count value and contact remain in the current state.
Devices in the OUT instruction	Forced to be OFF.
Devices in SET and RST instruction	Keep the current state
Devices in basic and application instructions	

- For MC instructions, the same nesting (N) number can be used multiple times by changing the device of (d).
- When the MC instruction is ON, the coil of the device specified in (d) will turn ON. In addition, when the same device is used in an OUT instruction, etc., it becomes a double coil. Therefore, the device specified in (d) must not be used in other instructions.

Key points:

If there are instructions that do not require contact (such as, FOR to NEXT instructions). If the instruction after MC can not affect the main CPU module, the instruction will execute

■MCR

- The release instruction of the main control indicates the end of the main control range.
- Do not add a contact instruction before the MCR instruction.
- When using, MC instruction and MCR instruction of the same nesting number should be used. However, when the MCR instruction has a nested structure concentrated in one position, all main controls can be terminated by the smallest number (N) number. (Refer to notes)
\square Nested structure
The main control instruction can be used through a nested structure. Each main control section is distinguished by nesting (N). N0 to N7 can be used for nesting.

By using the nested structure, it is possible to create a Circuit program that sequentially restricts the execution conditions of the program. The Circuit program using the nested structure is shown below.
(Left: Display of engineering tools, Right: Actual action loop)

* Note:
- If there is no instruction (LD, LDI, etc.) connected to the bus after the MC instruction, a program structure error occurs.
- MC to MCR instructions cannot be used in FOR to NEXT, STL to RET, subroutines, events, and interrupts. In addition, there cannot be instructions such as IRET, FEND, END, RET (SRET) inside MC to MCR to block.
- There can be up to 8 nests (N0 to N7). In the case of nesting, the MC instruction is used from the small number of nesting (N), while
the MCR instruction is used from the old number. If the order is reversed, it does not become a nested structure, so the CPU module cannot operate normally.
- When the MCR instruction is a nested structure concentrated in one location, all main control can be ended by the smallest number (N) number.

Error code

No operation error

Example

1) No nested structure

The main control program 1 and the main control program 2 do not belong to the nested structure, so you can use NO programming. There is no limit to the number of times NO can be used in this case
2) Nested structure

When using the MC instruction, the number of nesting level N increases sequentially. $(\mathrm{N} 0 \rightarrow \mathrm{~N} 1 \rightarrow \mathrm{~N} 2 \rightarrow \mathrm{~N} 3 \rightarrow \mathrm{~N} 4 \rightarrow \mathrm{~N} 5 \rightarrow \mathrm{~N} 6 \rightarrow \mathrm{~N} 7)$. When returning, use the MCR instruction to release from the larger nesting level. (N7 \rightarrow N6 $\rightarrow \mathrm{N} 5 \rightarrow \mathrm{~N} 4 \rightarrow \mathrm{~N} 3 \rightarrow \mathrm{~N} 2 \rightarrow \mathrm{~N} 1 \rightarrow \mathrm{~N} 0$). For example, when MCR N6 and MCR N7 are not programmed, if MCR N5 is programmed, the nesting level will return to 5 at once.The nesting level can be programmed up to 8 levels (N7).

As shown above:
87 Walk: Level NO, YO will follow X1 state only when X0 is ON.
95 Walk: Level $\mathrm{N} 1, \mathrm{Y} 1$ will follow X 3 state only when X 0 and X 2 are both ON .
103 Walk: Level $\mathrm{N} 2, \mathrm{Y} 2$ will follow X 5 state only when $\mathrm{X} 0, \mathrm{X} 2$, and X 4 are ON at the same time.
109 Walk: Level N1, use MCR N2 to return to level N1. Y3 will follow the state of X6 only when X0 and X2 are both ON.
115 walk: level NO, use MCR N1 to return to level NO. Y4 will follow the state of X 7 only when X 0 is ON .
121 Walk: Does not belong to the main control structure, has nothing to do with $\mathrm{X} 0, \mathrm{X} 2, \mathrm{X} 4, \mathrm{Y} 5$ follows the state change of X 10 .

4.6 Watchdog reset

WDT/watchdog timer

The watchdog timer is reset by the program.
-[WDT]

Features

- Reset the watchdog timer through the program.
- Use when the scan time exceeds the set value of the watchdog timer depending on conditions.
- For t1 from step 0 to WDT instruction, and from WDT instruction to END instruction, do not exceed the set value of the watchdog timer.

- The WDT instruction can be used more than twice in one scan.
* Note:
- The watchdog timeout time can be set in the special register SD122. The default is 200 ms .
- Use the special relay SM122 to control whether to turn on the watchdog timer function. The WDT instruction will be invalid after closing.

1. The watchdog timer time is set to 300 ms ;
(2) Refresh the watchdog timer.

Error code
There is no operation error.
Example

The FOR to NXET instruction loop takes a long scan period for many times, which may exceed the set watchdog timer 300 ms , causing the PLC to report an error and cannot continue to run. After turning on M0, the WDT instruction will run, and the watchdog timer is updated every cycle , So that it will not report an error to execute the program normally.

5 Timer and counter output instructions

5.1 Timer output instruction

OUT T/Timer output

When the calculation result before the OUT instruction is ON, the coil of the timer/retentive timer specified in (d) will be ON and measurement will be performed until the set value is reached. If the time limit expires, the normally open contact will conduct and the normally closed contact will become non-conductive.
-[OUT (d) (value)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(d)	Timer device number	-	Counter	ANY
(value)	Timer setting value	0 to 32767	Unsigned BIN 16 bit	ANY16

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		X Y M S SM T(bit)			C(bit)	LC(bit)	HSC(bit)	D.b	KnX		KnM	KnS	T	CD			LC	HSC	K HE	[D]	XXP
OUT T	Parameter 1												\bullet								
OUT 1	Parameter 2								-	-	-	-		- \bullet	\bullet	-			- -		

Features

When the operation result before the OUT instruction is ON, the coil of the timer specified in (d) will be ON and measurement will be performed until the set value is reached. If the count reaches (current value \geq set value), the normally open contact will be conductive, and the normally closed contact will become non-conductive.

When the operation result before the OUT instruction changes from ON to OFF, the situation is as follows.

Timer type	Timer coil	The current value of the timer	Before the time limit		After the time limit	
			Normally open contact	Normally closed contact	Normally open contact	Normally closed contact
Timer	OFF	0	Non-conductive	Conduction	Non-conductive	Conduction
Cumulative timer	OFF	Keep current value	Non-conductive	Conduction	Conduction	Non-conductive

- After the time limit expires, clear the current value of the accumulative timer and turn off the contact with the RST instruction.
- When the setting value is 0 , the time limit will expire when the OUT instruction is executed.
- While the OUT T instruction is ON, if the OUT T instruction is skipped by the CJ instruction, etc., the current value update and contact ON/OFF will not be performed.
- If the same OUT T instruction is executed more than twice in the same scan, the current value will be updated according to the number of executions.
- Description of each timer:

Device number	Timer specifications	Device number	Timer specifications
T0 to T191	100 ms timer	T246 to T249	1ms accumulative timer
T192 to T199	100 ms subroutine timer (used in the subroutine, even if the subroutine is not called, it will still be updated)	T250 to T255	10ms cumulative timer
T200 to T245	10ms timer	T256 to T383	1 ms timer

Error code

Error code	Content
4084 H	The parameter setting in (value) is out of range

Example
Using timing, DO increases by 1 after every 1S:

5.2 Counter output instructions

OUT C/Counter output

16-bit counter instruction: When the operation result before the OUT instruction changes from OFF to ON, the current value of the counter specified in (d) will be +1 . If the count reaches, the normally open contact will be turned on and the normally closed contact will become Non-conductive.
-[OUT (d) (value)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(d)	Counter device number	-	Counter	ANY
(value)	Counter setting value	0 to 32767	Unsigned BIN 16 bit	ANY_INT

Device used

Instruction	Parameter	Devices																			Offset modification	Pulse extension
		XYMS			T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	Kns	T C Dr			RSD	LC	HSCKHE		[D]	XXP
	Parameter 1														\bullet							
	Parameter 2									\bullet	-			$\bullet \bullet \bullet$								

Features

- When the calculation result before the OUT instruction changes from OFF to ON, the current value (count value) of the counter specified in (d) will be +1 . If the count reaches (current value \geq set value), the normally open contact will be turned on , The normally closed contact becomes non-conductive.
- If the calculation result is ON, no counting is performed. (Counting input does not need to be pulsed.)
- After the count is reached, the count value and the state of the contact do not change before the RST instruction is executed.
- When the setting value is 0 , the processing is the same as when it is 1 .

Error code

Error code	Content
4084 H	The parameter setting in (value) is out of range
4085 H	The (value) parameter exceeds the device range

Example

Every time MO changes from OFF \rightarrow ON, CO will increase by 1 . When the value of CO is added to K 10 , the normally open contact of $C 0$ is closed and YO is output. At this time, MO 0 continues from $\mathrm{OFF} \rightarrow \mathrm{ON}$, and the value of CO will not change anymore.
The contact of CO can only be turned OFF by RST/ZRST instruction and communication.

OUT LC instruction/Long counter output

32-bit counter instruction: When the operation result before the OUT instruction changes from OFF to ON, the current value of the long counter specified in (d) will be +1 . If counted, the normally open contact will be turned on and the normally closed contact will change It is non-conductive.
-[OUT
(d) (value)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(d)	Long counter device number	-	Counter	ANY
(value)	Long counter setting value	0 to 4294967295	Unsigned BIN 32 bit	ANY_INT

Device used

Instruction	Parameter	Devices																			Offset modification	Pulse extension
		XYMMS		SM	T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	Kns	T	CD	R SD	LC	HSC	K	HE	[D]	XXP
OUT LC	Parameter 1																\bullet					
	Parameter 2									\bullet	-	\bullet	\bullet	\bullet	\bullet	- \bullet			-	- \bullet		

Features

- When the calculation result before the OUT instruction changes from OFF to ON, the current value (count value) of the long counter specified in (d) will be +1 . If the count reaches (current value \geq set value), the normally open contact will turn on On, the normally closed contact becomes non-conductive.
- If the calculation result is ON, no counting is performed. (Counting input does not need to be pulsed.)
- After the count is reached, the count value and contact status will not change before the RST instruction or ZRST instruction is executed.
- When the setting value is 0 , the processing is the same as when it is 1 .

Error code

Error code	Content
4085 H	The (value) parameter exceeds the device range

Example

Each time MO changes from OFF to ON, LCO will increase by 1 . When the value of LCO is added to K10, the normally open contact of LCO is closed and $Y O$ is output. At this time, MO continues from OFF $\rightarrow O N$, and the value of LCO will not change anymore.

The contact of LCO can only be turned OFF by RST/ZRST instruction and communication.

6 High-speed input counter

6.1 Specifications of high-speed counter

Types of high-speed counters

(1) Single-phase input counter (S/W)

The counting method of single-phase input counter (S / W) is as follows:

(2) $A B$ phase input counter [1 times frequency]

The counting method of $A B$ phase input counter [1 times frequency] is as follows:

Increase/decrease action	Timing
When counting up	Phase A input is ON and phase B input is OFF \rightarrow ON, the count will increase by 1
When counting down	When the A phase input is ON and the B phase input is ON \rightarrow OFF, the count will decrease by 1

When counting up When counting down

(3) AB phase input counter [2 times frequency]

The counting method of 2-phase 2-input counter [2 times frequency] is as follows:

Increase/decrease action	Timing
When counting up	When the A phase input is ON and the B phase input is OFF \rightarrow ON, the count will increase by $1 ;$ The count will increase by 1 when the phase A input is OFF and the phase B input is ON \rightarrow OFF.
When counting down	When A phase input is ON and B phase input is ON \rightarrow OFF, the count will decrease by $1 ;$ When phase A input is OFF and phase B input changes from OFF \rightarrow ON, the count will decrement by 1.

(4) $A B$ phase input counter [4 times frequency]

The counting method of 2-phase 2-input counter [4 times frequency] is as follows:

Increase/decrease action	Timing
When counting up \quadWhen B phase input is OFF and A phase When the A phase input is ON and the B When B phase input is ON and A phase inp The count will increase by 1 when the ph	When B phase input is OFF and A phase input is OFF $\rightarrow O N$, the count will increase by 1 ; When the A phase input is ON and the B phase input is OFF $\rightarrow \mathrm{ON}$, the count will increase by 1 ; When B phase input is $O N$ and A phase input is $O N \rightarrow O F F$, the count will increase by 1 ; The count will increase by 1 when the phase A input is OFF and the phase B input is ON \rightarrow OFF.
When counting down $\|$When A phase input is OFF and B phase When B phase input is ON and A phase When A phase input is ON and B phase When Phase B input is OFF and Phase A	When A phase input is OFF and B phase input is OFF $\rightarrow O N$, the count will decrease by 1 ; When B phase input is $O N$ and A phase input is $O F F \rightarrow O N$, the count will decrease by 1 ; When A phase input is $O N$ and B phase input is $O N \rightarrow O F F$, the count will decrease by 1 ; When Phase B input is OFF and Phase A input is ON \rightarrow OFF, the count will decrement by 1.
When counting up	When counting down
	A phase input B phase input

Highest frequency

The maximum countable frequency of various high-speed counters is as follows:

Counter type	Highest frequency
Single phase input counter (S/W)	150 KHz
$A B$ phase input counter [1 times frequency]	100 KHz
$A B$ phase input counter [2 times frequency]	100 KHz
$A B$ phase input counter [4 times frequency]	100 KHz

Counting range: -2147483648 to 2147483647 , which is a signed 32 -bit ring counter.

High-speed counter allocation

The input soft components of various types of high-speed counters are fixedly allocated, including 8 channels HSCO to HSC7.
Each channel can be changed to single-phase input or AB-phase input according to the high-speed counter configuration, but it should be noted that the occupied X point cannot be repeated.

Channel	High-speed counter type	X0	X1	X2	X3	X4	X5	X6	X7	X10	X11	X12	X13	X14	X15	X16	X17
HSCO	Single phase input (S/W)	A															
	AB phase input	A	B														
HSC1	Single phase input (S/W)		A														
	$A B$ phase input			A	B												
HSC2	Single phase input (S/W)			A													
	AB phase input					A	B										
HSC3	Single phase input (S/W)				A												
	$A B$ phase input							A	B								
HSC4	Single phase input (S/W)					A											
	$A B$ phase input									A	B						

HSC5	Single phase input (S/W)						A										
	AB phase input											A	B				
HSC6	Single phase input (S/W)							A									
	AB phase input													A	B		
HSC7	Single phase input (S/W)								A								
	$A B$ phase input															A	B

A: Phase A input
B: Phase B input

Q Note: After HSCO uses the AB phase input, HSC1 can no longer use single-phase input, because HSCO occupies two points XO and X1, and if HSC1 wants to use single-phase input, X1 needs to be occupied and conflicts occur. The same is true for other channels.

High-speed counter use steps

The following describes the steps to use the high-speed counter.
"Project management" \rightarrow "Parameter" \rightarrow "High-speed counter configuration"

(1) Screen display

High-speed counting configuration								
Configuration options	HSCO	HSC1	HSC2	HSC3	HSC4	HSC5	HSC6	HSC7
Use or not	Unused							
Pulse input mode	Single phase...							
Counting direction	Up counting ...							
Frequency multiplication	1 times freq...							
Input frequency measu...	1000	1000	1000	1000	1000	1000	1000	1000
Filter time(0.01us)	1	1	1	1	1	1	1	1
Max frequency(HZ)	150 K	150 K	150K	150K	150K	150K	150K	150K
Occupy X points	ingle phase: XI IB phase: XO, X	ingle phase: X 4B phase: X2, X	ingle phase: X \&B phase: $X 4, X$	ingle phase: X IB phase: X6, X	ingle phase: X 3 phase: X10, X	ingle phase: X ! 3 phase: X12, X	ingle phase: X_{1} 3 phase: X14, X	$\begin{aligned} & \text { ingle phase: } \mathrm{X} \\ & 3 \text { phase: } \mathrm{X16}, \mathrm{X} \\ & \hline \end{aligned}$

Input (X) description \quad Check \quad Reset \quad OK \quad Cancel

(2) Display content

Parameter	Range	Instruction	Defaults
Use or not	Use/not use	Set whether to use the counter.	Unused
Pulse input mode	Single phase input $A B$ phase input	Choose to use single phase input or AB phase input	Single phase input
Counting direction	Up counting mode down counting mode	Select up/down counting mode, valid only when single-phase input	Up counting mode
Frequency multiplication	One times frequency two times frequency four times frequency	Select input count multiplier, only valid when AB phase input	One times frequency
Input frequency test time (ms)	1 to 32767(ms)	Set how often the input frequency is measured at the interval. The shorter the set time, the less accurate the frequency. The frequency measurement result is output in the special register SD. For details, see the description of the SD high-speed counter in the special register.	1000 ms
Filter time	0 to 1700(0.01us)	Set the X point of this channel as the filter time for high-speed input. The smaller the filter setting, the more accurate the theoretical count, but the anti-interference ability will be reduced (the filter time is only valid for unidirectional input).	1

PLC LX5V Series Programming Manual (V2.2)

		When the input is 0 , it is the lowest filter time supported by the system.	
Highest frequency	Single phase input: 150K AB phase input: 100K	Display the highest input frequency that each channel can reach, read only	
Occupy X points	-	Show which X points are occupied after using the channel, read only	
Check button		Check whether the configured X input point is reused, it is recommended to click check when setting is completed, and then confirm the input	
Restore to default		Restore to the same default settings as above	
Input (X) description		Pop up the description table of all modes of each channel occupying X	
Confirm input		After the configuration is complete, click to confirm the input to save the configuration and take effect	

(3) Configuration example

HSCO to HSC3 are configured as 4 single-phase inputs, and HSC4 to HSC7 are configured as 4 AB phase inputs.
High-speed counting configuration \times

Configuration options	HSCO	HSC1	HSC2	HSC3	HSC4	HSC5	HSC6	HSC7
Use or not	Use							
Pulse input mode	Single phase...	Single phase...	Single phase...	Single phase...	AB phase in...	AB phase in...	AB phase in...	AB phase in...
Counting direction	Up counting ...							
Frequency multiplication	1 times freq...							
Input frequency measu...	1000	1000	1000	1000	1000	1000	1000	1000
Filter time(0.01us)	1	1	1	1	4	4	4	4
Max frequency(HZ)	150K	150K	150 K	150K	01H	01H	01H	01H
Occupy X points	ingle phase: Xi (B phase: X0, X	ingle phase: X ©B phase: X2, X	ingle phase: X : (B phase: X4, X	ingle phase: X \&B phase: X6, X	ingle phase: X. 3 phase: X10, X	ingle phase: X ! 3 phase: X12, X	ingle phase: X 3 phase: X14, X	ingle phase: X 3 phase: X16, X

Use the OUT HSC instruction in the main program to enable High-speed counter. At this time, as long as there is an external pulse input, the pulse value can be observed in HSCO to HSC7.

In the double word composed of special soft components SD403 and SD402, the current input pulse frequency of HSCO can be monitored. Other channels also have corresponding registers, please refer to the description of special registers for details.
If the counter need to be stopped, just turn off the OUT HSC instruction.

6.2 High-speed counter instructions

OUT HSC/High-speed counter switch

When the operation result before the OUT HSC instruction is ON, the high-speed counter is turned on. At this time, the value of the HSC register records the number of high-speed pulses currently received. If the count value is reached, the corresponding HSC bit register becomes on.
-[OUT (d) (value)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(d)	High-speed counter channel	HSCO to HSC7	Signed BIN 32 bit	ANY32
(value)	High-speed counter setting value	-2147483648 to 2147483647	Signed BIN 32 bit	ANY32

Device used

Features

To enable or disable high-speed counter counting, please configure the high-speed input channel to use the high-speed counter. For details, refer to the high-speed counter description.

Operation result before instruction	Action	HSC data register status	HSC bit register status
ON	Turn on High-speed counter	The value is accumulated according to the input pulse	Turn ON when the value reaches the set value, otherwise OFF
OFF	Stop High-speed counter	The value remains the same	State remains unchanged

Error code

Error code	Content
4085 H	(value) The read address exceeds the device range
2580 H	After the high-speed counter is turned on, but the axis high-speed counter enable is not configured

Example

HSCO to HSC3 are configured as 4 single-phase inputs, and HSC4 to HSC7 are configured as 4 AB phase inputs.

High-speed counting configuration									\times
Configuration options	HSCO	HSC1	HSC2	HSC3	HSC4	HSC5	HSC6	HSC7	
Use or not	Use								
Pulse input mode	Single phase...	Single phase...	Single phase...	Single phase...	$A B$ phase input	AB phase input	AB phase input	$A B$ phase input	
Counting direction	Up counting ...	Up counting ...	Up counting ...	Up counting ...	Up counting mode	Up counting mode	Up counting mode	Up counting mode	
Frequency multiplication	1 times freq...	1 times freq...	1 times freq...	1 times freq...	4 times frequency	4 times frequency	4 times frequency	4 times frequency	
Input frequency measu...	1000	1000	1000	1000	1000	1000	1000	1000	
Filter time(0.01us)	1	1	1	1	1	1	1	1	
Max frequency(HZ)	150 K	150K	150K	150 K	01H	01H	01H	01H	
Occupy X points	ingle phase: Xi 4B phase: X0, X	ingle phase: X AB phase: $\mathrm{X} 2, \mathrm{X}$	ingle phase: X (B phase: X4, X	ingle phase: X (B phase: X6, X	Single phase: X4 AB phase: X10, X11	Single phase: X5 AB phase: $X 12, X 13$	Single phase: X6 AB phase: X14, X15	Single phase: $X 7$ AB phase: X16, X17	
					Input (X) description		Reset	OK Cancel	

Use the OUT HSC instruction in the main program to enable High-speed counter. At this time, as long as there is an external pulse input, the pulse value can be observed in HSCO to HSC7.

In the double word composed of special soft components SD403 and SD402, the current input pulse frequency of HSCO can be monitored. Other channels also have corresponding registers, please refer to the description of special registers for details.

When the value of HSCO is greater than 0 , the contact of HSCO will be set, and the other channels are the same. As shown in the circuit program below, YO will be turned on.

DHSCS/High-speed comparison set

Comparing the counted value in the high-speed counter with the specified value each time it counts, and then immediately set the bit device instruction.
-[DHSCS (s1) (s2) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	The data compared with the current value of the high-speed counter, or the word device number where the data to be compared is stored	-2147483648 to	Signed BIN 32 bit	
ANY32				
(s2)	High-speed counter device	HSCO to HSC7	Signed BIN 32 bit	ANY32
(d)	Bit device number set (ON) when they match		Bit	ANY_BOOL

Device used

Instruction	Parameter	Devices																			Offset modification	Pulse extension
		X Y	M	SS	SM	T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	Kns	TC	DR	RSD	LC	HSC	K HE	[D]	XXP
	Parameter 1										\bullet	\bullet	\bullet	\bullet		- -	-	\bullet	\bullet	- -	\bullet	
DHSCS	Parameter 2																		\bullet			
	Parameter 3	\bullet	-	-	-					-												

Features

- When the current value of the high-speed counter of the channel specified in ($s 2$) becomes the comparison value ($s 1$) (in the case of the comparison value $K 200,199 \rightarrow 200$ and $201 \rightarrow 200$), regardless of the scan time, the bit device (d) Both will be set (ON). This instruction performs comparison processing after the counting processing of the high-speed counter.

- If the device specified in (d) is $Y 0$ to $Y 20$, when (d) is set, Y will be directly mapped to the actual hardware output, regardless of the
scan cycle.
- DHSCS parameter 3 can also use the interrupt function name as a parameter. As shown in the figure below, the interrupt program INTO will be executed when HSCO is from (19999 $\rightarrow 20000$) or $(20001 \rightarrow 20000)$.

M0	[DHSCS	K20000	HSCO	INT0 $]\}$

* Note:

The high-speed counter interrupt only supports a total of 100 programs, and each DHSCS is also counted in these 100 . If it exceeds, an operation error will be reported.

Error code

Error code	Content
4084 H	The input device in (s2) exceeds the range of HSCO to HSC7
4085 H	(s1) and (s2) read addresses exceed the device range
4086 H	(d) write address exceeds the device range
2406 H	The number of high-speed counter interrupts exceeds 100
4581 H	DHSCS,SHSCR and DHSZ runs,but OUT HSC does not program

Example
To configure the high-speed counter, take HSCO as an example.

High-speed counting configuration								
Configuration options	HSCO	HSC1	HSC2	HSC3	HSC4	HSC5	HSC6	HSC7
Use or not	Use -	Unused						
Pulse input mode	AB phase input	Single phase...						
Counting direction	Up counting mode	Up counting ...						
Frequency multiplication	4 times frequency	1 times freq...						
Input frequency measu...	1000	1000	1000	1000	1000	1000	1000	1000
Filter time(0.01us)	0	1	1	1	1	1	1	1
Max frequency(HZ)	01H	150K	150K	150 K	01H	01H	01H	01H
Occupy X points	Single phase: $X 0$ AB phase: $\mathrm{X} 0, \mathrm{X1}$	ingle phase: X (B phase: X2, X	ingle phase: X IB phase: X4, X	ingle phase: X \&B phase: X6, X	ingle phase: X. 3 phase: X10, X	ingle phase: X 3 phase: X12, X	ingle phase: X_{1} 3 phase: X14, X	$\begin{aligned} & \text { ingle phase: } X \\ & 3 \text { phase: } X 16, X \end{aligned}$
$<$								\geqslant
			Input	(X) description	Check	Reset	OK	Cancel

In scanning MAIN, use the El instruction to enable the interrupt, and then use the OUT HSC instruction to turn on the high-speed counter.

After MO is turned on, when the value of HSCO changes from 19999 \rightarrow 20000, the INTO program is executed once, that is, DO is increased by 1 .

When the value of HSCO changes from $20000 \rightarrow 20001$, the INTO program is not executed, that is, DO remains at 1 .
When the value of HSCO changes from 20001 $\rightarrow 20000$, the INTO program is executed once, that is, DO is increased by 1 , and DO is 2 .

DHSCR/High-speed comparison reset

Each time it counts, compare the counted value in the high-speed counter with the specified value, and then immediately reset the bit device instruction.
-[DHSCR
(s1) (s2)
(d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	The data compared with the current value of the high-speed counter, or the word device number where the data to be compared is stored	-2147483648 to 2147483647	Signed BIN 32 bit	ANY32
(s2)	High-speed counter device	HSCO to HSC7	Signed BIN 32 bit	ANY32
(d)	Bit device number reset (OFF) when they match		Bit	ANY_BOOL

Device used

Instruction	Parameter	Devices																			Offset modification	Pulse extension
		X Y	Y M S	SM	T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b Kr	KnX KnY KnM			KnSTCD			R SD	LCHSCKHE				[D]	XXP
	Parameter 1									\bullet	\bullet	\bullet	\bullet		-	- \bullet	-	\bullet	-•		\bullet	
DHSCR	Parameter 2																	\bullet				
	Parameter 3	\bullet	- -	-					-													

Features

- When the current value of the high-speed counter of the channel specified in ($s 2$) becomes the comparison value ($s 1$) (in the case of the comparison value $\mathrm{K} 200,199 \rightarrow 200$ and $201 \rightarrow 200$), regardless of the scan time, the bit device (d) Both will be reset (OFF). This instruction performs comparison processing after the counting processing of the high-speed counter.

When contact closes			
$1 \longmapsto$	DHSCS	$(\mathrm{s} 1)$	$(\mathrm{s} 2)$

- If the device specified in (d) is Y0 to Y20, when (d) is set, Y will be directly mapped to the actual hardware output, regardless of the scan cycle.

* Note:

The high-speed counter interrupt only supports a total of 100 programs, and each DHSCR is also counted in these 100 . If it exceeds, an operation error will be reported.

Error code

Error code	
4084 H	The input device in (s2) exceeds the range of HSCO to HSC7
4085 H	The (s1) and (s2) read addresses exceed the device range
4086 H	The (d) write address exceeds the device range
2406 H	The number of high-speed counter interrupts exceeds 100
4 F 81 H	DHSCS,SHSCR and DHSZ runs,but OUT HSC does not program.

Example

To configure the high-speed counter, use HSCO as an example.

High-speed counting configuration

Configuration options	HSCO	HSC1	HSC2	HSC3	HSC4	HSC5	HSC6	HSO
Use or not	Use	Unused	Unused	Unused	Unused	Unused	Unused	Unus
Pulse input mode	$A B$ phase input	Single phase...	Single ${ }_{\text {F }}$					
Counting direction	Up counting mode	Up counting ...	Up cour					
Frequency multiplication	1 times frequency	1 times freq...	1 times					
Input frequency measu...	1000	1000	1000	1000	1000	1000	1000	100
Filter time(0.01us)	0	1	1	1	1	1	1	
Max frequency(HZ)	01H	150K	150 K	150K	01H	01H	01H	01
Occupy X points	Single phase: $\mathrm{X0}$ AB phase: X0, X1	ingle phase: X B phase: X2, X	ingle phase: X IB phase: X4, X	ingle phase: X 4B phase: X6, X	ingle phase: X. 3 phase: X10, X	ingle phase: X 3 phase: X12, X	$\begin{aligned} & \text { ingle phase: } \mathrm{X} \\ & 3 \text { phase: } \mathrm{X} 14, \mathrm{X} \end{aligned}$	ingle ph 3 phase:
<								
			Input (X) des	cription	Check	Reset	OK Ca	ancel

Use the OUT HSC instruction to turn on the high-speed counter while scanning MAIN.
After MO is turned on, when the value of HSCO changes from $99 \rightarrow 100$, reset YO and DO will increase by 1.

DHSZ/High-speed zone comparison

The current value of the high-speed counter is compared with two values (bandwidth), and the comparison result is output.
-[DHSZ
(s1)
(s2) (s3)
(d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	The data compared with the current value of the high-speed counter, or the word device number (comparison value 1) where the data to be compared is stored	-2147483648 to 2147483647	Signed BIN 32 bit	ANY32
(s2)	The data compared with the current value of the high-speed counter, or the word device number (comparison value 2) where the data to be compared is stored	-2147483648 to 2147483647	Signed BIN 32 bit	ANY32
(s2)	High-speed counter device	HSCO to HSC7	Signed BIN 32 bit	ANY32
(d)	The device number of the start bit of the comparison result output in comparison value 1 and comparison value 2	Bit	ANYBIT_ARRAY (number of elements: 3)	

Device used

Instruction	Parameter	Devices																			Offset modification	Pulse extension
		XY	Y M		SM	T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS	TC	DR	SD	LC	HSC	KHE	[D]	XXP
DHSCZ	Parameter 1										-	-	\bullet	\bullet		- -	-	\bullet	\bullet	$\bullet \bullet$	\bullet	
	Parameter 2										-	-	-	-		- -	-	\bullet	\bullet	- -	\bullet	
	Parameter 3																		-			
	Parameter 4	-	-		\bullet					\bullet												

Features

- Compare the current value of the high-speed counter specified in ($s 3$) with two comparison values (comparison value 1 , comparison value 2), regardless of the scan time, (d), (d)+1, (d)+2 One item in will turn ON according to the comparison result (lower, in area, upper).

- If the device specified in (d) is Y 0 to Y 15 , when $(\mathrm{d}),(\mathrm{d}+1)$, ($\mathrm{d}+2$) are set, Y will be directly mapped to the actual hardware output, not affected by the scan cycle .
- When setting [Comparison Value 1] and [Comparison Value 2], please ensure that [Comparison Value 1]<[Comparison Value 2]. If the settings are different, an operation error will occur, and the DHSZ instruction will not execute the action.

* Note:

The high-speed counter interrupt only supports a total of 100 programs, and each DHSZ is also counted in these 100 , and the DHSZ instruction will occupy the space of 2 interrupt programs. If it exceeds, an operation error will be reported.

The comparison result occupies the unit of 3 consecutive addresses starting with (d). Please be careful not to overlap with other controlled devices. In addition, when specifying the Y device, please set it not to exceed the actual number of Y point outputs.

Error code

Error code	Content
4084 H	$(\mathrm{s} 2)$ The input device exceeds the range of HSCO to HSC7
4085 H	$(\mathrm{s} 1)(\mathrm{s} 2)$ The read address exceeds the device range
4086 H	(d) The write address exceeds the device range
2406 H	The number of high-speed counter interrupts exceeds 100
4 F 81 H	DHSCS,SHSCR and DHSZ runs,but OUT HSC does not program

Example

To configure the high-speed counter, use HSCO as an example.

High-speed counting configuration

Configuration options	HSCO	HSC1	HSC2	HSC3	HSC4	HSC5	HSC6	HSO
Use or not	Use	Unused	Unused	Unused	Unused	Unused	Unused	Unus
Pulse input mode	$A B$ phase input	Single phase...	Single p					
Counting direction	Up counting mode	Up counting ...	Up cour					
Frequency multiplication	1 times frequency	1 times freq...	1 times					
Input frequency measu...	1000	1000	1000	1000	1000	1000	1000	104
Filter time(0.01us)	0	1	1	1	1	1	1	1
Max frequency(HZ)	01H	150K	150 K	150K	01H	01H	01H	01
Occupy X points	Single phase: $X 0$ AB phase: $\mathrm{X0}, \mathrm{X} 1$	ingle phase: X (B phase: X2, X	ingle phase: X_{i} IB phase: X4, X	ingle phase: X $4 B$ phase: $X 6, X$	ingle phase: X. 3 phase: X10, X	ingle phase: X 3 phase: X12, X	ingle phase: X_{1} 3 phase: X14, X	ingle ph 3 phase:
< $>$								
sin			Input (X) des	cription	Check	Reset	OK	Cancel

Scanner

(2) SM100

Execution results

Comparison mode	Current value of channel 1 (s3)	Change of output contact (Y)		
		Y0	Y1	Y3
$(\mathrm{S} 1)>(\mathrm{s} 3)$	$1000>(\mathrm{s} 3)$	ON	OFF	OFF
	$999 \rightarrow 1000$	$\mathrm{ON} \rightarrow$ OFF	OFF \rightarrow ON	OFF
	$1000 \rightarrow 999$	$\mathrm{OFF} \rightarrow \mathrm{ON}$	$\mathrm{ON} \rightarrow$ OFF	OFF
$(\mathrm{S} 1) \leqslant(\mathrm{s} 3) \leqslant(\mathrm{s} 2)$	$999 \rightarrow 1000$	$\mathrm{ON} \rightarrow$ OFF	$\mathrm{OFF} \rightarrow \mathrm{ON}$	OFF
	$1000 \rightarrow 999$	OFF \rightarrow ON	ON \rightarrow OFF	OFF
	$1000 \leqslant(\mathrm{~s} 3) \leqslant 2000$	OFF	ON	OFF
	$2000 \rightarrow 2001$	OFF	$\mathrm{ON} \rightarrow \mathrm{OFF}$	OFF \rightarrow ON
	$2001 \rightarrow 2000$	OFF	$\mathrm{OFF} \rightarrow \mathrm{ON}$	ON \rightarrow OFF
$(\mathrm{S} 3)>(\mathrm{s} 2)$	$2000 \rightarrow 2001$	OFF	$\mathrm{ON} \rightarrow$ OFF	OFF \rightarrow ON
	$2001 \rightarrow 2000$	OFF	OFF \rightarrow ON	$\mathrm{ON} \rightarrow$ OFF
	(S3)>2000	OFF	OFF	ON

7 Basic instructions

7.1 Transfer comparison instruction

MOV/16-bit transmission

MOV(P)

Transfer the BIN 16-bit data of the device specified in (s) to the device specified in (d).
$-[\mathrm{MOV}$ (s) (d)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	Transmit source data or the device number stored data	-32768 to 32767	Signed BIN16	ANY16_S
(d)	Transmit destination device number	-	Signed BIN16	ANY16_S

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		XYMSSM T(bit)			C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS		CD	R SD	LC	HSC		HE	[D]	XXP
MOV	Parameter 1								-	-	\bullet	\bullet		-	$\bullet \bullet$			$\bullet \cdot$	-	\bullet	\bullet
	Parameter 2									\bullet	\bullet	-		-	$\bullet \bullet$					\bullet	-

Features

- Transfer the BIN 16-bit data specified in (s) to the device specified in (d).

Error code

Error code	Content
4085 H	The output result of (s) in read application instruction exceeds the device range
4086 H	The output result of (d) in write application instruction exceeds the device range

Example

When M0 is set, the value of D0 is transferred to the value of $D 2$: $(D 0) \rightarrow(D 2)$.

DMOV/32-bit transmission
DMOV(P)
Transfer the BIN 32-bit data of the device specified in (s) to the device specified in (d).
-[DMOV (s) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	Transmit source data or the device number stored data	-2147483648 to 2147483647	Signed BIN32	ANY32_S
(d)	Transmit destination device number	-	Signed BIN32	ANY32_S

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		XYMS	SSM	T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS	T C	DR	RSD	LC	HS	KHE		[D]	XXP
DMOV	Parameter 1								\bullet	\bullet	\bullet	\bullet	-	-	-			$\bullet \bullet$		\bullet	\bullet
DMOV	Parameter 2									\bullet	\bullet	\bullet	\bullet	$\bullet \cdot$	-	\bullet	\bullet			-	\bullet

Features

Transfer the BIN 16 -bit data specified in (s) to the device specified in (d).
(s)

(d) +1

Error code

Error code	Content
4085 H	The output result of (s) in read application instruction exceeds the device range
4086 H	The output result of (d) in write application instruction exceeds the device range

Example

$\left.\begin{array}{llll}0 & \text { M0 } & \text { DMOV D0 } & \text { D2 } \\ \hline\end{array}\right]$

When M0 is set, the value of (D1, D0) is transferred to the value of (D3, D2): (D1, D0) \rightarrow (D3, D2).

BMOV/Batch transmission

BMOV(P)

The (n) point BIN 16-bit data starting from the device specified in (s) is sequentially transmitted to the device specified in (d).
-[BMOV
(s) (d) (n)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s$)$	The start device that stores the transmission data	-	Signed BIN16	ANY16_S
(d)	The start device that transmit target	-	Signed BIN16	ANY16_S
(n)	Number of transmission	$1 \leq \mathrm{n} \leq 512$	Signed BIN16	ANY16_S

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		X Y M S SM T(bit)			C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS	T		DR	SD	LC	HSC	KHE	[D]	XXP
	Parameter 1								-	\bullet	\bullet	\bullet	\bullet		\bullet	\bullet				\bullet	\bullet
BMOV	Parameter 2									\bullet	\bullet	\bullet	\bullet		- \bullet	\bullet				\bullet	\bullet
	Parameter 3								\bullet	\bullet	\bullet	\bullet	\bullet		- \bullet	\bullet			$\bullet \bullet$	\bullet	\bullet

Features

Batch transfer the BIN 16-bit data of point (n) starting from the device specified in (s) to the device specified in (d).

When the device number exceeds the range, it will be transferred within the allowable range.
By controlling the direction reversal flag (SM224) of the BMOV instruction, the BIN 16-bit data at point (n) starting from the device specified in (d) can be batch transferred to the device specified in (s).

Error code

Error code	Content
4084 H	In application instruction (n) input the data exceeds the specified range
4085 H	The output results of (s) and (n) in read application instruction exceed the device range
4086 H	The output result of (d) in write application instruction exceeds the device range

Example

When M0 is set, set M1, then (D5) \rightarrow (D10); (D6) \rightarrow (D11); (D7) \rightarrow (D12);
When M0 is reset, set M1, then (D10) \rightarrow (D5); (D11) \rightarrow (D6); (D12) \rightarrow (D7).

FMOV/16-bit multicast

FMOV(P)
Transfer the BIN 16-bit data of the device specified in (s 1) to the device specified in (d) at (n) points (that is, transfer the same data to multiple addresses).
-[FMOV (s) (d) (n)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The start device that stores the transmission data	-32768 to 32767	Signed BIN16	ANY16_S
(d)	The start device that transmit target	-	Signed BIN16	ANY16_S
(n)	Number of transmission	$[K 1 \leq \mathrm{n} \leq 512]$	Signed BIN16	ANY16_S

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		X Y M S SM T(bit)			C(bit)	LC(bit)	HSC(bit)	D.b	$\mathrm{Kn} \times 1 \mathrm{Kn}$		KnY KnM	KnS T		CD		R SD	LCHSCKHE			[D]	XXP
	Parameter 1								-	-	\bullet	\bullet	-		- \bullet	\bullet			$\bullet \bullet$	\bullet	\bullet
FMOV	Parameter 2									\bullet	\bullet	\bullet	\bullet		-	\bullet				\bullet	\bullet
	Parameter 3								\bullet	\bullet	\bullet	-	\bullet		-	\bullet			$\bullet \bullet$	\bullet	\bullet

Features

The same data as the BIN 16-bit data of the device specified in (s) is transferred to the device specified in (d) at (n) points.

When the number specified in (n) exceeds the device number range, transfer is performed within the allowable range.
When a constant (K) is specified for the transmission source (s), it will be automatically converted to BIN.

Error code

Error code	Content
4084 H	(s) and (n) input the data In application instruction exceed the specified range
4085 H	The output results of (s) and (n) in read application instruction exceed the device range
4086 H	The output result of (d) in write application instruction exceeds the device range

Example

When M 0 is set, the value of D 0 to D 4 is set to 0 .

DFMOV/ 32-bit multicast

DFMOV(P)

Transfer the BIN 32-bit data of the device specified in (s 1) to the device specified in (d) at (n) points (that is, transfer the same data to multiple addresses).
-[FMOV (s) (d) (n)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	Transfer data or start device storing transfer data	-2147483648 to 2147483647	Signed BIN32	ANY32_S
(d)	Start device of transfer destination	-	Signed BIN32	ANY32_S
(n)	Number of transfers	$[1 \leq \mathrm{n} \leq 512]$	Signed BIN32	ANY32_S

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		XYMSSM		T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX KnY KnM ${ }^{\text {KnS }}$				T C		DR	RSD	LCHSCK\|HE			[D]	XXP
	Parameter 1								-	\bullet	\bullet	\bullet		- \bullet	- \bullet	-	\bullet	\bullet	$\bullet \bullet$	\bullet	\bullet
DFMOV	Parameter 2									\bullet	\bullet	\bullet	\bullet	- \cdot	- \bullet	-				\bullet	\bullet
	Parameter 3								\bullet	-	\bullet	-	\bullet	-		\bullet			$\bullet \cdot$	\bullet	\bullet

Features

The same data as the BIN 32-bit data of the device specified in (s) is transferred to the device specified in (d) at (n) points.

When the number specified in (n) exceeds the device number range, transfer is performed within the allowable range.
When a constant (K) is specified for the transmission source (s), it will be automatically converted to BIN.

Error code

Error code	Content
4084 H	(s) and (n) input the data In application instruction exceed the specified range
4085 H	The output results of (s) and (n) in read application instruction exceed the device range
4086 H	The output result of (d) in write application instruction exceeds the device range

Example

When M0 is set, the value of (D1, D0), (D3, D2), (D5, D4), (D7, D6), (D9, D8) is set to 0 .

SMOV/Bit shift

SMOV(P)

A instruction for distributing and synthesizing data in units of digits (4 bits).
-[SMOV
(s) (n1)
(n2)
(d) (n3)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The word device number that stores the data whose bit is to be moved		Signed BIN16	ANY16_S
$(\mathrm{n} 1)$	Transfer destination device number	1 to 4	Signed BIN16	ANY16_S
$(\mathrm{n} 2)$	The number of digits to move	1 to 4	Signed BIN16	ANY16_S
(d)	The word device number that stores data for bit shifting		Signed BIN16	ANY16_S
$(\mathrm{n} 3)$	The starting position of the moving target	1 to 4	Signed BIN16	ANY16_S

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		X Y M S SM T(bit)			C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS	T		DR			HSC	KHE	[D]	XXP
	Parameter 1								\bullet	\bullet	\bullet	\bullet	-	-	-	\bullet				\bullet	\bullet
	Parameter 2								\bullet	\bullet	\bullet	\bullet	-	-	-	\bullet			$\bullet \bullet$	\bullet	\bullet
SMOV	Parameter 3								\bullet	\bullet	-	\bullet	-	\bullet	-	-			$\bullet \bullet$	\bullet	-
	Parameter 4									\bullet	\bullet	\bullet	\bullet	-	\bullet	\bullet				\bullet	\bullet
	Parameter 5								\bullet	\bullet	\bullet	\bullet	\bullet		$\bullet \cdot$	\bullet			$\bullet \bullet$	\bullet	\bullet

Features

The data is distributed/combined in units of digits (4 bits). The contents of the transmission source (s) and the transmission destination (d) are converted into 4-digit BCD (0000 to 9999), and the (n 1) bits are transferred to the lower (n 2) bits and the (n 3) bits of the transmission destination (d) (combined) After reaching the starting position, it is converted to BIN and stored in the transfer destination (d).

When the instruction input is OFF, the transfer destination (d) does not change.
When the instruction input is ON , the data of the transmission source (s) and the number of digits other than the transmission specification of the transmission destination (d) do not change.

4th bit			3rd bit			2nd bit			1st bit		

When $\mathrm{n} 1-4, \mathrm{n} 2=2, \mathrm{n} 3=3$

(s) (BIN 16-bit)
\downarrow Automatic transfer (1)
(s) (BIN 4-bit)
\downarrow Bit movement
(d) (BIN 4-bit)
\downarrow Automatic transfer
(d) (BIN 16-bit)
(1) Perform BIN \rightarrow BCD conversion on
(2) Transfer (synthesize) the (n1)th bit to the lower (n 2), (d), (n 3)th bit to the (n 2)th bit counted from the previous. (D), the first and fourth digits start from (s), and the transmission will not be affected.
(3) Convert the synthesized data (BCD) into BIN and store it in (d).

Extended function

If the SMOV instruction is executed after SM168 is turned ON, the BIN \rightarrow BCD conversion will not be performed. The bit shift is performed in 4-bit units.

Error code

Error code	Content
$4084 H$	$(n 1),(n 2)$ and (n3) input data that exceed the specified range in the application instruction or does not satisfy the relationship of $n 2 \leq n 1$ and $n 2 \leq n 3$.
$4085 H$	The output result of (s), (n1) (n2), (d) and (n3) in the read application instruction exceeds the device range
$4086 H$	The output result of (d) in write application instructions exceeds the device range

Example

After synthesizing the data of the 3-digit digital switch, it is stored in D2 in binary.

Combine data of 3 digital switches connected to non-continuous input terminals.

When MO is set,
(X020 to X027) BCD 2 digits \rightarrow D 2 (binary);
(X000 to X003) BCD 1 digit \rightarrow D 1 (binary);
Store the 1 digit of D1 into the 3 digit of D2, and synthesize a 3-digit value.

CML/16-bit invert transmission

CML(P)
After the BIN 16-bit data specified in (s) is inverted bit by bit, the result is transferred to the device specified in (d).
$-[C M L \quad$ (s) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	Inverted data or the device number that stores data	-32768 to 32767	Signed BIN16	ANY16_S
(d)	The device number that stores the inversion result	-	Signed BIN16	ANY16_S

Device used

Instruction	Parameter	Devices																Offset modification	Pulse extension
		XYMSSM T(bit)			C(bit)	LC(bit)	HSC(bit)	D.b Kn		KnX KnY KnM Kns T			TCDRSDLCHSCKHE					[D]	XXP
	Parameter 1								-	\bullet	\bullet	\bullet	- - -	-		$\bullet \cdot{ }^{\circ}$		\bullet	\bullet
CML	Parameter 2									\bullet	\bullet		$\bullet \cdot \bullet$	$\bullet \cdot$				\bullet	\bullet

Features

After inverting the BIN 16-bit data specified in (s) bit by bit, the result is transferred to the device specified in (d).

When the number of digits of the device with the specified digit is 4 points, other digits are not affected.

Error code

Error code	Content
4085 H	The output result of (s) in read application instruction exceeds the device range
4086 H	The output result of (d) in write application instruction exceeds the device range

Example

Example 1:

When MO is set, the value of DO is inverted and transferred to the value of D2.
Example 2:
invert input acquisition:
 Convert with instructions

DCML/32-bit invert transmission

DCML(P)
After the BIN 32-bit data specified in (s) is inverted bit by bit, the result is transferred to the device specified in (d).
$-[C M L \quad$ (s) (d)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	Inverted data or the device number that stores data	-2147483648 to 2147483647	Signed BIN32	ANY32_S
(d)	The device number that stores the inversion result	-	Signed BIN32	ANY32_S

Device used

Instruction	Parameter	Devices																				Offset modification	Pulse extension
		XYMSSM T(bit)				C(bit)	LC(bit)	HSC(bit)	D.b	KnX Kn		KnM Kns			TCD	R SD			LCHSCKHE			[D]	XXP
	Parameter 1									\bullet	\bullet	\bullet	\bullet	-		-	$\bullet \bullet$	-	\bullet	\bullet	$\bullet \bullet$	\bullet	\bullet
	Parameter 2										\bullet	\bullet	-	-		- -	$\bullet \bullet$	-	-	\bullet		\bullet	\bullet

Features

After inverting the BIN 32-bit data specified in (s) bit by bit, the result is transferred to the device specified in (d).

When the number of digits of the device with the specified digit is 4 points, other digits are not affected.
Error code

Error code	Content
4085 H	The output result of (s) in read application instruction exceeds the device range
4086 H	The output result of (d) in write application instruction exceeds the device range

Example

When M0 is set, the value of (D1, D0) is reversed and transferred to the value of (D3, D2).

CMP/16-bit data comparison output

CMP(P)
Compare the BIN 16-bit data of the device specified in (s1) and (s2).
-[CML \quad (s1) (s 2) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	Comparison value data or the device storing the comparison value data	-32768 to	Signed BIN16	ANY16_S
(s2)	Comparison source data or the device storing the comparison source data	-32767	Signed BIN16	ANY16_S
(d)	Start bit device for output comparison result		Bit	ANYBIT_ARRAY

Device used

Instruction	Parameter	Devices																				Offset modification	Pulse extension
		XY	M S	SM T(bit)		C(bit)	LC(bit)	HSC(bit)	D.b Kn	KnX KnY		KnM Kn		KnS T		CDR		SD LCHSCKHE				[D]	XXP
	Parameter 1									\bullet	\bullet	-					-	\bullet			- •	\bullet	\bullet
CMP	Parameter 2										\bullet	-			-	-	-	\bullet				\bullet	\bullet
	Parameter 3	\bullet	- -	-					-													-	

Features

Compare the BIN 16-bit data of the device specified in ($s 1$) with the BIN 16-bit data of the device specified in (s2). According to the result (less than, consistent, greater than), (d), (d) +1 , (d) One of) +2 will turn ON.
(s1) and (s2) are handled as BIN values within the above setting data range.
Use algebraic methods for size comparison.

(1): Even if the instruction input is OFF and the CMP instruction is not executed, (d) to (d)+2 will keep the state before the instruction input changed from ON to OFF.

N Note:

Occupy the device specified in 3 points (d) at the beginning, please be careful not to overlap with the device used for other control.
Error code

Error code	Content
4085 H	The output results of (s1) and (s2) in read application instruction exceed the device range
4086 H	The output result of (d) in write application instruction exceeds the device range

Example

When MO is set, compare the values of DO and D2:
If (D0)> (D2) then YO is ON .
If $(\mathrm{DO})=(\mathrm{D} 2)$ then Y 1 is ON . If $(\mathrm{DO})<(\mathrm{D} 2)$ then Y 2 is ON .
WECON technology Co., Ltd.

DCMP/32-bit data comparison output

DCMP (P)
Compare the BIN 32-bit data of the device specified in (s1) and (s2).
-[DCML \quad (s1) (s2) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	Comparison value data or the device storing the comparison value data	-2147483648 to 2147483647	Signed	ANY32_S
(s2)	Comparison source data or the device storing the comparison source data	-2147483648 to 2147483647	Signed	BIN32

Device used

Instruction	Parameter	Devices																			Offset modification	Pulse extension
		$\mathrm{X} \mathbf{Y}$ M	SS	SM T(bit)		C(bit)	LC(bit)	HSC(bit)	D.b	KnX KnY KnM ${ }^{\text {KnS }}$ T					T CD	R SDLCHSCKHE					[D]	XXP
	Parameter 1									\bullet	\bullet	\bullet	-		-	-	-	\bullet	\bullet	$\bullet \bullet$	\bullet	\bullet
DCMP	Parameter 2										\bullet	\bullet	\bullet	-	- -	- \bullet	\bullet	\bullet	\bullet		\bullet	\bullet
	Parameter 3	-	- \bullet	-					-												\bullet	

Features

- Compare the BIN 16-bit data of the device specified in (s1) with the BIN 16-bit data of the device specified in (s2). According to the result (less than, consistent, greater than), (d), (d)+1, (d) One of)+2 will turn ON.
- (s1) and (s2) are handled as BIN values within the above setting data range.
- Use algebraic methods for size comparison.

(1): Even if the instruction input is OFF, the DCMP instruction is not executed, (d) to (d) +2 will keep the state before the instruction input changed from ON to OFF.

* Note:

Occupy the device specified in 3 points (d) at the beginning. Please be careful not to overlap with other control devices.
Error code

Error code	Content
4085 H	The output results of (s1) and (s2) in read application instruction exceed the device range
4086 H	The output result of (d) in write application instruction exceeds the device range

Example

When MO is set, compare the values of (D1, D0) and (D3, D2):
If (D1, D0)> (D3, D2) then YO is ON.
If $(\mathrm{D} 1, \mathrm{D} 0)=(\mathrm{D} 3, \mathrm{D} 2)$ then Y 1 is ON .
If $(D 1, D 0)<(D 3, D 2)$ then $Y 2$ is ON .

XCH/16-bit data exchange

XCH(P)

Exchange the BIN 16-bit data of (d1) and (d2).
$-[\mathrm{XCH}$ (d1) (d2)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
$(\mathrm{d} 1)$	The start device that stores the exchange data	-32768 to 32767	Signed BIN16	ANY16_S
$(\mathrm{d} 2)$	The start device that stores the exchange data	-32768 to 32767	Signed BIN16	ANY16_S

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		XYMSSM		T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	$\mathrm{KnX} \times$	KnY	KnM KnS			T C	CDR	R SD	LCHSCKHE			[D]	XXP
	Parameter 1									\bullet	\bullet	\bullet	-	-		\bullet				\bullet	\bullet
	Parameter 2									\bullet	\bullet	\bullet	\bullet	-	\bullet	\bullet				\bullet	\bullet

Features

- Exchange the BIN 16-bit data of (d1) and (d2).

- When executing instructions with SM160 ON, if the device numbers of (d1) and (d2) are the same. Exchange the upper 8 bits (byte) and lower 8 bits (byte) of the word device.

Q Note: If continuous execution instructions are used, conversion will be performed every operation cycle.
Error code

Error code	Content
4084 H	In exchange mode, the devices in (d1) and (d2) are different
4085 H	The output results of (d1) and (d2) in the read application instruction exceed the device range
4086 H	The output results of (d1) and (d2) in the writing application instruction exceed the device range

Example

When M0 is reset, set M1: the value of D0 and the value of D2 are exchanged.

When M0 is set, M1 is set: the upper 8 bits (bytes) and lower 8 bits (bytes) of D0 are exchanged with each other.

DXCH/32-bit data exchange
DXCH (P)
Exchange (d1) and (d2) BIN 32-bit data.
-[DXCH (d1) (d2)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(d1)	The start device that stores the exchange data	-2147483647 to 2147483647	Signed BIN32	ANY32_S
(d2)	The start device that stores the exchange data	-2147483647 to 2147483647	Signed BIN32	ANY32_S

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		X Y M S SM T(bit)			C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS	T	CD	DR			HSC	KHE	[D]	XXP
DXCH	Parameter 1									\bullet	\bullet	\bullet	-	-	-	\bullet	-	\bullet		\bullet	\bullet
DXCH	Parameter 2									\bullet	\bullet	-	-		-	-	\bullet	\bullet		\bullet	\bullet

Features

- Exchange the BIN 32-bit data of (d1), (d1)+1 and (d2), (d2)+1.

- When executing instructions with SM160 ON, if the device numbers of (d1) and (d2) are the same. Exchange the upper 8 bits (byte) and lower 8 bits (byte) of the word device (d1) and (d1+1).

Note: If continuous execution instructions are used, conversion will be performed every operation cycle.
Error code

Error code	Content
4084 H	In exchange mode, the devices in (d1) and (d2) are different
4085 H	The output results of (d1) and (d2) in the read application instruction exceed the device range
4086 H	The output results of (d1) and (d2) in the writing application instruction exceed the device range

Example :

When M0 is set, M 1 is set: the high 8 bits (byte) and low 8 bits (byte) of the D0 Devices are exchanged, and the high 8 bits (byte) and low 8 bits (byte) of the D1 Devices) Exchange each other.

When M0 is reset, set M1: the value of (D1, D0) and the value of (D3, D2) are exchanged.

ZCP/16-bit data interval comparison

ZCP(P)

Compare the BIN 16-bit data of the device specified in (s1) and the value (bandwidth) of the BIN 16-bit data of the device specified in (s2) with the BIN 16-bit data of the device specified in the comparison source (s3), Output the result (bottom, area, top) to the device specified in (d) and later.
-[ZCP (s1) (s2) (s3) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
$(s 1)$	The comparison value data of low limit or the device that stores the comparison value data	-32768 to 32767	Signed BIN16	ANY16_S
$(s 2)$	The comparison value data of high limit or the device that stores the comparison value data	-32768 to 32767	Signed BIN16	ANY16_S
$(s 3)$	Comparison source data or the device that stores the comparison source data	-32768 to 32767	Signed BIN16	ANY16_S
(d)	The start bit device of output comparison result		Bit	ANYBIT_ARRAY

Device used

Instruction	Parameter	Devices																			Offset modification	Pulse extension
		X Y	S	SM T(bit)		C(bit)	LC(bit)	HSC(bit)	D.b Kn		$\mathrm{n} \times \mathrm{KnY}$ KnM		KnS T		T C D R	R SD LCHSCKHE					[D]	XXP
	Parameter 1									\bullet	\bullet	\bullet	\bullet		$\bullet \cdot$	-	-		$\bullet \bullet$	-	\bullet	\bullet
ZCP	Parameter 2									\bullet	\bullet	\bullet	\bullet	\bullet	- -	-	-		- -	\bullet	-	\bullet
ZCP	Parameter 3									\bullet	\bullet	\bullet	\bullet	-	- -	-	-		- -	-	\bullet	\bullet
	Parameter 4	\bullet	- -	\bullet -					\bullet												\bullet	

Features

- Compare the BIN 16-bit data of the device specified in (s1) and the value (bandwidth) of the BIN 16-bit data of the device specified in (s2) with the BIN 16-bit data of the device specified in the comparison source (s3), According to the result (bottom, area, top), one of (d), (d) $+1,(d)+2$ will be turned $O N$. $(s 1),(s 2),(s 3)$ are treated as BIN values within the above-mentioned setting data range. Use algebraic methods for size comparison.
- Use algebraic methods for size comparison.

(1): Even if the instruction input is OFF and the ZCP instruction is not executed, (d) to (d) +2 will keep the state before the instruction input turns from ON to OFF.

N Note:

- Please set the lower comparison value (s1) to a value smaller than the upper comparison value (s2).
- When (s1) is greater than (s2), it will be processed as (s2)=(s1).
- The device specified in 3 points (d) is occupied at the beginning. Please be careful not to overlap with other control devices.

Error code

Error code	Content
4085 H	The output results of (s1), (s2) and (s3) in the read application instruction exceed the device range
4086 H	The output result of (d) in write application instructions exceeds the device range

Example

When MO is set, compare whether DO is between 0 and 1000:
If (D0)> (1000), then YO is ON.
If $(0) \leq(D 0) \leq(1000)$, then Y 1 is ON .
If $(\mathrm{DO})<(0)$, then Y 2 is ON .

DZCP/32-bit data interval comparison

DZCP(P)

Compare the BIN 32-bit data of the device specified in (s1) and the value (bandwidth) of the BIN 32-bit data of the device specified in (s2) with the BIN 32-bit data of the device specified in the comparison source (s3), Output the result (bottom, area, top) to the device specified in (d) and later.

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
$(\mathrm{s} 1)$	The comparison value data of low limit or the	-2147483648 to	Signed BIN32	ANY32_S
	(s2)	device that stores the comparison value data	2147483647	-2147483648 to
(s3)	device that stores the comparison value data	2147483647	Signed BIN32	ANY32_S
	Comparison source data or the device that	-2147483648 to	Signed BIN32	ANY32_S

(d)	The start bit device of output comparison result																			Bit	ANYBIT	_ARRAY
Device used																						
Instruction	Parameter	Devices																			Offset modification	Pulse extension
		Y Y M		S SM T(bit)		C(bit)	LC(bit)	HSC(bit)	D.b KnX KnY KnM KnS T						T CDRSDLCHSCKHE						[D]	XXP
DZCP	Parameter 1									-	\bullet	\bullet	\bullet	-		- -	-	\bullet	-	- ••	\bullet	-
	Parameter 2									\bullet	\bullet	\bullet	\bullet	-		- \bullet	-	\bullet	\bullet	- - -	\bullet	\bullet
	Parameter 3									\bullet	\bullet	\bullet	-	\bullet	-	- \bullet	-	\bullet	\bullet	- - -	\bullet	\bullet
	Parameter 4	\bullet	- -	\bullet					-												-	

Features

- Compare the BIN 32-bit data of the device specified in (s1) and the value (bandwidth) of the BIN 32-bit data of the device specified in (s2) with the BIN 32-bit data of the device specified in the comparison source (s3), According to the result (bottom, area, top), one of (d), (d) +1 , (d) +2 will be turned ON. (s 1), (s 2), (s 3) are treated as BIN values within the above-mentioned setting data range. Use algebraic methods for size comparison.
- Use algebraic methods for size comparison.

(1): Even if the instruction input is OFF and the ZCP instruction is not executed, (d) to (d)+2 will keep the state before the instruction input turns from ON to OFF.

* Note:

- Please set the lower comparison value (s1) to a value smaller than the upper comparison value (s2).
- When (s1) is greater than (s2), it will be processed as (s2)=(s1).
- The device specified in 3 points (d) is occupied at the beginning. Please be careful not to overlap with other control devices.

Error code

Error code	Content
4085 H	The output results of $(\mathrm{s} 1),(\mathrm{s} 2)$ and $(\mathrm{s} 3)$ in the read application instruction exceed the device range
4086 H	The output results of (d) in the write application instruction exceeds the device range

Example

When MO is set, compare D0 with whether it is between 0 and 100000:
If (DO)> (100000), then YO is ON.
If $(0) \leq(D 0) \leq(100000)$, then Y 1 is ON .
If $(D O)<(0)$, then $Y 2$ is $O N$.

7.2 Cycle shift instruction

ROR/16-bit cycle shift right

ROR(P)

Shift the 16-bit data of the device specified in (d) to the right by (n) bits without including the carry flag.
$-\left[\begin{array}{lll}R O R & \text { (d) } & \text { (} \mathrm{n})\end{array}\right]$

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(d)	The device start number for cycle shift right	-	Signed BIN 16 bit	ANY16
(n)	The number of times to cycle shift right	0 to 15	Signed BIN 16 bit	ANY16

Device used

Instruction	Parameter	Devices																			Offset modification	Pulse extension
		X Y M S SM T(bit)			C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	Kns		D	D	SD	LC	HSC	K	HE	[D]	XXP
ROR	Parameter 1									\bullet	\bullet	\bullet	-		- \bullet	-					\bullet	\bullet
ROR	Parameter 2								\bullet	\bullet	\bullet	\bullet	-		- \cdot	\bullet				\bullet	\bullet	\bullet

Features

- The 16-bit data of the device specified in (d) is shifted right by (n) bits without including the carry flag. The carry flag is in the ON or OFF state according to the state before the ROR (P) is executed.

(n) Specifies 0 to 15 . When a value of 16 or more is specified in (n), the remainder value of $(n) \div 16$ is shifted to the right. For example, when $(n)=18,18 \div 16=1$ and the remainder is 2 , so a 2 -bit right shift is performed.

Related device

Device	Name	
SM151	Carry	It turns ON when the last bit shifted from the lowest is 1.

(Note:

Do not set the number of digits (n) shifted right to a negative value.
In the case of continuous execution type instructions (ROR, RCR), the right shift will be executed every scan time (operation cycle), so be careful.

When specifying the number of digits to specify the device in (d), only K4 (16-bit instruction) or K8 (32-bit instruction) is valid. (For example, K4Y10, K8M0).

Error code

Error code	Content
4084 H	A negative value is specified in (n).
4085 H	The output results of (d) and (n) in the read application instruction exceed the device range
4086 H	The output result of (d) in the write application instruction exceeds the device range

Example

\left.| SM100 | | [MOV | K1 |
| :---: | :---: | :---: | :---: |
| | [ROR | D0 | K3 |$\right]$

Shift the 1 in the DO device by 3 bits to the right to get 8192 .

DROR/32-bit cycle shift right

DROR(P)

Shift the 32-bit data of the device specified in (d) to the right by (n) bits without including the carry flag.
-[DROR (d) (n)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(d)	The device start number for cycle shift right	-	Signed BIN 32 bit	ANY32
(n)	The number of times to cycle shift right	0 to 31	Signed BIN 32 bit	ANY32

Device used

Instruction	Parameter	Devices																			Offset modification	Pulse extension
		X Y M S SM T(bit)				C(bit) LC(bit)		HSC(bit)	D.b	KnX KnY		KnM	KnS T		T CD	RSDLCHSCKHE					[D]	XXP
DROR	Parameter 1										\bullet	\bullet	\bullet	-	-	-	-	-	\bullet		\bullet	\bullet
DROR	Parameter 2									-	\bullet	-	\bullet	-	$\bullet \cdot$	-	-	-		- -	\bullet	\bullet

Features

- The 32-bit data of the device specified in (d) is shifted right by (n) bits without including the carry flag. The carry flag is on or off according to the state before $\operatorname{DROR}(P)$ is executed.

(n) Specifies 0 to 31 . When a value of 32 or more is specified in (n), the remainder of $(n) \div 32$ is shifted to the right. For example, when $(n)=34,34 \div 32=1$ and the remainder is 2 , so a 2-bit right shift is performed.

Related device

Device	Name	
SM151	Carry	It turns ON when the last bit shifted from the lowest is 1.

Note:

Do not set the number of digits (n) shifted right to a negative value.
In the case of continuous execution type instructions (ROR, RCR), the right shift will be executed every scan time (operation cycle), so be careful. When specifying the number of digits to specify the device in (d), only K4 (16-bit instruction) or K8 (32-bit instruction) is valid. (For example, K4Y10, K8M0).

Error code

Error code	
4084 H	A negative value is specified in (n).
4085 H	The output results of (d) and (n) in the read application instruction exceed the device range
4086 H	The output result of (d) in the write application instruction exceeds the device range

Example

RCR/16-bit cycle shift right with carry

RCR(P)

Shift the 16 -bit data of the device specified in (d) to the right by (n) bits with the carry flag included.
$-\left[\begin{array}{lll}{[R C R} & \text { (d) (}\end{array}\right.$)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(d)	The device start number for cycle shift right	-	Signed BIN 16 bit	ANY16
(n)	The number of times to cycle shift right	0 to 15	Signed BIN 16 bit	ANY16

Device used

Instruction	Parameter	Devices																\qquad modification [D]			Pulse extension XXP	
		XYMSSM T (bit)			C(bit)	LC(bit)	HSC(bit)	D.b Kn		KnX KnY	Y KnM KnS T		CDRSDLCHSCKHE									
RCR	Parameter 1									\bullet	\bullet	\bullet	- -	$\bullet \cdot$ -	-				\bullet			\bullet
RCR	Parameter 2								\bullet	\bullet	\bullet	-	- \cdot -	- -			$\bullet \bullet$		\bullet	-		\bullet

Features

Shift the BIN 16-bit data of the device specified in (d) to the right by (n) bits with the carry flag included. The carry flag is on or off according to the state before the $\operatorname{RCR}(P)$ is executed.

(n) Specifies 0 to 15 . When a value of 16 or more is specified in (n), the remainder value of $(n) \div 16$ is shifted to the right. For
example, when $(\mathrm{n})=18,18 \div 16=1$ and the remainder is 2 , so a 2 -bit right shift is performed.

Related device

Device	Name	
SM151	Carry	It turns ON when the last bit shifted from the lowest is 1.

(Note:
Do not set the number of digits (n) shifted right to a negative value.
In the case of continuous execution type instructions (ROR, RCR), the right shift will be executed every scan time (operation cycle), so be careful

When specifying the number of digits to specify the device in (d), only K4 (16-bit instruction) or K8 (32-bit instruction) is valid. (For example, K4Y10, K8M0).

Error code

Error code	Content
4084 H	A negative value is specified in (n)
4085 H	The output results of (d) and (n) in the read application instruction exceed the device range
4086 H	The output result of (d) in the write application instruction exceeds the device range

Example

After the rising edge of MO is triggered, the carry flag SM151 turns ON, and DO is assigned the value 1 . When M1=ON, the value in the DO device is shifted right by 4 bits to get 12288 .

DRCR/32-bit cycle shift right with carry

DRCR(P)
Shift the 32-bit data of the device specified in (d) to the right by (n) bits with the carry flag included.
-[DRCR
(d) (n)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(d)	The device start number for cycle shift right	-	Signed BIN 32 bit	ANY32
(n)	The number of times to cycle shift right	0 to 31	Signed BIN 32 bit	ANY32

Device used

Instruction	Parameter	Devices																			Offset modification	Pulse extension
		XYMSSM T(bit)				C(bit)	LC(bit)	HSC(bit)	D.b	KnXKnY		KnM	Kns T		CDR		RSDLCHSCKHE				[D]	XXP
DRCR	Parameter 1										\bullet	\bullet	\bullet	\bullet	- -	\bullet	-	\bullet	\bullet		\bullet	\bullet
	Parameter 2									-	\bullet	-		-	- \bullet	\bullet	-	\bullet		$\bullet \bullet$	\bullet	\bullet

Features

- The BIN 32-bit data of the device specified in (d) is shifted right by (n) bits with the carry flag included. The carry flag is in the ON or OFF state according to the state before $\operatorname{DRCR}(P)$ is executed.

(n) Specifies 0 to 31 . When a value of 32 or more is specified in (n), the remainder value of $(n) \div 32$ is shifted to the right. For example, when $(n)=34,34 \div 32=1$ and the remainder is 2 , so a 2-bit right shift is performed.

Related device

Devices	Name	
SM151	Carry	It turns ON when the last bit shifted from the lowest is 1.

N Note:

Do not set the number of bits (n) to turn right to a negative value.
In the case of continuous execution type instruction (DROR, DRCR), the right shift will be executed every scan time (operation cycle), so be careful. When specifying the number of digits to specify the device in (d), only K4 (16-bit instruction) or K8 (32-bit instruction) is valid. (For example, K4Y10, K8M0).

Error code

Error code	Content
4084 H	A negative value is specified in (n).
4085 H	The output results of (d) and (n) in the read application instruction exceed the device range
4086 H	The output result of (d) in the write application instruction exceeds the device range

Example

After the rising edge of M 0 is triggered, the carry flag SM151 turns ON, and DO is assigned the value 1 . When $\mathrm{M} 1=\mathrm{ON}$, the value in the D0 device is shifted

ROL/16-bit cycle shift left

ROL(P)
Shift the 16-bit data of the device specified in (d) to the left by (n) bits without including the carry flag.
$-[\mathrm{ROL} \quad(\mathrm{d}) \quad(\mathrm{n})]$

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(d)	The device start number for cycle shift left	-	Signed BIN 16 bit	ANY16
(n)	The number of times to cycle shift left	0 to 15	Signed BIN 16 bit	ANY16

Device used

Instruction	Parameter	Devices																		Offset odification	Pulse extension
		XYMSSM T(bit)			C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnN	Kns			R SD			KHE		[D]	XXP
ROL	Parameter 1									-	-	\bullet	-		$\bullet \bullet$					\bullet	\bullet
ROL	Parameter 2								\bullet	\bullet	\bullet	-	-	-	$\bullet \bullet$			$\bullet \cdot$		-	\bullet

Features

- The 16-bit data of the device specified in (d) is shifted to the left by (n) bits without including the carry flag. The carry flag is in the ON or OFF state according to the state before $\mathrm{ROL}(\mathrm{P})$ is executed.

(n) Specify 0 to 15 . When a value of 16 or more is specified in (n), the remainder value of $(n) \div 16$ is shifted to the left. For example, when $(n)=18,18 \div 16=1$ and the remainder is 2 , so a 2 -bit left shift is performed.

Related device

Device	Name	
SM151	Carry	It turns ON when the last bit shifted from the highest is 1.

* Note:

Do not set the number of digits (n) shifted to the left to a negative value. In the case of continuous execution type instructions (ROL, $R C L$), the shift to the left will be executed every scan time (operation cycle), so be careful. When specifying the number of digits to specify the device in (d), only K4 (16-bit instruction) or K8 (32-bit instruction) is valid. (For example, K4Y10, K8M0).

Error code

Error code	Content
4084 H	A negative value is specified in (n).
4085 H	The output results of (d) and (n) in the read application instruction exceed the device range
4086 H	The output result of (d) in the write application instruction exceeds the device range

Example

Shift 1 in the DO device to the left by 3 bits to get 8 .

DROL/32-bit cycle shift left

DROL(P)

Shift the 32-bit data of the device specified in (d) to the left by (n) bits without including the carry flag.
$-\left[\begin{array}{lll}{[D R O L} & (d) & (n)]\end{array}\right.$

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(d)	The device start number for cycle shift left	-	Signed BIN 32 bit	ANY32
(n)	The number of times to cycle shift left	0 to 31	Signed BIN 32 bit	ANY32

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		X Y M S SM T(bit)			C(bit)	LC(bit)	HSC(bit)	D.b	KnX		KnM	Kns	T	CD	R	SD	LC	ISC	KHE	[D]	XXP
DROL	Parameter 1									\bullet	\bullet	\bullet	\bullet	- \bullet	\bullet	\bullet	-	\bullet		\bullet	\bullet
DROL	Parameter 2								-	-	\bullet	\bullet	\bullet	- -	\bullet	-	\bullet	\bullet	$\bullet \bullet$	\bullet	\bullet

Features

- The 32-bit data of the device specified in (d) is shifted left by (n) bits without including the carry flag. The carry flag is on or off according to the state before $\operatorname{DROL}(P)$ is executed.

(n) Specifies 0 to 31 . When a value of 32 or more is specified in (n), the remainder of $(n) \div 32$ is shifted to the left. For example, when $(n)=34,34 \div 32=1$ and the remainder is 2 , so a 2 -bit left shift is performed.

Related device

Device	Name	
SM151	Carry	It turns ON when the last bit shifted from the highest is 1.

* Note:

Do not set the number of digits (n) shifted to the left to a negative value.
In the case of continuous execution type instructions ($\mathrm{ROL}, \mathrm{RCL}$), the shift to the left will be executed every scan time (operation cycle), so be careful. When specifying the number of digits to specify the device in (d), only K4 (16-bit instruction) or K8 (32-bit instruction) is valid. (For example, K4Y10, K8M0).

Error code

Error code	
4084 H	A negative value is specified in (n).
4085 H	The output results of (d) and (n) in the read application instruction exceed the device range
4086 H	The output result of (d) in the write application instruction exceeds the device range

Example

RCL/16-bit cycle shift left with carry

RCL(P)
Shift the 16-bit data of the device specified in (d) to the left by (n) bits with the carry flag included.
$-\left[\begin{array}{lll}R C L & (d) & (n)\end{array}\right]$

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(d)	The device start number for cycle shift left	-	Signed BIN 16 bit	ANY16
(n)	The number of times to cycle shift left	0 to 15	Signed BIN 16 bit	ANY16

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		XYMSS		SM T(bit)		C(bit)	LC(bit)	HSC(bit)	D.b	KnX	n	KnN	KnS		CD	R SD	LC	HSC	K HE	[D]	XXP
RCL	Parameter 1										\bullet	\bullet	-	\bullet	- \bullet	$\bullet \bullet$				\bullet	\bullet
RCL	Parameter 2									-	\bullet	\bullet	-	-	- \bullet	$\bullet \bullet$			- -	\bullet	\bullet

Features

-The 16-bit data of the device specified in (d) is shifted (n) to the left with the carry flag included. The carry flag is on or off according to the state before $\operatorname{RCL}(P)$ is executed.

(n) Specifies 0 to 15 . When a value of 16 or more is specified in (n), the remainder value of $(n) \div 16$ is shifted to the left. For example, when $(n)=18,18 \div 16=1$ and the remainder is 2 , so a 2 -bit left shift is performed.

Related device

Device	Name	Content
SM151	Carry	It turns ON when the last bit shifted from the highest is 1.

(Note:

Do not set the number of digits (n) shifted to the left to a negative value. In the case of continuous execution type instructions (ROL, $R C L$), the shift to the left will be executed every scan time (operation cycle), so be careful. When specifying the number of digits to specify the device in (d), only K4 (16-bit instruction) or K8 (32-bit instruction) is valid. (For example, K4Y10, K8M0).

Error code

Error code	
4084 H	A negative value is specified in (n).
4085 H	The output results of (d) and (n) in the read application instruction exceed the device range
4086 H	The output result of (d) in the write application instruction exceeds the device range

Example

After the rising edge of M0 is triggered, the carry flag SM151 turns ON, and DO is assigned the value 1.

DRCL/32-bit cycle shift left with carry

DRCL(P)
Move the 32-bit data of the device specified in (d) to the left by (n) bits with the carry flag included.
-[DRCL (d) (n)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(d)	The device start number for cycle shift left	-	Signed BIN 32 bit	ANY32
(n)	The number of times to cycle shift left	0 to 31	Signed BIN 32 bit	ANY32

Device used

Instruction	Parameter	Devices																			Offset modification	Pulse extension
		X Y M S SM T(bit)				C(bit)	LC(bit)	HSC(bit)	D.b	KnX		KnM	KnS		CD			L	SC	KHE	[D]	XXP
DRCL	Parameter 1										\bullet	-	\bullet	-	- \bullet	\bullet	\bullet	-	\bullet		\bullet	\bullet
	Parameter 2									-	\bullet	\bullet	-	\bullet	- \bullet	\bullet	\bullet	-		- -	\bullet	\bullet

Features

The 32-bit data of the device specified in (d) is shifted (n) to the left with the carry flag included. The carry flag is on or off according to the state before $\operatorname{RCL}(P)$ is executed.

(n) Specifies 0 to 31 . When a value of 32 or more is specified in (n), the remainder of $(n) \div 32$ is shifted to the left. For example, when $(n)=34,34 \div 32=1$ and the remainder is 2 , so a 2 -bit left shift is performed.

Related device

Devices	Name	
SM151	Carry	Turns ON when the last bit shifted from the highest is 1.

* Note:

Do not set the number of digits (n) shifted to the left to a negative value. In the case of continuous execution type instructions (ROL, $R C L$), the shift to the left will be executed every scan time (operation cycle), so be careful. When specifying the number of digits to specify the device in (d), only K4 (16-bit instruction) or K8 (32-bit instruction) is valid. (For example, K4Y10, K8M0).

Error code

Error code	Content
4084 H	A negative value is specified in (n).
4085 H	The output results of (d) and (n) in the read application instruction exceed the device range
4086 H	The output result of (d) in the write application instruction exceeds the device range

Example

 4] th

After the rising edge of M0 is triggered, the carry flag SM151 turns ON, and D0 is assigned the value 1 . When $\mathrm{M} 1=O N$, carry the value in the D 0 device to the left by 4 bits to get 24 .

SFTR/n-bit shift right of n-bit data

SFTR(P)

Shift (n 2) the data of the start (n 1) bits of the device specified in (d) to the right.
-[SFTR (s) (d) (n1) (n2)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The start number of the device storing the shifted data after shifting	-	Bit	ANY_BOOL
(d)	The shifted device start number	-	Bit	ANY_BOOL
(n1)	The length of shifted data	0 to 32767	Signed BIN 16 bit	ANY16
$(n 2)$	Number of shifts	0 to 32767	Signed BIN 16 bit	ANY16

Device used

Features

Shift (n 2) the data of the start (n 1) bits of the device specified in (d) to the right. After shifting, the point (n 2) starting from (s) is transferred to the point $(\mathrm{n} 2)$ starting from $(\mathrm{d})+(\mathrm{n} 1$ to n 2$)$.
When K0 is specified in (s), the bit of the $(d)+(n 1$ to $n 2)$ starting point ($n 2$) after the shift is set to 0 .
When K1 is specified in (s), the bit of the (d) + (n1 to $n 2)$ starting point (n 2) after the shift is set to 1 .

(1)
(1): When $(s)=K 0$, it becomes 0 .

Error code

Error	
code	
4084 H	When the value specified in (n1) and (n2) exceeds the range of 0 to 32767
	When the value specified in (n1) and (n2) is (n1)<(n2)
4085 H	When the device specified in read application instructions (s), (d), (n1) and (n2) exceeds the corresponding device range
4086 H	When the device specified in the write application instruction (d) exceeds the corresponding device range

Example

For n1=9 bits (the length of the shift register) data starting with M0, right shift $n 2=3$ bits. After shifting, transfer $\mathrm{n} 2=3$ bits from Y0 to n2=3 bits from M6.

SFTL/ n-bit shift left of n-bit data

SFTL(P)

Shift the start (n 1) bit data of the device specified in (d) to the left by (n 2) bits.
-[SFTL
(s) (d)
(n1)
(n2)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The start number of the device storing shifted data after shifting	-	Bit	ANY_BOOL
(d)	The shifted device start number	-	Bit	ANY_BOOL
$(\mathrm{n} 1)$	The length of shifted data	0 to 32767	Signed BIN 16 bit	ANY16
$(\mathrm{n} 2)$	Number of shifts	0 to 32767	Signed BIN 16 bit	ANY16

Device used

Instruction	Parameter	Devices																				Offset modification	Pulse extension
		X	Y M S	S SM		T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX KnY KnM Kns				T C		D R SD LCHSCKHE					[D]	XXP
	Parameter 1	$\bullet \bullet$	-	-	\bullet					\bullet												\bullet	\bullet
SFTL	Parameter 2	-	-	-	\bullet					\bullet												\bullet	\bullet
	Parameter 3										-	-	-	\bullet	-	-	-	\bullet			- -	\bullet	\bullet
	Parameter 4										\bullet	\bullet	\bullet	\bullet	\bullet		-	$\bullet \bullet$			$\bullet \bullet$	\bullet	\bullet

Features

Shift (n 2) bits of the data at the beginning (n 1) bits of the device specified in (d). After shifting, the point (n 2) starting from (s) is transferred to the point $(\mathrm{n} 2)$ starting from $(\mathrm{d})+(\mathrm{n} 1$ to n 2$)$.
When K0 is specified in (s), the bit of the $(d)+(n 1$ to $n 2)$ starting point ($n 2$) after the shift is set to 0 .
When K1 is specified in (s), the bit of the (d) + (n1 to $n 2)$ starting point (n 2) after the shift is set to 1 .

(1): When $(s)=K 0$, it becomes 0 .

Error code

Error	
code	
4084 H	When the value specified in (n1) and (n2) exceeds the range of 0 to 32767
	When the value specified in (n1) and (n2) is (n1)<(n2)
4085 H	When the device specified in read application instructions (s), (d), (n 1) and (n 2) exceeds the corresponding device range
4086 H	When the device specified in the write application instruction (d) exceeds the corresponding device range

Example

WSFR/n-word shift right of n -word data

WSFR(P)
Shift (n 2) the data of the start (n 1) bits of the device specified in (d) to the right.
$-[W S F R \quad$ (s) (d) (n1) (n2)]

Content, range and data type

Features

Shift (n 2) the data of the beginning (n 1) word of the device specified in (d) to the right. After shifting, the point (n 2) starting from (s) is transferred to the point (n 2) starting from (d) $+(\mathrm{n} 1$ to n 2$)$.
When K is specified in (s), the device at (d) $+(\mathrm{n} 1$ to n 2$)$ starting $(\mathrm{n} 2)$ point after shifting is set to the specified value.
If the value specified in (n 1) or (n 2) is 0 , it will be no processing.

Error code

Error code	Content
4084H	When the value specified in (n1) and (n2) exceeds the range of 0 to 32767
	When the value specified in (n 1) and (n 2$)$ is (n 1$)<(\mathrm{n} 2)$
	When (s) and (d) both specify KnM , KnX , and KnS , the value of n varies.
4085H	When the device specified in read application instructions (s), (d), (n1) and (n 2) exceeds the corresponding device range
4086H	When the device specified in the write application instruction (d) exceeds the corresponding device range

Example

(S) and (d) specify the same multiple in the digit specified device. This program realizes to shift Y0 to Y 7 bits right, shift Y 10 to Y 17 right to Y0 to Y 7 , and then store X 0 to X 7 to Y 10 to Y 17 .
H0 [WSFRP K1X0 K1Y0 K4 K2]

WSFL/n-word shift left of n -word data

WSFL(P)
Shift the start (n 1) bit data of the device specified in (d) to the left by (n 2) bits.
-[WSFL
(s) (d) (n1) (n2)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The start number of the device storing shifted data after shifting	-	Word	
(d)	The shifted device start number	-	ANY_BOOL	
(n1)	The length of shifted data	0 to 32767	Signed BIN 16 bit	ANY16
(n2)	Number of shifts	0 to 32767	Signed BIN 16 bit	ANY16

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		X Y M S SM T (bit)			$C \text { (bit) }$	LC(bit)	HSC(bit)	D.b	KnX KnY KnM ${ }^{\text {KnS }}$ T					C D	RSD		LCHSC		K HE	[D]	XXP
	Parameter 1								\bullet	\bullet	\bullet	\bullet	-	- -	-	\bullet			- -	\bullet	\bullet
SFTR	Parameter 2									\bullet	-	\bullet	-	- \bullet	-	\bullet				\bullet	\bullet
	Parameter 3								\bullet	\bullet	\bullet	\bullet	-	-	-	\bullet			- -	\bullet	\bullet
	Parameter 4								\bullet	\bullet	\bullet	\bullet	\bullet	- \bullet	\bullet	\bullet			$\bullet \bullet$	\bullet	\bullet

Features

Shift (n 2) the data of the beginning (n 1) word of the device specified in (d) to the left. After shifting, transfer the point (n 2) starting from (s) to the point (n 2) starting from (d).
When K is specified in (s), the device at (d) $+(\mathrm{n} 1$ to n 2$)$ starting $(\mathrm{n} 2)$ point after shifting is set to the specified value.
If the value specified in (n 1) or (n 2) is 0 , it will be no processing.

Error Code

Error code	
4084 H	When the value specified in $(\mathrm{n} 1)$ and $(\mathrm{n} 2)$ exceeds the range of 0 to 32767
	When the value specified in $(\mathrm{n} 1)$ and $(\mathrm{n} 2)$ is $(\mathrm{n} 1)<(\mathrm{n} 2)$
	When (s) and (d) both specify $\mathrm{KnM}, \mathrm{KnX}$, and KnS , the value of n varies.
4085 H	When the device specified in read application instructions (s), (d), (n 1$)$ and (n 2) exceeds the corresponding device range
4086 H	When the device specified in the write application instruction (d) exceeds the corresponding device range

Example

(S), (d) Do the same multiple specification in the digit specification device. This program realizes to remove the high bits of Y 10 to Y17 left, move Y0 to Y7 left to Y10 to Y17, and then store XO to X 7 to YO to Y 7 .

$$
\stackrel{\text { M0 }}{H} \stackrel{\text { WSFLP }}{ } \text { K1X0 K1Y0 } \quad \text { K4 } \quad \text { K2 }]
$$

SFR/n-bit shift right of 16-bit data

SFR(P)

Shift the 16-bit data of the device specified in (d) right by (n) bits.
-[SFR (d) (n)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(d)	The start number of the device storing the shifted data	-	Signed BIN 16 bit	ANY16
(n)	Number of shifts	$0-15$	Signed BIN 16 bit	ANY16

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		X Y M S SM T(bit)			C(bit)	LC(bit)	HSC(bit)	D.b	KnX		Kn	KnS	T	CD	R	SD	LC	HSC	K HE	[D]	XXP
	Parameter 1									\bullet	\bullet	\bullet	-	-	\bullet	\bullet				\bullet	\bullet
	Parameter 2								\bullet	\bullet	\bullet	\bullet	\bullet	-	\bullet	\bullet			$\bullet \bullet$	\bullet	\bullet

Features

When (N) $=6$

Shift the 16-bit data of the device specified in (d) to the right (n) bits from the highest bit. The (n) bit from the most significant bit will become 0 .

When (N)=6

When a bit device is specified in (d), the device range specified in the digit specification is shifted to the right.
(n) Specifies 0 to 15 . When a value of 16 or more is specified in (n), the remainder of $(n) \div 16$ is shifted to the left. For example, when $(n)=18,18 \div 16=1$ and the remainder 2 , so it is shifted by 2 bits to the right.

Related device

Error code

Error code	Content
4084 H	A negative value is specified in (n).
4085 H	The output results of (d) and (n) in the read application instruction exceed the device range
4086 H	The output result of (d) in the write application instruction exceeds the device range

Example

When M1 is ON, the contents of Y10 to Y23 are shifted to the right by the number of digits specified in D0.

DSFR/n word data shift right by 1 word

DSFR(P)

Shift the data at the start (n) point of the device specified in (d) to the right by 1 word.
-[DSFR
(d) (n]]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(d)	The start number of the device storing the shifted data	-	Signed BIN 16 bit	ANY16
(n)	Number of shifts	0 to 32767	Signed BIN 16 bit	ANY16

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		XYM S SM T(bit)			C(bit)	LC(bit)	HSC(bit)	D.b	KnX			KnS		CD	R	SD	L	HSC	KHE	[D]	XXP
DSFR	Parameter 1									\bullet	-	\bullet		- -	-	-				\bullet	-
DSFR	Parameter 2								-	\bullet	-	-		- -	\bullet	\bullet			$\bullet \bullet$	\bullet	\bullet

Features

- Shift the data at the start (n) point of the device specified in (d) by 1 word to the right.

- The device specified in (d)+(n-1) will become 0 .

*Note:

In (d), when specifying the device number by specifying the number of bits of the bit device, the device number should be a multiple of $16(0,16,32,64 \ldots)$, and only $K 4$ should be specified for the number of bits. When the number of bits is not K4, K4 is used for processing.

Error code

Error code	Content
4084 H	When the value specified in (n) exceeds the range of 0 to 32767
4085 H	The output results of (d) and (n) in the read application instruction exceed the device range
4086 H	The output result of (d) in the write application instruction exceeds the device range

Example

When M1 is ON, shift the contents of D0 to D 4 to the right by 1 word ($\mathrm{D} 1 \rightarrow \mathrm{D} 0, \mathrm{D} 2 \rightarrow \mathrm{D} 1, \mathrm{D} 3 \rightarrow \mathrm{D} 2, \mathrm{D} 4 \rightarrow \mathrm{D} 3, \mathrm{D} 4$ is set to 0).

Before execution:

After execution:

SFL/n-bit shift left of 16-bit data

SFL(P)
Shift the 16-bit data of the device specified in (d) to the left by (n) bits.
-[SFL (d) (n)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(d)	The start number of the device storing the shifted data	-	Signed BIN 16 bit	ANY16
(n)	Number of shifts	0 to 15	Signed BIN 16 bit	ANY16

Device used

Instruction	Parameter	Devices																Offset modification	Pulse extension
		XYM S SM T(bit)		C(bit)	LC(bit)	HSC(bit)	D.b	KnX			Kns	T	CD	R	D	CHSC	KHE	[D]	XXP
	Parameter 1								\bullet	\bullet	\bullet	\bullet	- \bullet	\bullet	-			\bullet	\bullet
SFL	Parameter 2							\bullet	\bullet	\bullet	\bullet	-	-	\bullet	\bullet		$\bullet \bullet$	\bullet	\bullet

Features

Shift the 16-bit data of the device specified in (d) to the left (n) bits from the lowest bit. The (n) bit from the lowest bit will become 0 .

When a bit device is specified in (d), the left shift is performed in the device range specified in the digit specification.

(n) Specify 0 to 15 . When a value of 16 or more is specified in (n), the remainder of $(n) \div 16$ is shifted to the left. For example, when $(n)=18,18 \div 16=1$ remainder 2 , so it is shifted by 2 bits to the left.

Related device

Device	Name	
SM151	Carry	Turn ON/OFF according to the state of $n+1$ bit (1/0)

Error code

Error code	Content
4084 H	A negative value is specified in (n).
4085 H	The output results of (d) and (n) in the read application instruction exceed the device range
4086 H	The output result of (d) in the write application instruction exceeds the device range

Example: When M1 is ON, the contents of Y10 to Y17 are shifted to the left by the number of digits specified in D0.

DSFL/one word shift left of \mathbf{n} word data

DSFL(P)

Move the data at the beginning (n) point of the device specified in (d) by 1 word to the left.
-[DSFL (d) (n)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(d)	The start number of the device storing the shifted data	-	Signed BIN 16 bit	ANY16
(n)	Number of shifts	0 to 32,767	Signed BIN 16 bit	ANY16

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		X Y M S SM T(bit)			C(bit)	LC(bit)	HSC(bit)	D.b	KnX			KnS		CD	R	SD	C	HSC	K HE	[D]	XXP
DSFL	Parameter 1									\bullet	-	\bullet	-	- \bullet	-	\bullet				\bullet	\bullet
FL	Parameter 2								-	\bullet	-	\bullet	-	- -	\bullet	-			- -	\bullet	-

Features

Shift the data at the start (n) point of the device specified in (d) to the left by 1 word.
 0 The device specified in (d) will become 0 .

* Note:

In (d), when specifying the device number by specifying the number of bits of the bit device, the device number should be a multiple of $16(0,16,32,64 \ldots)$, and only K4 should be specified for the number of bits. When the number of bits is not K4, K4 is used for processing.

Error code

Error code	
4084 H	Content
4085 H	The output results of (d) and (n) in the read application instruction exceed the device range
4086 H	The output result of (d) in the write application instruction exceeds the device range

Example

When M1 is ON, shift the contents of D0 to D4 to the left by 1 word (D3 \rightarrow D4, D2 \rightarrow D3, D1 \rightarrow D2, D0 \rightarrow D1, D0 is set to 0).

Before execution:

| Devices | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F | | A |
| :--- |
| D0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | |
| D1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | |
| D2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | |
| D3 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | |
| D4 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | |
| D5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| D6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |

After execution:

Devices	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F		\wedge
DO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
D1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	
D2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	
D3	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	
D4	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	4	
D5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
D6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

7.3 Arithmetic operation instructions

ADD/16-bit addition operation

ADD(P)

Add the BIN 16-bit data specified in (s1) and the BIN 16-bit data specified in (s2), and store the result in the device specified in (d).
-[ADD
(s1) (s2)
(d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	Addition operation data or the device storing the addition data	-32768 to 32767	Signed BIN16	ANY16_S
(s2)	Addition operation data or the device storing the addition data	-32768 to 32767	Signed BIN16	ANY16_S
(d)	Device for storing operation results		Signed BIN16	ANY16_S

Device used

Features

Add the BIN 16-bit data specified in (s1) and the BIN 16-bit data specified in (s2), and store the result of the addition in the device specified in (d).

Related device

Devices	Name	Content
SM151	Carry	When the operation result exceeds 32,767, the carry flag will be (ON).
SM152	Borrow	When the operation result is less than $-32,768$, the borrow flag will be (ON).
SM153	Zero point	When the operation result is 0, the zero flag will be (ON).

* Note:

(1) When the source operand and destination operand are specified as the same device:

The source operand and destination operand can also be specified as the same device number.
In this case, if you use continuous execution instructions (ADD, DADD), the result of the addition operation will change every operation cycle.
(2) The difference between the ADD instruction and the INC instruction using the +1 addition operation program:

ADD[P] means that every time X001 changes from OFF to ON, the content of DO is added by one operation.
Although this instruction is very similar to the INCP instruction described later, there are some differences in the following content.

			ADD/ADDP/DADD/DADDP instructions	INC/INCP/DINC/DINCP instructions
Flag bit (zero, borrow, carry)			Action	No action
Calculation result	16-bit operation result	$(\mathrm{S})+(+1)=(\mathrm{d})$	$32767 \rightarrow 0 \rightarrow+1 \rightarrow+2 \rightarrow$	$32767 \rightarrow-32768 \rightarrow-32767$
		$(\mathrm{S})+(-1)=(\mathrm{d})$	$\leftarrow-2 \leftarrow-1 \leftarrow 0 \leftarrow-32768$	--
	32-bit operation result	$(\mathrm{S})+(+1)=(\mathrm{d})$	$2147483647 \rightarrow 0 \rightarrow+1 \rightarrow+2 \rightarrow$	$2147483647 \rightarrow-2147483648 \rightarrow-2147483647$
		$(\mathrm{S})+(-1)=(\mathrm{d})$	$\leftarrow-2 \leftarrow-1 \leftarrow 0 \leftarrow-2147483648$	-

Error code

Error code	
4085 H	The output results of $(\mathrm{s} 1)$ and $(\mathrm{s} 2)$ in the read application instruction exceed the device range
4086 H	The output result of (d) in the write application instruction exceeds the device range

Example
$\left.\left.\begin{array}{l|lllll} & \text { M0 } & {[A D D} & \text { D0 } & \text { K10 } & \text { D2 }\end{array}\right]\right\}$

Add 10 to the data in (D0), and store the operation result in (D2), that is, (D0) $+10 \rightarrow$ (D2).

DADD/32-bit addition operation

DADD(P)

Add the BIN32-bit data specified in (s1) and the BIN32-bit data specified in (s2), and store the result in the device specified in (d).
-[DADD (s1) (s2) (d)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	Addition data or the device storing the addition data	-2147483648 to 2147483647	Signed BIN32	ANY32_S
(s2)	Addition data or the device storing the addition data	-2147483648 to 2147483647	Signed BIN32	ANY32_S
(d)	Device for storing operation results		Signed BIN32	ANY32_S

Device used

Instruction	Parameter	Devices																				Offset modification	Pulse extension
		XYMSS		SM T(bit)		C(bit)	LC(bit)	HSC(bit)	D.b Kn		$\mathrm{Kn} \times \mathrm{KnY}$	KnM KnS T			T CD		R SD	LCHSCKHE				[D]	XXP
	Parameter 1									-	\bullet	\bullet	-	\bullet	\bullet	- -	-	\bullet	\bullet	-	\bullet	\bullet	\bullet
DADD	Parameter 2									\bullet	\bullet	\bullet	\bullet	-	-	-	\bullet	\bullet	\bullet	-	\bullet	\bullet	\bullet
	Parameter 3										\bullet	\bullet	-	\bullet	-	\bullet -	\bullet					\bullet	\bullet

Features

Add the BIN32-bit data specified in (s1) and the BIN32-bit data specified in (s2), and store the result of the addition in the device specified in (d).

Related device

PLC LX5V Series Programming Manual (V2.2)

Devices	Name	Content
SM151	Carry	When the operation result exceeds 32,767, the carry flag will be (ON).
SM152	Borrow	When the operation result is less than $-32,768$, the borrow flag will be (ON).
SM153	Zero point	When the operation result is 0, the zero flag will be (ON).

* Note:

(1) When the source operand and destination operand are specified as the same device:

The source operand and destination operand can also be specified as the same device number.
In this case, if you use continuous execution instructions (ADD, DADD), the result of the addition operation will change every operation cycle. Please note.
(2) The difference between the ADD instruction and the INC instruction using the +1 addition operation program:

ADD[P] means that every time X001 changes from OFF to ON, the content of DO is added by one operation.
Although this instruction is very similar to the INCP instruction described later, there are some differences in the following content.

			ADD/ADDP/DADD/DADDP instructions	INC/INCP/DINC/DINCP instructions
Flag bit (zero, borrow, carry)			Action	No action
Calculation result	16-bit Operation result	$(\mathrm{S})+(+1)=(\mathrm{d})$	$32767 \rightarrow 0 \rightarrow+1 \rightarrow+2 \rightarrow$	$32767 \rightarrow-32768 \rightarrow-32767$
		$(\mathrm{S})+(-1)=(\mathrm{d})$	$\leftarrow-2 \leftarrow-1 \leftarrow 0 \leftarrow-32768$	- -
	33-Bit	$(\mathrm{S})+(+1)=(\mathrm{d})$	$2147483647 \rightarrow 0 \rightarrow+1 \rightarrow+2 \rightarrow$	$2147483647 \rightarrow-2147483648 \rightarrow-2147483647$
	operation result	$(\mathrm{S})+(-1)=(\mathrm{d})$	$\leftarrow-2 \leftarrow-1 \leftarrow 0 \leftarrow-2147483648$	- -

Error code

Error code	Content
4085 H	The output results of (s1) and (s2) in the read application instruction exceed the device range
4086 H	The output result of (d) in the write application instruction exceeds the device range

Example

Add 100000 to the data in (D1, D0), and store the result of the operation in (D3, D2), that is, (D1, D0) $+100000 \rightarrow(D 3, D 2)$.

SUB/16-bit subtraction operation

SUB(P)

Subtract the BIN 16-bit data specified in (s1) and the BIN 16-bit data specified in (s2), and store the result in the device specified in (d).
-[SUB
(s1) (s2) (d)

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	The subtraction data or the device storing the subtraction data	-32768 to 32767	Signed BIN16	ANY16_S
(s2)	The subtraction data or the device storing the subtraction data	-32768 to 32767	Signed BIN16	ANY16_S
(d)	Device for storing calculation results		Signed BIN16	ANY16_S

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		X Y M S SM T(bit)			C(bit)	LC(bit)	HSC(bit)	D.b	KnX KnY KnM ${ }^{\text {KnS }}$				S T	CD	RSD		LCHSCKHE			[D]	XXP
	Parameter 1								\bullet	\bullet	\bullet	\bullet	-	- -	\bullet	\bullet			- •	\bullet	\bullet
SUB	Parameter 2								\bullet	\bullet	\bullet	\bullet	-	- \bullet	\bullet	\bullet			- -	\bullet	\bullet
	Parameter 3									\bullet	\bullet	\bullet		-	\bullet	\bullet				\bullet	\bullet

Features

Subtract the BIN 16-bit data specified in (s1) and the BIN 16-bit data specified in (s2), and store the result of the operation in the device specified in (d).

Related device

Devices	Name	Content
SM151	Carry	When the operation result exceeds 32,767, the carry flag will be (ON).
SM152	Borrow	When the operation result is less than $-32,768$, the borrow flag will be (ON).
SM153	Zero point	When the operation result is 0, the zero flag will be (ON).

Note:

(1) When the source operand and destination operand are specified as the same device:

The source operand and destination operand can also be specified as the same device number.
In this case, if continuous execution type instructions (SUB, DSUB) are used, the result of the subtraction operation will change every operation cycle. Please be careful.
(2) The difference between the $\operatorname{SUB}(P)$ instruction and the $-(P)$ instruction and $D E C(P)$ instruction executed by the -1 subtraction program

SUB (P) instruction every time X 1 changes from OFF to ON , the program of D0 content -1 is similar to $-(P)$ instruction and DEC(P) instruction described later, but the following contents are different.

PLC LX5V Series Programming Manual (V2.2)

Error code

Error code	Content
4085 H	The output results of (s 1) and $(\mathrm{s} 2)$ in the read application instruction exceed the device range
4086 H	The output result of (d) in the write application instruction exceeds the device range

Example

Subtract 10 from the data in D0, and store the calculation result in D2, that is, (D0)-10 \rightarrow (D2).

DSUB/32-bit subtraction operation

DSUB(P)

Subtract the BIN32-bit data specified in (s1) and the BIN32-bit data specified in (s2), and store the result in the device specified in (d). -[DSUB (s1) (s2) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	The subtraction data or the device storing the subtraction data	-2147483648 to 2147483647	Signed BIN32	ANY32_S
(s2)	The subtraction data or the device storing the subtraction data	-2147483648 to 2147483647	Signed BIN32	ANY32_S
(d)	Device for storing calculation results		Signed BIN32	ANY32_S

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		X Y M S SM T(bit)			C(bit)	LC(bit)	HSC(bit)	D.b	KnX		KnM	KnS		C D	R	SD	L	HSC	KHE	[D]	XXP
	Parameter 1								\bullet	\bullet	-	\bullet			-	\bullet	-	-	- -	\bullet	\bullet
DSUB	Parameter 2								\bullet	\bullet	\bullet	\bullet		-	-	\bullet	\bullet	\bullet	- -	\bullet	\bullet
	Parameter 3									\bullet	\bullet	\bullet		- -	-	\bullet	\bullet	\bullet		\bullet	\bullet

Features

Subtract the BIN32-bit data specified in (s1) and the BIN32-bit data specified in (s2), and store the result of the operation in the device specified in (d).

Related device

Devices	Name	Content
SM151	Carry	When the operation result exceeds $2,147,483,647$, the carry flag will be ON.
SM152	Borrow	When the operation result is less than $-2,147,483,648$, the borrow flag will be ON.
SM153	Zero point	When the operation result is 0, the zero flag will be ON.

N Note:

(1) When the source operand and destination operand are specified as the same device:

The source operand and destination operand can also be specified as the same device number.
In this case, if continuous execution type instructions (SUB, DSUB) are used, the result of the subtraction operation will change every operation cycle. Please be careful.
(2) The difference between the $\operatorname{SUB}(P)$ instruction and the $-(P)$ instruction and $D E C(P)$ instruction executed by the -1 subtraction program

SUB (P) instruction every time X 1 changes from OFF to ON , the program of DO content -1 is similar to $-(P)$ instruction and DEC (P) instruction described later, but the following contents are different.

\left.| | | SUB/SUBP/DSUB/DSUBP |
| :---: | :---: | :---: | :---: | :---: |
| instructions | | |$\right]$ DEC/DECP/DDEC/DDECP instructions

Error code

Error code	Content
4085 H	The output results of (s1) and (s2) in the read application instruction exceed the device range
4086 H	The output result of (d) in the write application instruction exceeds the device range

Example

Subtract 100000 from the data in (D1, D0), and store the result of the operation in (D3, D2), that is, (D1,D0)-10000 \rightarrow ($D 3, D 2$).

MUL/16-bit multiplication

MUL(P)

Multiply the BIN16 bits specified in (s1) with the BIN16 bits specified in (s2), and store the result in the device specified in (d).
$-[M U L \quad$ (s1) (s2) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	Multiplication operation data or the device storing multiplication operation data	-32768 to 32767	Signed BIN 16 bit	ANY16_S
(s2)	Multiplication operation data or the device storing multiplication operation data	-32768 to 32767	Signed BIN 16 bit	ANY16_S
(d)	Device for storing calculation results		Signed BIN 32 bit	ANY32_S

Device used

Instruction	Parameter	Devices																			Offset modification	Pulse extension
		X Y M S SM T(bit)			C(bit)	LC(bit)	HSC(bit)	D.b	KnX	Kn	KnN	Kns		C	D	RSD	L LC	C	HSC	K HE	[D]	XXP
	Parameter 1								\bullet	\bullet	\bullet	\bullet	-		-	- -	-			$\bullet \bullet$	\bullet	\bullet
MUL	Parameter 2								\bullet	\bullet	\bullet	-	-		-	- -	\bullet			- -	\bullet	\bullet
	Parameter 3									\bullet	\bullet	-	\bullet		$\bullet \cdot$	- -	$\bullet \cdot$	\bullet	\bullet		\bullet	\bullet

Features

Multiply the BIN 16 -bit data specified in (s1) with the BIN 16 -bit data specified in (s2), and store the result of the operation in the device specified in (d).

(d) is the multiplication result in the case of bit device

- K1: lower 4 bits (b0 to b3)
- K4: Lower 16 bits (b0 to b15)
- K8: Lower 32 bits (b0 to b31)

Error code

Error code	Content
4085 H	The output results of $(\mathrm{s} 1)$ and $(\mathrm{s} 2)$ in the read application instruction exceed the device range
4086 H	The output result of (d) in the write application instruction exceeds the device range

Example

Multiply the data in (D0) by (D2), and store the operation result in (D5, D4), that is, (D0) \times (D2) \rightarrow (D5, D4).

PLC LX5V Series Programming Manual (V2.2)

DMUL/32-bit multiplication

DMUL(P)

Multiply the 32-bit BIN specified in (s1) and the 32-bit BIN specified in (s2), and store the result in the device specified in (d).
-[DMUL
(s1) (s2)
(d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	Multiplication operation data or device storing multiplication operation data	-2147483648 to 2147483647	Signed BIN 32 bit	ANY32_S
(s2)	Multiplication operation data or device storing multiplication operation data	-2147483648 to 2147483647	Signed BIN 32 bit	ANY32_S
(d)	Device for storing calculation results		Signed BIN64 bit	ANY64_S

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		X Y M S SM T(bit)			C(bit)	LC(bit)	HSC(bit)	D.b	KnX		nM	KnS	T	CD				HSC	KHE	[D]	XXP
	Parameter 1								\bullet	\bullet	\bullet	\bullet	-	-	-	\bullet	\bullet	-	$\bullet \bullet$	\bullet	\bullet
DMUL	Parameter 2								\bullet	\bullet	\bullet	\bullet	-	-	-	-	-	\bullet	- -	\bullet	\bullet
	Parameter 3									\bullet	\bullet	\bullet	-	-	\bullet	\bullet	\bullet	\bullet		\bullet	\bullet

Features

Multiply the BIN32-bit data specified in (s1) and the BIN32-bit data specified in (s2), and store the result of the operation in the device specified in (d).

(d) is the multiplication result in the case of bit device

- K1: lower 4 bits (b0 to b3)
- K4: Lower 16 bits (b0 to b15)
- K8: Lower 32 bits (b0 to b31)

Error code

Error code	Content
4085 H	The output results of $(\mathrm{s} 1)$ and $(\mathrm{s} 2)$ in the read application instruction exceed the device range
4086 H	The output result of (d) in the write application instruction exceeds the device range

Example

Multiply the data in (D1, D0) by (D3, D2), and store the result of the operation in ((D7, D6), (D5, D4)), ie (D1, D0) $\times(\mathrm{D} 3, \mathrm{D} 2) \rightarrow((\mathrm{D} 7$, D6), (D5, D4)).

DIV/16-bit division operation
DIV(P)
Divide the BIN 16-bit data specified in (s1) with the BIN 16-bit data specified in ($s 2$), and store the result in the device specified in (d).
-[DIV
(s1) (s 2)
(d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	Division operation data or device storing division operation data	-32768 to 32767	Signed BIN 16 bit	ANY16_S
(s2)	Division operation data or device storing division operation data	-32768 to 32767	Signed BIN 16 bit	ANY16_S
(d)	Device for storing calculation results		Signed BIN 32 bit	ANY32_S

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		XYMSS	SM T(bit)		C(bit)	LC(bit)	HSC(bit)	D.b	KnX KnY KnM ${ }^{\text {KnS }}$					CDR		RSD	LC	HSC K H E		[D]	XXP
	Parameter 1								\bullet	\bullet	\bullet	\bullet	-	- \bullet	-	\bullet			$\bullet \bullet$	\bullet	\bullet
DIV	Parameter 2								\bullet	\bullet	\bullet	\bullet	-	- -	-	\bullet			- -	\bullet	\bullet
	Parameter 3									\bullet	\bullet	-	\bullet	- \bullet	-	-	\bullet	\bullet		\bullet	\bullet

Features

Divide the BIN 16-bit data specified in (s1) with the BIN 16-bit data specified in (s2), and store the result of the operation in the device specified in (d).

(d) : quotient (d) +1 : residue

In the case of a word device, the division result uses a 32-bit storage quotient and remainder, and in the case of a bit device, only a 16-bit storage quotient is used.

- Quotient is stored in the lower 16 bits.
- The remainder is stored in the upper 16 bits. (Can only be stored in the case of word devices.)

* Note

(1) About the opearation result

- The highest bit of the quotient and remainder represents the sign of positive (0) and negative (1).
- When one of ($s 1$) or ($s 2$) is negative, the quotient becomes negative. When ($s 1$) is negative, the remainder becomes negative.
(2) The device specified by (d)
- With the digit specification function, when specifying a bit device, the remainder cannot be obtained.

Error code

Error code	Content
4080 H	The input of divisor (s2) is 0
4085 H	The output results of $(\mathrm{s} 1)$ and (s2) in the read application instruction exceed the device range
4086 H	The output result of (d) in the write application instruction exceeds the device range

Example

Divide the data in (D0) by (D2), and store the result of the calculation: the quotient is stored in (D4), and the remainder is stored in (D5), ie (D0)/ (D2) \rightarrow (D4(quotient)) (D5(remainder)).

DDIV(P)

Divide the BIN32-bit data specified in (s1) with the BIN32-bit data specified in (s2), and store the result in the device specified in (d).
-[DDIV (s1) (s2) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	Division operation data or device storing division operation data	-2147483648 to 2147483647	Signed BIN 32 bit	ANY32_S
(s2)	Division operation data or device storing division operation data	-2147483648 to 2147483647	Signed BIN 32 bit	ANY32_S
(d)	Device for storing calculation results		Signed BIN64 bit	ANY64_S

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		X Y M S SM T(bit)			C(bit)	LC(bit)	HSC(bit)	D.b	KnX		KnM	KnS	T		R	SD	LC	HSC	KHE	[D]	XXP
	Parameter 1								-	\bullet	\bullet	-	-	- -	- -	-	\bullet	\bullet	- •	\bullet	\bullet
DDIV	Parameter 2								\bullet	\bullet	\bullet	\bullet	\bullet	-	- \bullet	-	\bullet	-	- \bullet	\bullet	\bullet
	Parameter 3									\bullet	-	-	\bullet		- \bullet	-	\bullet	\bullet		\bullet	\bullet

Features

Divide the BIN32-bit data specified in (s1) with the BIN32-bit data specified in (s2), and store the result of the operation in the device specified in (d).

In the case of word devices, the division result uses BIN64 bits to store the quotient and remainder. In the case of bit devices, only the BIN 32-bit storage quotient is used.

N Note:

(1) About the operation result

- The highest bit of the quotient and remainder represents the sign of positive (0) and negative (1).
- When one of $(s 1)$ or $(s 2)$ is negative, the quotient becomes negative. When ($s 1$) is negative, the remainder becomes negative.
(2) The specified device of (d)
- With the digit specification function, when a bit device is specified, the remainder cannot be obtained.

Error code

Error code	Content
4080 H	The input of divisor (s2) is 0
4085 H	The output results of (s1) and (s2) in the read application instruction exceed the device range
4086 H	The output result of (d) in the write application instruction exceeds the device range

Example

Divide the data in (D1, D0) by (D3, D2), and store the result of the calculation: the quotient is stored in (D5, D4), and the remainder is stored in (D7, D6), that is (D1, D0)/ (D3, D2) \rightarrow (D5, D4) (quotient) (D7, D6) (remainder).

INC/16-bit data increment

INC(P)
Add one to the device (BIN 16-bit data) specified in (d).
-[INC (d)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(d)	The word device number that stores the data added by one	-32768 to 32767	Signed BIN 16 bit	ANY16_S

Device used

Instruction	Parameter	Devices																	Offset modification	Pulse extension
		XYMS	SM	T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS	T	CD	R SD	LC	HSC	HE	[D]	XXP
INC	Parameter 1									\bullet	\bullet	\bullet	-		- -				\bullet	\bullet

Features

Add one to the device (BIN 16-bit data) specified in (d).

- If the $\operatorname{INC}(P)$ instruction is executed when the content of the device specified in (d) is $32767,-32768$ will be stored in the device specified in (d).
- Flags (zero, borrow, carry) do not perform actions.

N Note:

If the continuous execution (INC) instruction is used, the addition operation will be performed every operation cycle, so care should be taken.

Error code

Error code	Content
4085 H	The output results of (d) in the read application instruction exceed the device range
4086 H	The output result of (d) in the write application instruction exceeds the device range

Example

Add one to the device value specified in D0, that is, (DO) $+1 \rightarrow$ (D0).

DINC/32-bit data increment

DINC(P)

Add one to the device (BIN 32-bit data) specified in (d).
-[DINC (d)]

Content, range and data type

Features

Add one to the device (BIN 32-bit data) specified in (d).

- When the DINC(P) instruction is executed when the content of the device specified in (d) is $2147483647,-2147483648$ will be stored in the device specified in (d).
- Flags (zero, borrow, carry) do not perform actions.

* Note:

If the continuous execution (INC) instruction is used, the addition operation will be performed every operation cycle, so care should be taken.

Error code

Error code	Content
4085 H	The output results of (d) in the read application instruction exceed the device range
4086 H	The output result of (d) in the write application instruction exceeds the device range

Example

Add one to the device value specified in (D1, D0), that is, (D1, D0) $+1 \rightarrow(\mathrm{D} 1, \mathrm{D} 0)$.

DEC/16 bit data decrement

DEC(P)

Minus one for the device (BIN 16-bit data) specified in (d).
-[DEC (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(d)	The word device number that stores the data minus by one	-32768 to 32767	Signed BIN 16 bit	ANY16_S

Device used

Instruction	Parameter	Devices																	Offset modification	Pulse extension
		X Y M S SM T(bit)			C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS	T C	CDR	R SD	LC	HSC	HE	[D]	XXP
DEC	Parameter 1									\bullet	\bullet	\bullet	-	- \cdot	- -				\bullet	\bullet

Features

Minus one for the device (BIN 16-bit data) specified in (d).

- If the $\operatorname{DEC}(P)$ instruction is executed when the content of the device specified in (d) is $-32768,32767$ will be stored in the device specified in (d).
- Flags (zero, borrow, carry) do not perform actions.

* Note:

If using continuous execution (DEC) instructions, subtraction will be performed every operation cycle, so care should be taken.
Error code

Error code	Content
4085 H	The output results of (d) in the read application instruction exceed the device range
4086 H	The output result of (d) in the write application instruction exceeds the device range

Example

Each time M0 is set, the value of the device specified in D0 will be -1, (D0)-1 \rightarrow (D0).

DDEC/32-bit data decrement

DDEC(P)
Minus one for the device (BIN 32-bit data) specified in (d).
-[DDEC (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(d)	The word device number that stores the data minus by one	-2147483648 to 2147483647	Signed BIN 32 bit	ANY32_S

Device used

Instruction	Parameter	Devices																	Offset modification	Pulse extension
		X Y M S	SM T(bit)		C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	nM	KnS	T C	D	R SD	LC	HSC	HE	[D]	XXP
DDEC	Parameter 1									\bullet	\bullet	\bullet		-	- -	\bullet	-		\bullet	\bullet

Features

Minus one for the device (BIN 32-bit data) specified in (d).

If the $\operatorname{DDEC}(P)$ instruction is executed when the content of the device specified in (d) is 0 , minus one will be stored in the device specified in (d).

- Flags (zero, borrow, carry) do not perform actions.

(Note:

If using continuous execution (DEC) instructions, subtraction will be performed every operation cycle.
Error code

Error code	Content
4085 H	The output results of (d) in the read application instruction exceed the device range
4086 H	The output result of (d) in the write application instruction exceeds the device range

Example

Minus one on the device value specified in (D1, D0), that is, (D1, D0)-1 \rightarrow (D0).

7.4 Logic Operation Instructions

NEG/16-bit complement

NEG(P)

After inverting the sign of the BIN 16-bit device specified in (d), store it in the device specified in (d).
-[NEG (d)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(d)	The start device that stores the data complement of 2	-32768 to 32767	Signed BIN16	ANY16_S

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		XYMSS		SM	T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS	T	CD	R SD	LC	HSC	KHE	[D]	XXP
NEG	Parameter 1									\bullet	\bullet	\bullet	\bullet	$\bullet \bullet$		- -			1	\bullet	-

Features

- Invert the sign of the BIN 16-bit device specified in (d), and store it in the device specified in (d).
- Used when inverting positive and negative signs.

(2) Note: If the continuous execution (NEG) instruction is used, every operation cycle will be inverted, so care should be taken.

Error code

Error code	Content
4085 H	The output results of (d) in the read application instruction exceed the device range
4086 H	The output result of (d) in the write application instruction exceeds the device range

Example

In the two examples below, if D2=K4 and D4=K8, or D2=K8 and D10 is always K4.
Each time MO is set, the device value specified in DO is reversed.

Take the absolute value of the difference of the subtraction operation.
If $D 2>D 4, M 10=O n$. If $D 2=D 4, M 11=O n$. If $D 2<D 4, M 12=O n$. This ensures that $D 10$ is positive.
It can also be represented by the following program:

When bit15 of D10 is " 1 " (indicating that D10 is a negative number), M10 $=$ On, use NEG instruction to complement D10 to obtain the absolute value of D10.

In the above two examples, if D2=K4, D4=K8; or D2=K8, D4=K4, the result of D10 is K4.

DNEG/32-bit complement

DNEG(P)
After inverting the sign of the BIN 32-bit device specified in (d), store it in the device specified in (d).
-[DNEG (d)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(d)	The start device that stores the data complement of 2	-2147483648 to 2147483647	Signed BIN16	ANY16_S

Device used

Instruction	Parameter	Devices																	Offset modification	Pulse extension
		XYMS	SM	T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS	T C	DR	R SD	LC	HSC	KHE	[D]	XXP
DNEG	Parameter 1								\bullet	\bullet	\bullet	-		- \bullet	- \bullet	-	\bullet		\bullet	\bullet

Features

- Invert the sign of the BIN 32-bit device specified in (d) and store it in the device specified in (d).
- Used when inverting positive and negative signs.

* Note:

If you use continuous execution (DNEG) instructions, every operation cycle will be inverted, so care should be taken.
Error code

Error code	Content
4085 H	The output results of (d) in the read application instruction exceed the device range
4086 H	The output result of (d) in the write application instruction exceeds the device range

Example

Each time M0 is set, the device value specified in (D1, D0) is reversed.

WOR/16-bit data logical OR

WOR(P)
Perform a logical OR operation on the BIN 16-bit data of the device specified in (s1) and the BIN 16-bit data of the device specified in $(\mathrm{s} 2)$, and store the result in the device specified in (d).
-[WOR (s1) (s2) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	Stores data for logical OR operation or a device that stores data	-32768 to 32767	Signed BIN16	ANY16_S
(s2)	Stores data for logical OR operation or a device that stores data	-32768 to 32767	Signed BIN16	ANY16_S
(d)	Device for storing logic or result		Signed BIN16	ANY16_S

Device used

Instruction	Parameter	Devices																			Offset modification	Pulse extension
		XYM SSM T(bit)				C(bit)	LC(bit)	HSC(bit)	D.b	KnX KnY KnM			Kns		TCDR		RSD	LC HSCKHE			[D]	XXP
	Parameter 1									\bullet	\bullet	\bullet	\bullet	-	- -	-	\bullet			- -	\bullet	\bullet
WOR	Parameter 2									\bullet	\bullet	\bullet	\bullet	-	- -	-	-			$\bullet \bullet$	\bullet	\bullet
	Parameter 3										\bullet	\bullet	-	\bullet	- -	-	\bullet				\bullet	\bullet

Features

- Perform a logical OR operation on the BIN 16-bit data of the device specified in (s1) and the BIN 16-bit data of the device specified in (s2), and store the result in the device specified in (d).

In the case of bit devices, bit devices after the number of points specified by the number of digits will be calculated as 0 .

Error code

Error code	Content
4085 H	The output results of $(\mathrm{s} 1)$ and (s2) in the read application instruction exceed the device range
4086 H	The output result of (d) in the write application instruction exceeds the device range

Example

When M0 is set, (D0) and (D2) are logically performed, and the value is stored in (D4), that is (D0) \vee (D2) \rightarrow (D4)

DOR/32-bit data logical OR

DOR(P)

After inverting the sign of the BIN 32-bit device specified in (d), store it in the device specified in (d).
-[DOR
(s1) (s 2)
(d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	Stores data for logical OR operation or a device that stores data	-2147483648 to 2147483647	Signed BIN32	ANY32_S
(s2)	Stores data for logical OR operation or a device that stores data	-2147483648 to 2147483647	Signed BIN32	ANY32_S
(d)	Device for storing logic or result		Signed BIN32	ANY32_S

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		X Y M S SM T(bit)				LC(bit)	HSC(bit)	D.b	KnX KnY KnM ${ }^{\text {KnS }}$ T					TCD	DRSD		LCHSCKHE			[D]	XXP
	Parameter 1								\bullet	\bullet	\bullet	\bullet	\bullet		- -	\bullet	-	\bullet	$\bullet \bullet$	\bullet	\bullet
DOR	Parameter 2								-	\bullet	\bullet	\bullet	-	-	$\bullet \cdot$	\bullet	-	\bullet	- -	\bullet	\bullet
	Parameter 3									\bullet	\bullet	\bullet	-		-	-	-	\bullet		\bullet	\bullet

Features

Perform a logical OR operation on the BIN 32-bit data of the device specified in (s1) and the BIN 32-bit data of the device specified in $(s 2)$, and store the result in the device specified in (d).

(s) +1
(s)

(d) +1
(d)

In the case of bit devices, bit devices after the number of points specified by the number of digits will be calculated as 0 .

Error code

Error code	Content
4085 H	The output results of $(\mathrm{s} 1)$ and $(\mathrm{s} 2)$ in the read application instruction exceed the device range
4086 H	The output result of (d) in the write application instruction exceeds the device range

Example

When M0 is set, (D1, D0) and (D3, D2) are logically performed, and the value is stored in (D5, D4), that is, (D1, D0) $\vee(\mathrm{D} 3, \mathrm{D} 2) \rightarrow(\mathrm{D} 5$, D4)).

WAND/16-bit data logic AND

WAND(P)

Perform a logical AND operation on each bit of the BIN 16-bit data of the device specified in (s1) and the BIN 16-bit data of the device specified in (s2), and store the result in the device specified in (d).
-[WAND
(s1) (s2)
(d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	Store the data for logical AND operation or the device storing the data	-32768 to 32767	Signed BIN16	ANY16_S
(s2)	Store the data for logical AND operation or the device storing the data	-32768 to 32767	Signed BIN16	ANY16_S
(d)	Device for storing logic and result		Signed BIN16	ANY16_S

Device used

Instruction	Parameter	Devices																			Offset modification	Pulse extension
		XYMSSM			T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX		KnM	KnS					LC	HSC	K HE	[D]	XXP
	Parameter 1									\bullet	\bullet	\bullet	\bullet		\bullet		- \bullet			$\bullet \bullet$	\bullet	\bullet
WAND	Parameter 2									\bullet	\bullet	\bullet	\bullet	-	-	- -	-			- -	\bullet	\bullet
	Parameter 3										\bullet	\bullet	\bullet	-	-	-	-				\bullet	-

Features

Perform a logical AND operation on each bit of the BIN 16-bit data of the device specified in (s1) and the BIN 16-bit data of the device specified in (s2), and store the result in the device specified in (d).

In the case of bit devices, bit devices after the number of points specified by the number of digits will be calculated as 0 .

Error code

Error code	Content
4085 H	The output results of $(\mathrm{s} 1)$ and (s2) in the read application instruction exceed the device range
4086 H	The output result of (d) in the write application instruction exceeds the device range

Example

When M0 is set, the logical AND operation of (D0) and (D2) is performed, and the value is stored in (D4), that is, (D0) \wedge (D2) \rightarrow (D4).

DAND/32-bit data logic AND

DAND(P)

Perform a logical AND operation on each bit of the BIN 32-bit data of the device specified in (s1) and the BIN 32-bit data of the device specified in (s2), and store the result in the device specified in (d).
-[DAND
(s 1) (s 2)
(d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	Store the data for logical AND operation or the device storing the data	-2147483648 to +2147483647	Signed BIN32	ANY32_S
(s2)	Store the data for logical AND operation or the device storing the data	-2147483648 to +2147483647	Signed BIN32	ANY32_S
(d)	Device for storing logic and result		Signed BIN32	ANY32_S

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		XYM SSM T(bit)			$C(\text { bit })$	LC(bit)	HSC(bit)	D.b	KnX KnY KnM ${ }^{\text {KnS }}$				T C		CDR	R SD	LCHSCKHE			[D]	XXP
	Parameter 1								-	\bullet	\bullet	-	-	- -	-	\bullet	-	-	- •	\bullet	\bullet
DAND	Parameter 2								\bullet	\bullet	\bullet	\bullet	\bullet	- \cdot	\bullet	\bullet	\bullet	\bullet	- -	\bullet	\bullet
	Parameter 3									\bullet	\bullet	-		-	\bullet	\bullet	\bullet	\bullet		-	\bullet

Features

Perform a logical AND operation on each bit of the BIN 32-bit data of the device specified in (s1) and the BIN 32-bit data of the device specified in (s2), and store the result in the device specified in (d).

In the case of bit devices, bit devices after the number of points specified by the number of digits will be calculated as 0 .

Error code

Error code	Content
4085 H	The output results of (s1) and (s2) in the read application instruction exceed the device range
4086 H	The output result of (d) in the write application instruction exceeds the device range

Example

$\left.\begin{array}{|lllll|}\hline \text { M0 } & \text { [DAND } & \text { D0 } & \text { D2 } & \text { D4 } \\ \hline\end{array}\right]$

When M0 is set, perform logical AND operation of (D1, D0) and (D3, D2), and store the value in (D5, D4), (D1, D0) $\wedge(D 3, D 2) \rightarrow(D 5$, D4) .

WXOR/16-bit data logic exclusive OR

WXOR(P)

Perform an exclusive OR operation on the BIN 16-bit data of the device specified in (s1) and the BIN 16 -bit data of the device specified in (s2), and store the result in the device specified in (d).
-[WXOR
(s1) (s2)
(d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	Store the data for exclusive OR operation or the device storing the data	-32768 to 32767	Signed BIN16	ANY16_S
(s2)	Store the data for exclusive OR operation or the device storing the data	-32768 to +32767	Signed BIN16	ANY16_S
(d)	Device for storing XOR result		Signed BIN16	ANY16_S

Device used

Features

- Perform logical exclusive OR operation on the BIN 16-bit data of the device specified in (s1) and the BIN 16 -bit data of the device specified in (s2), and store the result in the device specified in (d).

In the case of bit devices, bit devices after the number of points specified by the number of digits will be calculated as 0 .

Error code

Error code	Content
4085 H	The output results of (s1) and (s2) in the read application instruction exceed the device range
4086 H	The output result of (d) in the write application instruction exceeds the device range

Example

Example 1: When M0 is set, (D0) and (D2) are XOR operation, and the value is stored in (D4), (D0) \forall (D2) \rightarrow (D4).

Example 2: When used with the CML instruction, it can realize the logic exclusive OR (XORNOT) operation:

DXOR/32-bit data logic exclusive OR

DXOR(P)
Perform an exclusive OR operation on the BIN 32-bit data of the device specified in (s1) and the BIN 32-bit data of the device specified in (s2), and store the result in the device specified in (d).
-[DXOR
(s1)
(s2) (d
(d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	Store the data for exclusive OR operation or the device storing the data	-2147483648 to 2147483647	Signed BIN32	ANY32_S
(s2)	Store the data for exclusive OR operation or the device storing the data	-2147483648 to 2147483647	Signed BIN32	ANY32_S
(d)	Device for storing XOR result		Signed BIN32	ANY32_S

Device used

Instruction	Parameter	Devices																			Offset modification	Pulse extension
		XYMSSM			T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX KnY KnM			KnS T		T D	RSD		LCHSCKHE			[D]	XXP
	Parameter 1									\bullet	\bullet	\bullet	\bullet	-	- -	-	-	\bullet	\bullet	- •	\bullet	\bullet
DXOR	Parameter 2									\bullet	\bullet	\bullet	\bullet	-	- \bullet	-	\bullet	\bullet	-	- -	\bullet	\bullet
	Parameter 3										\bullet	\bullet	\bullet	-	- -		-	\bullet	\bullet		\bullet	\bullet

Features

Perform an exclusive OR operation on the BIN 32-bit data of the device specified in (s1) and the BIN 32-bit data of the device specified in (s2), and store the result in the device specified in (d).

In the case of bit devices, bit devices after the number of points specified by the number of digits will be calculated as 0 .

Error code

Error code	Content
4085 H	The output results of $(\mathrm{s} 1)$ and (s2)in the read application instruction exceed the device range
4086 H	The output result of (d) in the write application instruction exceeds the device range

Example

When M0 is set, (D1, D0) and (D3, D2) are XOR operation, and the value is stored in (D5, D4), that is, (D1, D0) \forall (D3, D2) \rightarrow (D5, D4))

PRUN/8 digit transmission (16-bit data)

PRUN(P)

After processing the device numbers of (s) and (d) with designated digits as octal numbers, transfer the data.
-[PRUN (s) (d)]

Content, range and data type

Parameter	Content	Range	data	Data type (label)
(s)	Digit designation*1	-	BIN16 bit	ANY16
(d)	Transfer destination device number*1	-	BIN16 bit	ANY16

Device used

Instruction	Parameter	Devices																			Offset modification	Pulse extension
		XYMS		SM T(bit)		C(bit)	LC(bit)	HSC(bit)	D.b K	KnX KnY			KnM	KnS T	CDR		RSDLCHSCKHE				[D]	XXP
	Parameter 1									-			\bullet								\bullet	\bullet
	Parameter 2										-		-								-	-

Features

- 8-digit device \rightarrow decimal device

- Decimal digit device \rightarrow octal digit device

Error code

Error code	Content
4085 H	When reading the specified device range exceeds the corresponding device range
4086 H	When the specified device range for writing exceeds the range of the corresponding device

Example
0 [PRUN K4X0 K4M0 \} \}

As shown in the above Circuit program:
X0 to X17 take the value of octal digits and pass it to the Devices corresponding to M.

7.5 Data processing instructions

BCC/BIN16 and BIN8 bit data addition, subtraction and exclusive check

BCC (P)
Specify the calculation method of BCC in (s1), specify the destination start address in (s2), and specify the destination data length in $(\mathrm{s} 3)$, and then store the operation result in the device specified in (d).

- [BCC
(s1)
(s2)
(s3)
(d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	16-bit constant or the calculation method of 16-bit regions (block check code)	0 to 2	BIN16 bit	ANY16_S
(s2)	Calculate the initial 16-bit regions of BCC	-	BIN16 bit	ANY16_S
(s3)	$16-$ bit constant or 16-bit regions (specify the number of bytes calculated by BCC)	0 to 32767	BIN16 bit	ANY16_S
(d)	Stores 16-bit regions of BCC results	-	BIN16 bit	ANY16_S

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		X Y M S SM T(bit)				C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS	T/C	CD	R SD		HSC	K HE	[D]	XXP
BCC	(s1)									\bullet	\bullet	\bullet	\bullet	- \bullet	- \bullet				- -	\bullet	-
	(s2)													- \bullet	- -	- -				\bullet	\bullet
	(s3)									\bullet	\bullet	\bullet	\bullet	- \bullet	- \bullet	- -			- -	\bullet	\bullet
	(d)										-	-	-	- -	- -	- -				\bullet	\bullet

Features

According to the calculation method specified by s1, starting from the 16-bit data specified by s2, calculate the ASCII block check code (BCC) of the number of bytes specified by $S 3$, and then store the result of BCC code in the low byte of 16-bit data specified by d .

S1: Specify the calculation method of BCC.
KO: addition operation
K1: subtraction operation
K2: exclusive or operation
S2 and s3: specify the destination data
For example, if the destination is the 12 bytes data starting from D0, the settings are as below.
S2: D0
S3: K12 (specify the data by decimal)
The modes used in the calculation of this instruction are 16-bit conversion mode and 8-bit conversion mode. For the actions of each mode, refer to the followings.
(1) 16 -bit conversion mode (When SM161 is OFF)

Calculate the high 8-bit (byte) and low 8-bit (byte) of device that started from (s2) and specify the byte length by (s3), and store the low 8 -bit of device specified by (d). The conversion result is as below.

	SM102			[MOV	H3025	$\begin{aligned} & 12325 \\ & \mathrm{DO} \end{aligned}$
				[MOV	H2331	$\begin{aligned} & 9009 \\ & \text { D1 } \end{aligned}$
				[MOV	H4352	$\begin{aligned} & 17234 \\ & \text { D2 } \end{aligned}$
				$[\mathrm{MOV}$	H56	$\begin{aligned} & 86 \\ & \text { D3 } \end{aligned}$
				$[\mathrm{MOV}$	H85	$\begin{aligned} & 133 \\ & \text { D4 } \end{aligned}$
				[MOV	H12	$\begin{aligned} & 18 \\ & \text { D5 } \end{aligned}$
	$\mathrm{H}_{\mathrm{M}}^{\mathrm{M}} \mathrm{H}$					$\sim^{\text {SM161 }}$
48		[BCC	K2	$\begin{aligned} & 12325 \\ & \text { DO } \end{aligned}$	K6	$\begin{aligned} & 22 \\ & \text { D6 } \end{aligned}$

(2) 8-bit conversion mode (When SM161 is ON)

Calculate the low 8-bit (byte) of device that started from (s2) and specify the byte length by (s3), and store the low 8-bit of device specified by (d). The conversion result is as below.

Error code

Error code	Content
4084 H	The read application instructions (s1) and (s3) input the data that exceeds the specified range
4085 H	The device specified in the read application instructions (s1), (s2) and (s3) exceeds the corresponding device range
4086 H	The device specified in the write application instruction (d) exceeds the corresponding device range

Example

When the trigger MO is ON, calculate the a block check code (BCC) of 12-bit bytes of ASCII data starting from data register D0 by "exclusive or operation". The block check code (BCC) is stored in the low bit byte of data register D6.

Application example

In the example ,calculate the BCC code and send as information after adding to the string " $\% 01 \rightarrow \mathrm{RC}$ ".
The data transmission is carried out in the form of ASCII codes.
CC calculations use logical exclusive OR, addition, and subtraction.

The information is stored as follows:

BCC instruction is as below:

Execution or operation

a	b	OR result
0	0	0
0	1	1
1	0	1
1	1	0

After the execution BCC code is stored in the last byte of D6.
How to calculate block check code (BCC)
Calculate block check code (BCD) with XOR for each ASCII code.

BCC code

| ASCII hexadecimal code | 1 | | | | 6 | | | |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| ASCII binary code | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 |$\quad \Longrightarrow$ The calculation result is stored in the low bit byte of D6

MAX/BIN16 bit the maximum value of 16-bit data

MAX (P)

Specify the destination start address in (s1), and specify the destination end address in (s2), and then store the operation result in the device specified in (d).

- [llll MAX $\quad(\mathrm{s} 1) \quad(\mathrm{s} 2) \quad$ (d) $]$

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	Device that stores the start address when getting the max data	-32768 to 32767	Signed BIN16	ANY16_S
(s2)	Device that stores the end address when getting the max data	-32768 to 32767	Signed BIN16	ANY16_S
(d)	Stores the max value between the device data of (s1) and (s2)	-32768 to 32767	Signed BIN16	ANY16_S

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
			M S	SSM	T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS	T C	CDR	R SD	LC	HSC	KHE	[D]	XXP
	(s1)													- -	- - -	-				\bullet	-
MAX	(s2)													- \bullet	- - \bullet	-				-	\bullet
	(d)													- -	- - -	-				\bullet	\bullet

Features

Use the BIN16 bit data specified in (s1) as the start address, and use the BIN16 bit data specified in (s2) as the end address to get the maximum value between the device of (s1) and (s2).

* Note

(1) The devices specified by ($s 1$) and ($s 2$) should be the same type. The type of device (d) that gets the results could be different.
(2) The device size specified by ($s 1$) can't exceed the device size specified by ($s 2$). For example, MAX D1 D5 D10 works, but MAX D5 D1 D10 doesn't.

Error code

Error code	Content
4084 H	The read application instructions (s1) and (s2) input the data that exceeds the specified range
4085 H	The device specified in the read application instructions (s1) and (s2) exceeds the device range
4086 H	The device specified in the write application instruction (d) exceeds the device range
4093 H	The specified ranges (s1) and (s2) are not the same device
4094 H	The sequence of specified ranges (s1) and (s2) is abnormal

Example

$\left.\left.\begin{array}{llllll}\text { SM102 } & & \text { MOV } & \text { K23 } & 23 & \text { D1 }\end{array}\right]\right\}$

Use (D1) as the start address, and use (D5) as the end address to get the max value between them and store the result in (D6). As the figure above, the max value between (D1) and (D5) is the value in (D3) which is stored in (D6) for output.

DMAX/BIN32 bit the maximum value of 32-bit data

DMAX (P)

Specify the destination start address in (s1), and specify the destination end address in (s2), and then store the operation result in the device specified in (d).

- [DMAX
(s1) (s 2)
(d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	Device that stores the start address when getting the max data	-2147483648 to 2147483647	Signed BIN32	ANY32_S
(s2)	Device that stores the end address when getting the max data	-2147483648 to 2147483647	Signed BIN32	ANY32_S
(d)	Stores the max value between the device data of (s1) and $(s 2)$	-2147483648 to 2147483647	Signed BIN32	ANY32_S

Device used

Instruction	Parameter	Devices																			Offset modification	Pulse extension
		XY M S SM T(bit)				C(bit)	LC(bit)	HSC(bit)	D.b	KnX KnY		KnM KnS		T C D R			RSDLCHSCKHE				[D]	XXP
	(s1)														- - -	-	-	\bullet	\bullet		\bullet	\bullet
DMAX	(s2)														- - -	-	-	\bullet	\bullet		\bullet	-
	(d)														- -	-	-	\bullet	\bullet		\bullet	-

Features

Use the BIN32 bit data specified in (s1) as the start address, and use the BIN32 bit data specified in (s2) as the end address to get the maximum value between the device of (s1) and (s2).

* Note

(1) The devices specified by (s1) and (s2) should be the same type. The type of device (d) that gets the results could be different.
(2) The device size specified by (s1) can't exceed the device size specified by (s2). For example, DMAX D1 D5 D10 works, but DMAX D5 D1 D10 doesn't.

Error code

Error code	Content
4084 H	The read application instructions (s1) and (s2) input the data that exceeds the speicified range
4085 H	The device specified in the read application instructions (s1) and (s2) exceeds the device range
4086 H	The device specified in the write application instruction (d) exceeds the device range
4093 H	The specified ranges (s1) and (s2) are not the same device
4094 H	The sequence of specified ranges (s1) and (s2) is abnormal

Example

Use (D1) as the start address, and use (D7) as the end address to get the max value between them and store the result in (D9). As the figure above, the max value between (D1) and (D7) is the value in (D7) which is stores in (D9) for output.

MIN/BIN16 bit the minimum value of 16-bit data

MIN (P)

Specify the destination start address in (s1), and specify the destination end address in (s2), and then store the operation result in the device specified in (d).

- [MIN
(s1) (s2)
(d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	Device that stores the start address when getting the minimum data	-32768 to 32767	Signed BIN16	ANY16_S
(s2)	Device that stores the end address when getting the minimum data	-32768 to 32767	Signed BIN16	ANY16_S
(d)	Stores the minimum value between the device data of (s1) and (s2)	-32768 to 32767	Signed BIN16	ANY16_S

Device used

Instruction	Parameter	Devices																	Offset modification	Pulse extension
		XYM	SSM	T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS	TC	D R	SD	LC	HSCK	KHE	[D]	XXP
MIN	(s1)													- -	-				-	\bullet
	(s2)														-				\bullet	-
	(d)																		-	\bullet

Features

Use the BIN16 bit data specified in (s1) as the start address, and use the BIN16 bit data specified in (s2) as the end address to get the maximum value between the device of (s1) and (s2).

* Note

(1) The devices specified by $(\mathrm{s} 1)$ and (s 2) should be the same type. The type of device (d) that gets the results could be different.
(2) The device size specified by (s1) can't exceed the device size specified by (s2). For example, MAX D1 D5 D10 works, but MAX D5 D1 D10 doesn't.

Error code

Error code	Content
4084 H	The read application instructions (s1) and (s2) input the data that exceeds the specified range
4085 H	The device specified in the read application instructions (s1) and (s2) exceeds the device range
4086 H	The device specified in the write application instruction (d) exceeds the device range
4093 H	The specified ranges (s1) and (s2) are not the same device
4094 H	The sequence of specified ranges (s1) and (s2) is abnormal

Example

Use (D1) as the start address, and use (D5) as the end address to get the max value between them and store the result in (D6). As the figure above, the max value between (D1) and (D5) is the value in (D3) which is stored in (D6) for output.

DMIN/BIN32 bit the minimum value of 32-bit data

DMIN (P)

Specify the destination start address in (s1), and specify the destination end address in (s2), and then store the operation result in the device specified in (d).

- [DMIN
(s1) (s2)
(d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	Device that stores the start address when getting the minimum data	-2147483648 to 2147483647	Signed BIN16	ANY16_S
(s2)	Device that stores the end address when getting the minimum data	-2147483648 to 2147483647	Signed BIN16	ANY16_S
(d)	Stores the minimum value between the device data of $(s 1)$ and (s2)	-2147483648 to 2147483647	Signed BIN16	ANY16_S

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		XYM S SM			T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS	TC	CDR	R SD	SD	CHSC	\|KHE	[D]	XXP
	(s1)														- - -		\bullet			\bullet	\bullet
DMIN	(s2)														- -		\bullet			\bullet	\bullet
	(d)														- -	$\bullet \bullet$	\bullet			\bullet	-

Features

Use the BIN32 bit data specified in (s1) as the start address, and use the BIN32 bit data specified in (s2) as the end address to get the maximum value between the device of (s1) and (s2).

Note

(3) The devices specified by (s1) and (s2) should be the same type. The type of device (d) that gets the results could be different.
(4) The device size specified by ($s 1$) can't exceed the device size specified by ($s 2$). For example, MAX D1 D5 D10 works, but MAX D5 D1 D10 doesn't.

Error code

Error code	Content
4084 H	The read application instructions (s1) and (s2) input the data that exceeds the specified range
4085 H	The device specified in the read application instructions (s1) and (s2) exceeds the device range
4086 H	The device specified in the write application instruction (d) exceeds the device range
4093 H	The specified ranges (s1) and (s2) are not the same device
4094 H	The sequence of specified ranges (s1) and (s2) is abnormal

Example

Use (D1) as the start address, and use (D5) as the end address to get the max value between them and store the result in (D6). As the figure above, the max value between (D1) and (D5) is the value in (D3) which is stored in (D6) for output.

ANS/alarm settings

ANS(P)
Used to set alarm instructions.
-[ANS (s) (n) (d)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	Timer number for judging time	-	Signed BIN 16 bit	ANY16
(n)	Data that judges time	1 to 32767	Signed BIN 16 bit	ANY16
(d)	The set alarm device	-	Bit	ANY16_BOOL

Device used

Features

When the instruction input continues to be ON for the judgment time [(n) $\times 100 \mathrm{~ms}$, timer (s)], set (d). If the instruction time turns off below the judgment time $[(n) \times 100 \mathrm{~ms}]$, the current value of the judgment timer (s) is reset, and (d) is not set. In addition, if the instruction input turns off, the judgment timer will be reset.

(1) Judge the time ((n) $\times 100 \mathrm{~ms}$ or less)
(2) Judgment time or more (inclusive) ((n) X 100ms or more (inclusive))

Related device

Devices	Name	Content
SM249	Signal alarm is valid	After SM249 is ON, the following SM248 and SD249 act.
SM248	Signal alarm action	SM249 is ON, when any one of the states S900 to S999 is active, SM248 is ON
SD249	Signal alarm ON state minimum number	Save the smallest number of actions in S900 to S999.

Error code

Error code	Content
4084 H	The value specified in (n1) and (n2) exceeds the range of 0 to 32767
	The timer number is not in the range of T0 to T199.
	The signal alarm is not in the range of S900 to S999.
4085 H	When the device specified in the read application instructions (s) and (n) exceeds the corresponding device range
4086 H	When the device specified in the write application instruction (d) exceeds the corresponding device range

Example

The fault number is displayed by the signal alarm.
As shown below, when you write a program for diagnosing external faults, such as monitoring the content of SM249 (the smallest
number in the ON state), the smallest number in the ON state among S 900 to S 999 will be displayed. When multiple faults occur at the same time, the next fault number can be obtained after eliminating the fault with the smallest number.

Detect X1 for 2 seconds, turn ON, set S900
X4 is detected for 1 second, turn ON, set S901
SM248 will act after any one of S900 to S999 is ON, and the output fault display YY6 will act

Display the fault number to the DO device
Through the external fault diagnosis program, use the reset button MO to turn off the activated state. Each time MO turns ON, the action status of the new number is set in turn, and the new number that is already ON is reset.

ANR/Alarm reset

ANR(P)

The instruction to reset the small number that is ON in the alarm.
-[ANR]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
No	No parameter setting	-	-	-

Device used

Instruction	Parameter	Devices	Offset modification	Pulse extension
			[D]	XXP
ANR	No	No object device		

Features

If the instruction input is ON , reset the active alarm in the alarm.
If multiple alarms are operating, reset the smaller number. If the input instruction is turned ON again, the next small number in the alarm that is operating will be reset.

Related device

Devices	Name	Content
SM249	Signal alarm is valid	After SM249 is ON, the following SM248 and SD249 act.
SM248	Signal alarm action	SM249 is ON, when any one of the states S900 to S999 is active, SM248 is ON.
SD249	Signal alarm ON state minimum number	Save the smallest number of actions in S900 to S999.

* Note:

If you use the ANR instruction, reset in sequence every cycle.
If the ANRP instruction is used, it will be executed in only one operation cycle.

Error code

No operation error.

Example

The fault number is displayed by the signal alarm.
As shown below, when you write a program for diagnosing external faults, such as monitoring the content of SM249 (the smallest number in the ON state), the smallest number in the ON state among $\mathrm{S900}$ to $\mathrm{S999}$ will be displayed. When multiple faults occur at the same time, the next fault number can be obtained after eliminating the fault with the smallest number.

Monitoring is effective after SM249 is turned ON Detect X1 for 2 seconds, turn ON, set S900

X4 is detected for 1 second, turn ON, set S901
SM248 will act after any one of S900 to S999 is ON, and the output fault display YY6 will act Display the fault number to the DO device Through the external fault diagnosis program, use the reset button M0 to turn off the activated state. Each time MO turns ON, the action status of the new number is set in turn, and the new number that is already ON is reset.

BON/16-bit data bit judgment

BON(P)

Check whether the state of the BIN 16-bit data (n) bit of the device specified in (s) is ON or OFF, and output the result to the device specified in (d).
-[BON
(s) (n) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	Data storage destination word device number	-	Signed BIN 16 bit	ANY16
(d)	Bit device number of drive	-	Bit	ANY16_BOOL
(n)	The position of the bit to be judged	0 to 15	Signed BIN 16 bit	ANY16

Device used

Features

Check whether the state of the BIN 16 -bit data (n) bit of the device specified in (s) is ON or OFF, and output the result to the device specified in (d).
If the above result is $O N$, then (d) $=\mathrm{ON}$, if it is OFF, then (d)=OFF.
If a constant (K) is specified in the device specified in (s), it will be automatically converted to BIN.

Error code

Error code	Content
4084 H	The data input in (n) exceeds the specified range of 0 to 15.
4085 H	When the device specified in the read application instructions (s) and (n) exceeds the corresponding device range
4086 H	When the device specified in the write application instruction (d) exceeds the corresponding device range

Example
$\left.\begin{array}{|lllll|}\hline \text { M0 } & \text { [M0V } & \text { K15 } & \text { D0 }\end{array}\right]$

When n in $\mathrm{DO}=$ the third bit is $1(\mathrm{ON}), \mathrm{MO}$ is set to $1(\mathrm{ON})$.

DBON/32-bit data bit judgment

DBON(P)
Check whether the state of the BIN 32-bit data (n) bit of the device specified in (s) is ON or OFF, and output the result to the device specified in (d).
$-\left[\begin{array}{llll}\text { DBON } & (\mathrm{s}) & (\mathrm{n}) & (\mathrm{d})\end{array}\right]$

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	Data storage destination word device number	-	Signed BIN 32 bit	ANY32
(d)	Bit device number of drive	-	Bit	ANY32_BOOL
(n)	The position of the bit to be judged	0 to 31	Signed BIN 32 bit	ANY32

Device used

Instruction	Parameter	Devices																				Offset modification	Pulse extension
		$\mathrm{X} \mathrm{Y} \mid$		MS	SM T(bit)		C(bit) LC(bit)		HSC(bit)	D.b Kn		KnXK KnY KnM		KnS T		TCDRSDLCHSCKHE						[D]	XXP
	Parameter 1										-	\bullet	\bullet	-	-	- -	\bullet	\bullet	\bullet		\bullet	\bullet	\bullet
DBON	Parameter 2	-	\bullet	\bullet	\bullet					\bullet						- \bullet	\bullet					\bullet	\bullet
	Parameter 3										\bullet	-	\bullet	-		$\bullet \bullet \bullet$	-	\bullet		-	\bullet	\bullet	\bullet

Features

Check whether the BIN 32-bit data (n) bit status of the device specified in (s) is ON or OFF, and output the result to the device specified in (d).

If the above result is $O N$, then $(d)=O N$, if it is OFF, then $(\mathrm{d})=O F F$.
If a constant (K) is specified in the device specified in (s), it will be automatically converted to BIN.

Error code

Error code	Content
4084 H	The data input in (n) exceeds the specified range of 0 to 31.
4085 H	When the device specified in the read application instructions (s) and (n) exceeds the corresponding device range
4086 H	When the device specified in the write application instruction (d) exceeds the corresponding device range

Example

When n in $\mathrm{DO}=$ the third bit is $1(\mathrm{ON}), \mathrm{MO}$ is set to $1(\mathrm{ON})$.

ENCO/Encode

ENCO(P)
Encode the data of the 2th (n)th power from (s) and store it in (d).
-[ENCO (s) (n) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	Start device for storing coded data	-	Bit/Signed BIN 16 bit	ANY_ELEMENTARY
(d)	Device number storing the encoding result	-	Signed BIN 16 bit	ANY_ELEMENTARY
(n)	Effective bit length	0 to 8	Signed BIN 16 bit	ANY16

Device used

Instruction	Parameter	Devices																				Offset modification	Pulse extension
			Y Y M	S SM		T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX K	KnY KnM KnS			T CDRSD LC HSCKHE							[D]	XXP
	Parameter 1	$\bullet \bullet$	-	-	\bullet										\bullet	- -	-	-				\bullet	\bullet
ENCO	Parameter 2											\bullet	\bullet	\bullet	-		-	\bullet				\bullet	\bullet
	Parameter 3										\bullet	\bullet	\bullet	\bullet	\bullet	-	-	-			$\bullet \bullet$	\bullet	\bullet

Features
The BIN value corresponding to the bit from $2^{(n)}$ bits of (s) to 1 is stored in (d).

When $(\mathrm{n})=0$, it will be no processing, and the content of the device specified in (d) will not change.
Bit devices are treated as 1 bit, and word devices are treated as 16 bits.
When multiple digits are 1 , it will be processed at the upper position.
Error code

Error code	Content
43084 H	In the bit device specification of (s), when (n) is other than 0 to 8.
	In the word device specification of (s), when (n) is other than 0 to 4.
	When the data of $2^{(n)}$ bits starting from (s) are all 0.
4085 H	When the device specified in the read application instructions (s) and (n) exceeds the corresponding device range
4086 H	When the device specified in the write application instruction (d) exceeds the corresponding device range

Example

When M20 is turned ON, the DO device is 16 after encoding.

DECO/Decode

DECO(P)
Decode the lower (n) bits of the device specified in (s), and store the result in the $2(n)$ th power of the device specified in (d).
-[DECO
(s) (n) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	Decoded data or the device number storing the decoded data	-	Bit/Signed BIN 16 bit	ANY_ELEMENTARY
(d)	The start device storing the decoding result	-	Signed BIN 16 bit	ANY_ELEMENTARY
(n)	Effective bit length	0 to 8	Signed BIN 16 bit	ANY16

Device used

Instruction	Parameter	Devices																				Offset modification[D]	Pulse extension XXP
			Y / M	SS		SM T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX K	KnY KnM KnS			TCD		D SD		LCHSCKHE				
	Parameter 1	- -	- -	-	\bullet							\bullet	\bullet	\bullet	-	-	-	\bullet			-	\bullet	\bullet
DECO	Parameter 2	-	- \bullet		\bullet											-	-	\bullet				\bullet	-
	Parameter 3										-	\bullet	\bullet			-	\bullet	\bullet			\bullet	\bullet	\bullet

Features

Turn ON the position of (d) corresponding to the BIN value specified in the lower (n) bit of (s).
When (n) $=0$, it will be no processing, and the content of the device specified in (d) will not change. Bit devices are treated as 1 bit, and word devices are treated as 16 bits.

Error code

Error code	Content
4084 H	In the bit device specification of (d), when (n) is other than 0 to 8.
	In the word device specification of (d), when (n) is other than 0 to 4.
4085 H	When the device specified in the read application instructions (s) and (n) exceeds the corresponding device range
4086 H	When the device specified in the write application instruction (d) exceeds the corresponding device range

Example

$\stackrel{\text { M20 }}{\mid}$		[MOV	K3	D0]
	[DECOP	D0	M0	K4]

When M20 is ON, M3 will be turned ON.

SUM/The ON bits of 16-bit data

SUM(P)

Store the total number of bits at 1 in the BIN 16-bit data of the device specified in (s) to the device specified in (d).
-[SUM
(s) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The device start number that counts the total number of bits at 1	-	Signed BIN 16 bit	ANY16
(d)	The device start number of the total number of storage bits	-	Signed BIN 16 bit	ANY16

Device used

Features

Store the total number of bits at 1 in the BIN 16 -bit data of the device specified in (s) to the device specified in (d).
When the BIN 16 -bit data of the device specified in (s) is all 0 , the zero flag (SM153) turns on

Error code

Error code	Content
4085 H	When the device specified in the read application instructions (s) exceeds the corresponding device range
4086 H	When the device specified in the write application instruction (d) exceeds the corresponding device range

Example

$\left.\begin{array}{|c|ccc|}\hline \text { M0 } & {[\text { M0V }} & \text { K15 } & \text { D0 }\end{array}\right]$

[^0]
DSUM/The ON bits of 32-bit data

DSUM(P)

Store the total number of bits at 1 in the BIN 32-bit data of the device specified in (s) to the device specified in (d).
-[SUM
(s) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The device start number that counts the total number of bits at 1	-	Signed BIN 32 bit	ANY32
(d)	The device start number of the total number of storage bits	-	Signed BIN 32 bit	ANY32

Device used

Instruction	Parameter	Devices																	Offset modification	Pulse extension
		X Y M S SM T(bit)			C(bit)	LC(bit)	HSC(bit)	D.b	KnX KnY KnM ${ }^{\text {KnS }}$ T					TCD	RSD	LCHSCKHE			[D]	XXP
DSUM	Parameter 1								\bullet	\bullet	\bullet	\bullet	-	- -	- -	-	\bullet	$\bullet \bullet$	\bullet	\bullet
	Parameter 2									-	\bullet	-	\bullet	- \bullet	- -	-	\bullet		-	\bullet

Features

Store the total number of bits at 1 in the BIN 32-bit data of the device specified in (s) to the device specified in (d).
When the BIN 32-bit data of the device specified in (s) is all 0 (OFF), the zero flag (SM153) turns on.

* Note:

When the instruction input is OFF, the instruction will not be executed, and the output of the ON digits of the action will remain the same as before.

Error code

Error code	Content
4085 H	When the device specified in the read application instructions (s) exceeds the corresponding device range
4086 H	When the device specified in the write application instruction (d) exceeds the corresponding device range

Example

$\left.\left.\begin{array}{|c|rll|}\hline \text { M0 } & \text { [DMOV } & \text { K15 } & \text { D0 }\end{array}\right]\right\}$

When MO is ON, the number of ON bits in DO is counted and stored in D10, and the value after D10 is executed is 4.

MEAN/Mean value of 16-bit data

MEAN(P)

Store the total number of bits at 1 in the BIN 16-bit data of the device specified in (s) to the device specified in (d).
-[MEAN (s) (d) (n)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The device start number storing the data for average calculation	-	Signed BIN 16 bit	ANY16
(d)	The device start number storing the average value	-	Signed BIN 16 bit	ANY16
(n)	Number of data or the device number storing the number of data	1 to 32767	Signed BIN 16 bit	ANY16

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		XYM S SM T(bit)			$C(\text { bit })$	LC(bit)	HSC(bit)	D.b	KnX KnY KnM ${ }^{\text {Kns }}$				T	CDR		RSD	LCHSCK HE			[D]	XXP
	Parameter 1								\bullet	\bullet	\bullet	\bullet	-	- \bullet	\bullet	\bullet				\bullet	\bullet
MEAN	Parameter 2									\bullet	\bullet	\bullet	-	- -	-	\bullet				\bullet	\bullet
	Parameter 3								-	\bullet	\bullet	\bullet	\bullet	-	-	-			$\bullet \bullet$	\bullet	\bullet

Features

Calculate the average value of the 16-bit data at (n) points starting from the device specified in (s) and store it in the device specified in (d).

The total is calculated from the algebraic sum and divided by (n).
The remainder is rounded off.

Error code

Error code	Content
4084 H	The data input by (n) in the application instruction exceeds the specifiable range. $\mathrm{N} \leq 0$
4085 H	When the device specified in the read application instructions (s) and (n) exceeds the corresponding device range
4086 H	When the device specified in the write application instruction (d) exceeds the corresponding device range

Example

Add the data of DO, D1, and D2 and save the value obtained after dividing by 3 in D10. The calculated average value is 6 .

DMEAN/Mean value of 16-bit data
DMEAN(P)
Store the total number of bits at 1 in the BIN 32-bit data of the device specified in (s) to the device specified in (d).
-[DMEAN (s) (d) (n)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The device start number storing the data for average calculation	-	Signed BIN 32 bit	ANY32
(d)	The device start number storing the average value	-	Signed BIN 32 bit	ANY32
(n)	Number of data or the device number storing the number of data	1 to 2147483647	Signed BIN 32 bit	ANY32

Device used

Instruction	Parameter	Devices																			Offset modification	Pulse extension
		XYMSSM		T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS	T		DR		LC			HE	[D]	XXP
	Parameter 1								\bullet	\bullet	\bullet	\bullet	-	-	- -	\bullet	\bullet	\bullet			\bullet	\bullet
DMEAN	Parameter 2									-	-	\bullet	-	-	- \bullet	\bullet	\bullet	\bullet			\bullet	-
	Parameter 3								-	\bullet	\bullet	\bullet	\bullet		- \cdot	-	\bullet	\bullet	-	\bullet	-	\bullet

Features

Calculate the mean value of BIN 32-bit data at (n) points starting from the device specified in (s) and store it in the device specified in (d).

The total is calculated from the algebraic sum and divided by (n).
The remainder is rounded off.

(Note:

When the device number exceeds, (n) is handled as a smaller value within the allowable range.
Error code

Error code	Content
4084 H	The data input in (n) exceeds the specifiable range. $\mathrm{N} \leq 0$
4085 H	When the device specified in the read application instructions (s) and (n) exceeds the corresponding device range
4086 H	When the device specified in the write application instruction (d) exceeds the corresponding device range

Example

$\dot{H}^{M 0}$		[DMOV	K5	D0
		[DMOV	K6	D2]
		[DMOV	K7	D4
	[DMEAN	D0	D10	K3]

Add the data of D0, D2, and D4, and save the value obtained after dividing by 3 in D10 and D11, and the calculated average value is 6 .

SQR/16-bit square root

SQR(P)
Calculate the square root of the BIN 16-bit data specified in (s), and store the calculation result in (d).
-[SQR (s) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The data device storing for square root calculation	0 to +32767	Signed BIN 16 bit	ANY16
(d)	The device storing the calculated square root	-	Signed BIN 16 bit	ANY16

Device used

Instruction	Parameter	Devices																					Offset modification	Pulse extension
		XYM S SM T(bit)				C(bit)	LC(bit)	HSC(bit)	D.b KnX KnY			KnM	Kns T C D			DRSD		LCHSCK\|HE					[D]	XXP
R	Parameter 1														\bullet	\bullet	\bullet				-		\bullet	\bullet
	Parameter 2															-	\bullet						\bullet	-

Features

Calculate the square root of the BIN 16-bit data specified in (s), and store the calculation result in (d).

$$
\sqrt{(\mathrm{s})} \rightarrow \quad(\mathrm{d})
$$

* Note:

The decimal point of operation result will be rounded off and become an integer. If rounding occurs, SM152 (borrow flag) turns ON.
When the operation result is really 0, SM153 (zero flag) turns ON.

Error code

Error code	Content
4084 H	When a negative value is specified in (s).
4085 H	When the device specified in the read application instructions (s) exceeds the corresponding device range
4086 H	When the device specified in the write application instruction (d) exceeds the corresponding device range

Example

The square root of D0 is stored in D2, and the value of D0 is 100 , so the value of $D 2$ is 10 .

DSQR/32-bit square root

DSQR(P)
Calculate the square root of the BIN 32-bit data specified in (s), and store the calculation result in (d).
-[DSQR (s) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The data device storing for square root calculation	0 to 2147483647	Signed BIN 32 bit	ANY32
(d)	The device storing the calculated square root	-	Signed BIN 32 bit	ANY32

Device used

Instruction	Parameter	Devices																	Offset modification	Pulse extension
		XY M S SM T(bit)			C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS	CD		R SD	LC	ISC	K HE	[D]	XXP
	Parameter 1														- -	-	-	- -	\bullet	\bullet
	Parameter 2														$\bullet \cdot$	-	\bullet		\bullet	\bullet

Features

Calculate the square root of the BIN 32-bit data specified in (s) and store the calculation result in (d).

$$
\sqrt{(\mathrm{s})+1, \quad(\mathrm{~s})} \rightarrow(\mathrm{d})+1, \quad(\mathrm{~d})
$$

Note:

The decimal point of operation result will be rounded off and become an integer. If rounding occurs, SM152 (borrow flag) turns ON.
When the operation result is really $0, \mathrm{SM} 153$ (zero flag) turns on.
Error code

Error code	Content
4084 H	When a negative value is specified in (s).
4085 H	When the device specified in the read application instructions (s) exceeds the corresponding device range
4086 H	When the device specified in the write application instruction (d) exceeds the corresponding device range

Example

The square root of $D 0$ is stored in $D 2$, and the value of $D 0$ is 110 , so the value in the $D 2$ soft component is 10 (the fractional part is discarded), and the borrow flag SM152 is turned ON.

WSUM/The sum value of 16-bit data

WSUM(P)

After adding all the BIN 16-bit data of point (n) starting from the device specified in (s), it is stored in the device specified in (d).
-[WSUM
(s) (d) (n)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The device start number storing the data for sum value calculation	-	Signed BIN 16 bit	ANY16
(d)	The device start number storing the sum value	-	Signed BIN 32 bit	ANY32
(n)	Number of data	-	Signed BIN 16 bit	ANY16

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		XYM S SM T(bit)			C(bit)	LC(bit)	HSC(bit)	D.b KnX		KnY	KnM KnS			T C	DRSDLCHSCKHE					[D]	XXP
	Parameter 1												\bullet		-	-				\bullet	\bullet
WSUM	Parameter 2									\bullet	\bullet	\bullet	-		-	\bullet				\bullet	\bullet
	Parameter 3								\bullet	\bullet	-	\bullet			-	\bullet			$\bullet \bullet$	\bullet	\bullet

Features

After adding all the BIN 16-bit data of point (n) starting from the device specified in (s), it is stored in the device specified in (d).

Error code

Error code	Content
4084 H	When a negative value is specified in (n).
4085 H	When the device specified in the read application instructions (s) and (n) exceeds the corresponding device range
4086 H	When the device specified in the write application instruction (d) exceeds the corresponding device range

Example

$\mathrm{H}^{\mathrm{M} 0}$		[MOV	K5	D0
		MOV	K6	D1
		[MOV	K7	D2]
	[WSUM	D0	D100	K3

[^1]DWSUM/The sum value of 32-bit data

DWSUM(P)

Add all the 32-bit BIN data of point (n) starting from the device specified in (s) and store it in the device specified in (d).
-[DWSUM
(s) (d) (n)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The device start number storing the data for total value calculation	-	Signed BIN 32 bit	ANY32
(d)	The device start number storing the total value	-	Signed BIN64 bit	ANY64
(n)	Number of data	-	Signed BIN 32 bit	ANY32

Device used

Instruction	Parameter	Devices																				ffset ification	Pulse extension
		XYM S SM T(bit)				C(bit)	LC(bit)	HSC(bit)	D.b KnX		KnY	KnM KnS		T C		D R SD		LCHSCKHE				[D]	XXP
	Parameter 1													\bullet		- -	\bullet	\bullet	\bullet			\bullet	\bullet
DWSUM	Parameter 2										\bullet	-	\bullet	-		-	\bullet	\bullet	\bullet			\bullet	\bullet
	Parameter 3									\bullet	\bullet	-	\bullet	-		-	\bullet	\bullet		$\bullet \cdot$		\bullet	\bullet

Features

Add all the 32-bit BIN data of point (n) starting from the device specified in (s) and store it in the device specified in (d).

* Note:

When the number of bits is specified in (d), the value of n ranges from 1 to 8 , such as K 8 (32 -bit instructions, such as K8M0) without K16 (64-bit instructions).

Error code

Error code	Content
4084 H	When a negative value is specified in (n).
4085 H	When the device specified in the read application instructions (s) and (n) exceeds the corresponding device range
4086 H	When the device specified in the write application instruction (d) exceeds the corresponding device range

Example

		[DMOV	K5	D0]
		[DMOV	K6	D2
		[DMOV	K7	D4
	[DWSUM	D0	D100	K3]

[^2]
SORT/16-bit data sorting

SORT
Sort the data rows in ascending order based on the group data of column (n 3) in the BIN 16 -bit data table (sorting source) of ($\mathrm{n} 1 \times \mathrm{n} 2$) points specified in (s) and store them in the specified in (d) ($\mathrm{N} 1 \times \mathrm{n} 2$) points in the BIN 16-bit data table (after sorting).
-[SORT
(s) (n1) (n2)
(d) (n3)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The start device number storing the data table	-	Signed BIN 16 bit	ANY16
$(\mathrm{n} 1)$	Number of data (rows)	1 to 32	Signed BIN 16 bit	ANY16
$(\mathrm{n} 2)$	Number of group data (columns)	1 to 6	Signed BIN 16 bit	ANY16
(d)	The start device number storing the operation result	-	Signed BIN 16 bit	ANY16
$(\mathrm{n} 3)$	The column number of the group data (column) as the sorting basis	-	Signed BIN 16 bit	ANY16

Device used

Instruction	Parameter	Devices																			Offset modification	Pulse extension
			YMS	SM	T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS	T		D 1	R SD	LC	HSC	K HE	[D]	XXP
SORT	Parameter 1															-	\bullet -				\bullet	
	Parameter 2									\bullet	-	-	-	-		-	$\bullet \bullet$			$\bullet \bullet$	\bullet	
	Parameter 3									\bullet	\bullet	-	\bullet	-		-	\bullet			- -	\bullet	
	Parameter 4													-		-	$\bullet \bullet$				\bullet	
	Parameter 5									-	-	-	\bullet			$\bullet \cdot$	\bullet			$\bullet \bullet$	\bullet	

Features

The BIN 16-bit data table (sorting source) of ($n 1 \times n 2$) points specified in (s), based on the group data of column ($n 3$), sort the data rows in ascending order, and store them in (d). The ($n 1 \times n 2$) point of the BIN 16-bit data table (after sorting).

Take $(\mathrm{n} 1)=\mathrm{K} 3,(\mathrm{n} 2)=\mathrm{K} 4$ in the sort source as an example, the data table structure is as follows. In the case of a sorted data table, (s) should be replaced with (d).

Data alignment starts when instruction input is ON, data alignment ends after (n1) scan, instruction execution end flag SM229 is set to ON. According to the source data sorted as follows, an example of the operation is shown below. In addition, by putting serial numbers such as management numbers in the first column in advance, the original row number can be judged based on the content, which is very convenient.

			ber of groups) (n 2$)=\mathrm{K} 4)$	
		Column NO. 1	Column NO. 2	Column NO. 3	Column NO. 4
		Management number	Height	Weight	Age
When the number of data (n 1$)=5$	Line NO. 1	(s)	(s) +5	(s) +10	(s) +15
		1	150	45	20
	Line NO. 2	(s) +1	(s) +6	(s) +11	(s) +16
		2	180	50	40
	Line NO. 3	(s) +2	(s) +7	(s) +12	(s) +17

PLC LX5V Series Programming Manual (V2.2)

	3	160	70	30
Line NO. 4	(s) +3	(s) +8	(s) +13	(s) +18
	4	100	20	8
Line NO. 5	(s) +4	(s) +9	(s) +14	(s) +19
	5	150	50	45

Press (n 3)=K2 (column number 2) to execute the sorting result.

Press (n 3)=K3 (column number 3) to execute the sorting result.

* Note:

only ascending order is supported by SORT instruction.
Do not change the operand and data content during operation.
When executing again, the instruction input should be turned OFF once.
SORT instruction can drive at most one in the program.
When the same device is specified in (s) and (d), the source data is rewritten to the sorted data order. Please pay special attention not to change the content of (s) before the end of execution.

Error code

Error	
code	
	When the value specified in (n1) exceeds the range of 1 to 32
	When the value specified in (n2) exceeds the range of 1 to 6
4085 H	When the value specified in (n3) exceeds the range of 1 to n 2
4086 H	When the device specified in read application instruction (s), (n 1), (n 2) and (n 3) exceeds the corresponding device range
4087 H	When the (d) parameter in the application instruction uses an unsupported device
4089 H	The number of application instructions exceeds the limit.

Example

Refer to the function description example.

SORT2/16-bit data sorting

SORT2(P)

Sort the data rows in ascending or descending order based on the group data in column (n3), and store them in (d), based on the BIN 16 -bit data table (sorting source) of ($n 1 \times n 2$) points specified in (s) In the BIN 16 -bit data table (after sorting) of the specified ($n 1 \times n 2$) points.
-[SORT2
(s) (n1) (n2)
(d) (n3)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The start device number storing the data table	-	Signed BIN 16 bit	ANY16
(n1)	Number of data (rows)	1 to 32	Signed BIN 16 bit	ANY16
(n2)	Number of group data (columns)	1 to 6	Signed BIN 16 bit	ANY16
(d)	The start device number storing the operation result	-	Signed BIN 16 bit	ANY16
(n3)	The column number of the group data (column) as the sorting basis	-	Signed BIN 16 bit	ANY16

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		X Y M S SM T(bit)			C(bit)	LC(bit)	HSC(bit)	D.b	KnX		KnM	KnS			D R		LC	HSC	KHE	[D]	XXP
	Parameter 1														-	\bullet				\bullet	
	Parameter 2								\bullet	\bullet	\bullet	\bullet	\bullet		-	\bullet			$\bullet \bullet$	\bullet	
SORT2	Parameter 3								-	\bullet	\bullet	\bullet	-		- -	\bullet			$\bullet \bullet$	\bullet	
	Parameter 4												-		- -	\bullet				\bullet	
	Parameter 5								-	-	-	-	-		-	\bullet			- -	\bullet	

Features

Sort the data rows in ascending or descending order based on the group data in column (n 3) and store them in (d) (N1×n2) point specified in the BIN 16-bit data table (after sorting).

Take $(\mathrm{n} 1)=\mathrm{K} 3,(\mathrm{n} 2)=\mathrm{K} 4$ in the sort source as an example, the data table structure is as follows. In the case of a sorted data table, (s) should be replaced with (d).

		When the number of groups (n2) (n2) = K4			
		Column NO. 1	Column NO. 2	Column NO. 3	Column NO. 4
		Management number	Height	Weight	Age
When the number of data (n 1$)=3$	Line NO. 1	(s)	(s) +1	(s) +2	(s) +3
	Line NO. 2	(s) +4	(s) +5	(s) +6	(s) +7
	Line NO. 3	(s) +8	(s) +9	(s) +10	(s) +100

Sequence is set by the ON/OFF status of SM165

	Sort order setting instruction
SM165=ON	Descending
SM165=OFF	Ascending

Data alignment starts when instruction input is ON, data alignment ends after (n 1) scan, instruction execution end flag SM229 is set to ON.

According to the source data sorted as follows, an example of the operation is shown below. In addition, by putting serial numbers such as management numbers in the first column in advance, the original row number can be judged based on the content, which is very convenient.

Press (n3)=K2 (column number 2) to execute the sorting result (SM165=OFF in the case of ascending order)

		When	number of gro	(n 2$)(\mathrm{n} 2)=\mathrm{K} 4$	
		Column NO. 1	Column NO. 2	Column NO. 3	Column NO. 4
		Management number	Height	Weight	Age
When the number of data (n 1$)=5$	Line NO. 1	(d)	(d) +1	(d) +2	(d) +3
		4	100	20	8
	Line NO. 2	(d) +4	(d) +5	(d) +6	(d) +7
		1	150	45	20
	Line NO. 3	(d) +8	(d) +9	(d) +10	(d) +100
		5	150	50	45
	Line NO. 4	(d) +12	(d) +13	(d) +14	(d) +15
		3	160	70	30
	Line NO. 5	(d) +16	(d) +17	(d) +18	(d) +19
		2	180	50	40

Press $(\mathrm{n} 3)=\mathrm{K} 3$ (column number 3) to execute the sorting result (SM165=ON in the case of ascending order)

		When	number of grour	(n 2$)(\mathrm{n} 2)=\mathrm{K} 4$	
		Column NO. 1	Column NO. 2	Column NO. 3	Column NO. 4
		Management number	Height	Weight	Age
When the number of data $(\mathrm{n} 1)=5$	Line NO. 1	(d)	(d) +1	(d) +2	(d) +3
		3	160	70	30
	Line NO. 2	(d) +4	(d) +5	(d) +6	(d) +7
		2	180	50	40
	Line NO. 3	(d) +8	(d) +9	(d) +10	(d) +100
		5	150	50	45
	Line NO. 4	(d) +12	(d) +13	(d) +14	(d) +15
		1	150	45	20
	Line NO. 5	(d) +16	(d) +17	(d) +18	(d) +19
		4	100	20	8

* Note:

Do not change the operand and data content during operation.
When executing again, the instruction input should be turned OFF once.
The SORT2 instruction can only be written in the program to drive 2 at most.
When the same device is specified in (s) and (d), the source data is rewritten to the sorted data order. Please pay special attention not to change the content of (s) before the end of execution.

Do not overlap the source data and the sorted data.

Error code

Error code	Content
4084 H	When the value specified in (n1) exceeds the range of 1 to 32
	When the value specified in (n2) exceeds the range of 1 to 6
	When the value specified in (n3) exceeds the range of 1 to n 2
4085 H	When the device specified in read application instruction (s), (d), (n1), (n2)and (n3) exceeds the corresponding device range
4086 H	When the device specified in the write application instruction (d) exceeds the corresponding device range
4089 H	The number of application instructions exceeded the limit.

Example

Refer to the function description example.
$\left.\left.\begin{array}{|cccccccc|}\hline \text { M101 } & & & & \text { LSET } & \text { SM165 }\end{array}\right]\right\}$

DSORT2/32-bit data sorting

DSORT2(P)

Sort the data rows in ascending or descending order based on the group data of column (n 3) in the BIN 32-bit data table (sorting source) of $(n 1 \times n 2)$ points specified in (s) and store them in (d) The specified ($n 1 \times n 2$) point BIN 32-bit data table (after sorting).
-[DSORT2
(s)
(n1) (n2)
(d) (n3)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The start device number storing the data table	-	Signed BIN 32 bit	ANY32
$(\mathrm{n} 1)$	Number of data (rows)	1 to 32	Signed BIN 32 bit	ANY32
$(\mathrm{n} 2)$	Number of group data (columns)	1 to 6	Signed BIN 32 bit	ANY32
(d)	The start device number storing the operation result	-	Signed BIN 32 bit	ANY32
$(\mathrm{n} 3)$	The column number of the group data (column) as the sorting basis	-	Signed BIN 32 bit	ANY32

Device used

Instruction	Parameter	Devices																						Offset modification	Pulse extension
		XYMS		SM T(bit)		C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS			D		SD L	LC	HSC		HE		[D]	XXP
	Parameter 1														-	-	-	-	\bullet	\bullet				\bullet	
	Parameter 2									\bullet	\bullet	-	-	-	-	-	-	\bullet	\bullet	\bullet	-	\bullet		-	
DSORT2	Parameter 3									\bullet	\bullet	\bullet	\bullet	-	-	- \cdot	-	-	\bullet	\bullet	-	-		\bullet	
	Parameter 4														-	-	-	\bullet	\bullet	\bullet				\bullet	
	Parameter 5									\bullet	\bullet	\bullet	\bullet	\bullet	-	- \cdot	-	\bullet	\bullet	\bullet	\bullet	\bullet		\bullet	

Features

Sort the data rows in ascending or descending order based on the group data in the (n 3) column of the ($\mathrm{n} 1 \times \mathrm{n} 2$) point BIN 32-bit data table (sorting source) specified in (s), and store to (d) (N1×n2) specified in the BIN 32-bit data table (after sorting).

Take $(\mathrm{n} 1)=\mathrm{K} 3,(\mathrm{n} 2)=\mathrm{K} 4$ in the sort source as an example, the data table structure is as follows. In the case of a sorted data table, (s) should be replaced with (d).

		When the number of groups (n2) (n2) = K4			
		Column NO. 1	Column NO. 2	Column NO. 3	Column NO. 4
		Management number	Height	Weight	Age
When the number of data (n 1$)=3$	Line NO. 1	$(\mathrm{s})+1,(\mathrm{~s})$	$(\mathrm{s})+3,(\mathrm{~s})+2$	(s) $+5,(\mathrm{~s})+4$	(s) $+7,(\mathrm{~s})+6$
	Line NO. 2	(s) $+9,(\mathrm{~s})+8$	(s) $+11,(\mathrm{~s})+10$	(s) $+13,(\mathrm{~s})+12$	(s) $+15,(\mathrm{~s})+14$
	Line NO. 3	(s) $+17,(\mathrm{~s})+16$	(s) $+19,(\mathrm{~s})+18$	(s) +21, (s) +20	(s) $+23,(\mathrm{~s})+22$

Sequence is set by the ON/OFF status of SM165

	Sort order setting instructions
SM165=ON	Descending
SM165=OFF	Ascending

Data alignment starts when instruction input is ON, data alignment ends after (n1) scan, instruction execution end flag SM229 is set to ON.

According to the source data sorted as follows, an example of the operation is shown below. In addition, by putting serial numbers such as management numbers in the first column in advance, the original row number can be judged based on the content, which is very convenient.

PLC LX5V Series Programming Manual (V2.2)

		When the number of groups (n 2$)(\mathrm{n} 2)=\mathrm{K} 4$			
		Column NO. 1	Column NO. 2	Column NO. 3	Column NO. 4
		Management number	height	body weight	age
When the number of data (n 1$)=5$	Line NO. 1	(s) +1 , (s)	(s) $+3,(\mathrm{~s})+2$	(s) $+5,(\mathrm{~s})+4$	(s) $+7,(\mathrm{~s})+6$
		1	150	45	20
	Line NO. 2	(s) $+9,(\mathrm{~s})+8$	(s) $+11,(\mathrm{~s})+10$	(s) +13, (s) +12	(s) +15, (s) +14
		2	180	50	40
	Line NO. 3	(s) $+17,(\mathrm{~s})+16$	(s) $+19,(\mathrm{~s})+18$	(s) $+21,(\mathrm{~s})+20$	(s) $+23,(\mathrm{~s})+22$
		3	160	70	30
	Line NO. 4	(s) $+25,(\mathrm{~s})+24$	(s) $+27,(\mathrm{~s})+26$	(s) $+29,(\mathrm{~s})+28$	(s) $+31,(\mathrm{~s})+30$
		4	100	20	8
	Line NO. 5	(s) +33, (s) +32	(s) +35 , (s) +34	(s) +37, (s) +36	(s) +39 , (s) +38
		5	150	50	45

Press (n 3) $=\mathrm{K} 2$ (column NO.2) to execute the sorting result (SM165=OFF in the case of ascending order)

		When the number of groups (n2) (n2) = K4			
		Column NO. 1	Column NO. 2	Column NO. 3	Column NO. 4
		Management number	height	body weight	age
When the number of data (n 1$)=5$	Line NO. 1	$(\mathrm{s})+1,(\mathrm{~s})$	$(s)+3,(s)+2$	$(\mathrm{s})+5,(\mathrm{~s})+4$	(s) $+7,(\mathrm{~s})+6$
		4	100	20	8
	Line NO. 2	(s) $+9,(\mathrm{~s})+8$	$(\mathrm{s})+11,(\mathrm{~s})+10$	(s) +13, (s) +12	(s) +15, (s) +14
		1	150	45	20
	Line NO. 3	(s) $+17,(\mathrm{~s})+16$	(s) +19, (s) +18	(s) +21, (s) +20	(s) +23, (s) +22
		5	150	50	45
	Line NO. 4	(s) $+25,(\mathrm{~s})+24$	(s) +27, (s) +26	(s) +29, (s) +28	(s) +31, (s) +30
		3	160	70	30
	Line NO. 5	(s) $+33,(\mathrm{~s})+32$	(s) +35, (s) +34	(s) +37, (s) +36	(s) +39, (s) +38
		2	180	50	40

Press (n3)=K3 (column NO.3) to execute the sorting result (SM165=ON in the case of ascending order)

		When the number of groups (n2) (n2) = K4			
		Column NO. 1	Column NO. 2	Column NO. 3	Column NO. 4
		Management number	height	body weight	age
When the number of data $(\mathrm{n} 1)=5$	Line NO. 1	$(\mathrm{s})+1,(\mathrm{~s})$	$(\mathrm{s})+3,(\mathrm{~s})+2$	$(\mathrm{s})+5,(\mathrm{~s})+4$	(s) $+7,(\mathrm{~s})+6$
		3	160	70	30
	Line NO. 2	(s) $+9,(\mathrm{~s})+8$	(s)+11, (s)+10	(s) $+13,(\mathrm{~s})+12$	(s) +15, (s) +14
		2	180	50	40
	Line NO. 3	(s) $+17,(\mathrm{~s})+16$	(s) $+19,(\mathrm{~s})+18$	(s) $+21,(\mathrm{~s})+20$	(s) +23, (s) +22
		5	150	50	45
	Line NO. 4	(s) $+25,(\mathrm{~s})+24$	(s) +27, (s) +26	(s) $+29,(\mathrm{~s})+28$	(s) +31, (s) +30
		1	150	45	20
	Line NO. 5	(s) $+33,(\mathrm{~s})+32$	(s) $+35,(\mathrm{~s})+34$	(s) $+37,(\mathrm{~s})+36$	(s) +39, (s) +38
		4	100	20	8

* Note:

Do not change the operand and data content during operation.
When executing again, the instruction input should be turned OFF once.
The SORT2 instruction can only be written twice in the program.
When the same device is specified in (s) and (d), the source data is rewritten to the sorted data order. Please pay special attention not to change the content of (s) before the end of execution.

Do not overlap the source data and the sorted data.

Error code

Error code	Content
4084 H	When the value specified in (n1) exceeds the range of 1 to 32
	When the value specified in (n2) exceeds the range of 1 to 6
	When the value specified in (n3) exceeds the range of 1 to n 2
4085 H	When the device specified in read application instruction (s), (d), (n 1$)$), (n 2) and (n 3) exceeds the corresponding device range
4086 H	When the device specified in the write application instruction (d) exceeds the corresponding device range
4089 H	The number of application instructions exceeded the limit.

Example

Refer to the function description example.
$\left.\begin{array}{|cccccccc|}\hline \text { M101 } & & & \text { [ST } & \text { SM165 } & \end{array}\right]$

SWAP/16-bit data high and low byte swap

SWAP(P)
Swap the high and low 8-bit value of the device specified in (d).
-[SWAP (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(d)	Word device with high and low byte swap	-	Signed BIN 16 bit	ANY16

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		XYMS	SM	T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnI	K	nS	T	D	R SD	LC	HSC	KHE	[D]	XXP
SWAP	Parameter 1									\bullet	-		-		-	$\bullet \bullet$				\bullet	\bullet

Features

Convert the high and low 8-bit value of the device specified in (d).

Error code

Error code	Content
4085 H	When the device specified in the read application instruction (d) exceeds the corresponding device range
4086 H	When the device specified in the write application instruction (d) exceeds the corresponding device range

Example

$\begin{gathered} \text { M0 } \\ -\uparrow \uparrow \end{gathered}$	[MOV	H2A8F	D0
		[SWAPP	D0

When the rising edge of MO is triggered, swap the low 8 bits and high 8 bits of D0 to get H8F2A.

DSWAP/32-bit data high and low byte swap

DSWAP(P)

The devices specified in (d) and (d)+1 will be converted to the high and low 8-bit values respectively.
-[DSWAP (d)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(d)	Word device with high and low byte swap	-	Signed BIN 32 bit	ANY32

Device used

Instruction	Parameter	Devices															Offset modification	Pulse extension
		X Y M S SM T(bit)		C(bit)	LC(bit)	HSC(bit)	D.b	KnX KnY	nM	Kns	C	D		LC		HE	[D]	XXP
DSWAP	Parameter 1							-	-		-	-	- -	-	-		\bullet	\bullet

Features

The devices specified in (d) and (d)+1 will be converted to the upper and lower 8-bit values respectively.

$\mathrm{b} 15 \ldots \mathrm{~b} 12 \mathrm{~b} 11 \ldots \mathrm{~b} 8 \mathrm{~b} 7 \ldots \mathrm{~b} 4 \mathrm{~b} 3 \ldots \mathrm{~b} 0$
(d)

| $0!1!0!1$ | $0!1!0!1$ | $1: 0!1!0$ | $1!01110$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

* Note:

If continuous execution instructions are used, conversion will be performed every scan cycle.
Error code

Error code	Content
4085 H	When the device specified in the read application instruction (d) exceeds the corresponding device range
4086 H	When the device specified in the write application instruction (d) exceeds the corresponding device range

Example

When the rising edge of $M 0$ is triggered, the low 8 bits and the high 8 bits of $D 0$ and $D 1$ are swapped, and $D 0=H 8 F 2 A, D 1=H 3412$ are obtained.

Devices	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F		A
DO	0	1	0	1	0	1	0	0	1	1	1	1	0	0	0	1	BF2A	
D1	0	1	0	0	1	0	0	0	0	0	1	0	1	1	0	0	3412	
D2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0000	

BTOW/Byte unit data merge

BTOW(P)

Combine the low 8 bits of (n) bytes of BIN 16-bit data stored after the device number specified in (s) into word units and store it after the device number specified in (d).
-[BTOW
(s) (d) (n)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The start device that stores the data merging in byte units	-	Signed BIN 16 bit	ANY16
(d)	The start device that stores the result of merging in byte units	-	Signed BIN 16 bit	ANY16
(n)	Number of byte data merged	$0-32767$	Signed BIN 16 bit	ANY16

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		XYMS	SM T(bit)		C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY KnM		KnS ${ }^{\text {T }}$		TCD	R SD LC HSC K HE					[D]	XXP
	Parameter 1														-	$\bullet \bullet$				\bullet	\bullet
BTOW	Parameter 2														-	\bullet				\bullet	\bullet
	Parameter 3								\bullet	\bullet	-	\bullet			\bullet	- -			$\bullet \bullet$	\bullet	\bullet

Features

After the device number specified in (s), the lower 8 bits of the 16-bit BIN data stored in (n) bytes are combined into word units and stored in the device number specified in (d) or later.

The upper 8 bits of (n) word data stored after the device number specified in (s) will be ignored. In addition, when (n) is an odd number, 0 is stored in the upper 8 bits of the device storing the (n) th byte of data.

\square : the \square th byte data;
(1): Ignore the high byte
*1: Carry below the decimal point.

Example

When $(n)=5$, the data up to the lower 8 bits of $(s)+(s)+4$ is stored in $(d)+(d)+2$.

(1): When (n) $=5$
(2): Change to OOH

By setting the number of bytes in (n), the range of byte data specified in (s) and the range of the device storing the combined data specified in (d) will be automatically determined.

When the number of bytes specified in (n) is 0 , no processing is performed.
The upper 8 bits of the byte data storage device specified in (s) will be ignored, and the lower 8 bits will be the target.

Example
When the low 8 bits of D11 to D16 is stored in D12 to D14.

Even if the device range storing the data before merging overlaps the device rangestoring merged data, it will be handled as normal.
Device range storing the data before merging \quad Device range for storing merged data

$(S)+0$ to $(s)+(n)-1$	(D) to $(d)+(n / 2-1)$

Error code

Error code	Content
4084 H	The value specified in (n) exceed range of 0 to 32767
4085 H	When the device specified in the write application instruction (s),(d) and (n) exceeds the corresponding device range

Example

$\mathrm{H}^{\text {M0 }}$	[MOV	H78	D20
	[MOV	H3112	D21]
	[MOV	H3649	D22]
	[MOV	H4455	D23]
	[mov	H2867	D24]
	[mov	H4931	D25]
	D20	D10	K6

When M0 is ON, the data of D20 to D25 is separated according to byte units, and then stored in D10 to D12.

WTOB/Byte unit data separation

WTOB(P)

After separating the BIN 16-bit data stored after the device number specified in (s) into (n) bytes, store it after the device number specified in (d).
-[WTOB
(s) (d) (n)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The start device that stores the data separation in byte unit	-	Signed BIN 16 bit	ANY16
(d)	The start device that stores the result of separation in byte unit	-	Signed BIN 16 bit	ANY16
(n)	Number of byte data separated	$0-32767$	Signed BIN 16 bit	ANY16

Device used

Instruction	Parameter	Devices																			Offset modification	Pulse extension
		X Y M S SM T(bit)			C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS				R SD		HSC	K	HE	[D]	XXP
	Parameter 1												\bullet			\bullet -					\bullet	\bullet
WTOB	Parameter 2												-	-		$\bullet \bullet$					\bullet	\bullet
	Parameter 3														$\bullet \cdot$	\bullet			\bullet	\bullet	\bullet	\bullet

Features

After separating the BIN 16-bit data stored after the device number specified in (s) into (n) bytes, store it after the device number specified in (d).

(1) High byte;
(2) Low byte;
(3) High byte data;
(4) Low byte data;
(5) *1: Carry below the decimal point.

Example

In the case of $(\mathrm{n})=5$, store the data up to the lower 8 bits of (s) to $(\mathrm{s})+2$ in (d) to (d)+4:

(1) $(N)=5$ is ignored.
(2) $(\mathrm{N})=5$.

By setting the number of bytes in (n), the range of BIN 16-bit data specified in (s) and the range of the device storing the byte data specified in (d) will be automatically determined.

When the number of bytes specified in (n) is 0 , no processing is performed.

00 H is automatically stored in the upper 8 bits of the byte data storage device specified in (d).

Example

When D12 to D14 is stored in the low 8 bits of D11 to D16

Even if the device range storing the data before merging overlaps the device rangestoring merged data, it will be handled as normal.

Device range storing the data before merging	Device range storing separated data
(s) to (s) $+(\mathrm{n} / 2-1)$	(d) +0 to (d) $+(\mathrm{n})-1$

Error code

Error code	Content
4084 H	The value specified by (n) exceed the range of 0 to 32767
4085 H	When the device specified in read application instruction (s) and (n) exceeds the corresponding device range
4086 H	When the device specified in the write application instruction (d) exceeds the corresponding device range

Example

$\mathrm{H}_{\mathrm{M}}^{\mathrm{MO}}$		[MOV	HFD58	D0
		[MOV	H57E2	D1
		[MOV	H3444	D2]
	[WTOB	D0	D20	K6 \}

When M0 is ON, the data of D10 to D12 are separated according to byte units, and then stored in D20 to D25.

DIS／4－bit separation of 16－bit data
DIS（P）
Store the data of the low (n) bits（1 bit of 4 bits）of the BIN 16－bit data specified in (s) into the low 4－bit of the（ n ）point starting from the device specified in（d）．
－［DIS
（s）（d）（n）］

Content，range and data type

Parameter	Content	Range	Data type	Data type（label）
（s）	The start device storing the data before separation	-	Signed BIN 16 bit	ANY16
（d）	The start device storing separated data	-	Signed BIN 16 bit	ANY16
（n）	Separation number（0 means no processing）	$0-4$	Signed BIN 16 bit	ANY16

Device used

Instruction	Parameter	Devices																			Offset modification	Pulse extension
		X Y M S SM T（bit）			C（bit）	LC（bit）	HSC（bit）	D．b	KnX KnY KnM Kns					TTC	CDR		RSD	LC HSC		K HE	［D］	XXP
	Parameter 1								\bullet	\bullet		\bullet	\bullet			\bullet	\bullet			$\bullet \bullet$	\bullet	\bullet
DIS	Parameter 2														－\cdot	\bullet	\bullet				\bullet	\bullet
	Parameter 3								\bullet	\bullet		\bullet	\bullet		－－	\bullet	\bullet			$\bullet \bullet$	\bullet	\bullet

Features

Store the low－（ n ）bit（1 bits of 4 bits）of the BIN 16－bit data specified in（ s ）in the low 4－bit of the（ n ）point starting from the device specified in（d）．

The hig－12 bit of the point (n) starting from the device specified in (s) will become 0 ．
When $(n)=0$ ，it will become no processing，and the content of point（ n ）starting from the device of（d）will not change．
Error code

Error code	Content
4084 H	The data in（n）exceed the range of 0 to 4
4085 H	When the device specified in read application instruction（s）and（n）exceeds the corresponding device range
4086 H	When the device specified in the write application instruction（d）exceeds the corresponding device range

Example

| M0 | | | |
| :---: | :--- | :--- | :--- | :--- |

When M0 is ON，D0 is separated every 4 bits and stored in D10 to D12．The result is D10＝HF，D11＝H8，D12＝HA．

UNI/4-bit combination of 16-bit data

UNI(P)
Combine the low 4 bits of the BIN 16 -bit data of point (n) starting from the device specified in (s) into the BIN 16 -bit device specified in (d).
-[UNI (s) (d) (n)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The start device storing the data before merging	-	Signed BIN 16 bit	ANY16
(d)	The start device storing the merged data	-	Signed BIN 16 bit	ANY16
(n)	Number of merger	$0-4$	Signed BIN 16 bit	ANY16

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		X Y M S SM T(bit)			C(bit)	LC(bit)	HSC(bit)	D.b	KnX		Y KnM	KnS					LC	HSC	KHE	[D]	XXP
	Parameter 1														- -	- -				\bullet	\bullet
UNI	Parameter 2									\bullet	-	\bullet	-		$\bullet \cdot$	- \bullet				\bullet	\bullet
	Parameter 3								\bullet	\bullet	\bullet	\bullet	-		-	- -			$\bullet \bullet$	\bullet	\bullet

Features

Combine the low 4 bits of the BIN 16 -bit data at point (n) starting from the device specified in (s) into the BIN 16 -bit device specified in (d).

The high (4-n) bits of the device specified in (d) will become 0 .
When $(\mathrm{n})=0$, it will become no processing, and the content of the device in (d) will not change.

Error code

Code	Content
4084 H	The data in (n) exceed the range of 0 to 4
4085 H	When the device specified in read application instruction (s) and (n) exceeds the corresponding device range
4086 H	When the device specified in the write application instruction (d) exceeds the corresponding device range

Example

|rirr|

[^3]
ZRST/Data batch reset

ZRST(P)

Perform a batch reset between the devices specified in (d1) and (d2) of the same type. It is used when interrupting operation, performing initial operation, or resetting control data.
-[ZRST (d1) (d2)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(d1)	The start bit or word device number of batch reset	-	Bit/Signed BIN 16 bit	ANY_ELEMENTARY
(d2)	The final bit or word device number of batch reset	-	Bit/Signed BIN 16 bit	ANY_ELEMENTARY

Device used

Instruction	Parameter	Devices																			Offset modification	Pulse extension
		X Y	M S	SM T(bit)		C(bit)	LC(bit)	HSC(bit)	D.b	KnX KnY KnM KnS				TCD		R SD		LCHSCKHE			[D]	XXP
	Parameter 1	-	- -	\bullet						\bullet	\bullet	-	\bullet			\bullet	\bullet	-	\bullet		\bullet	\bullet
ZRST	Parameter 2	\bullet	- -	\bullet						\bullet	\bullet	\bullet	-			-	-	\bullet	\bullet		\bullet	\bullet

Features
Perform batch reset between the devices specified in (d1) and (d2) of the same type.

$(\mathrm{d} 2)$	\ldots.	$(\mathrm{d} 1)+9$	$(\mathrm{~d} 1)+8$	$(\mathrm{~d} 1)+7$	$(\mathrm{~d} 1)+6$	$(\mathrm{~d} 1)+5$	$(\mathrm{~d} 1)+4$	$(\mathrm{~d} 1)+3$	$(\mathrm{~d} 1)+2$	$(\mathrm{~d} 1)+1$	$(\mathrm{~d} 1)$

When (d1) and (d2) are bit devices, write OFF (reset) in the entire device range of (d1) to (d2).

When (d1) and (d2) are word devices, write KO in the entire device range of (d1) to (d2).

As a separate reset instruction for the device, the RST instruction can be used for bit devices or word devices.

The batch write instruction of constant (for example: KO) has FMOV (P) instruction, which can write 0 to word devices (including bit device specification).
$\left.\begin{array}{|cccc|}\hline \text { M1 } & \text { [FM0V K0 } & \text { D0 } & \text { K100 }\end{array}\right\}$ Write K0 in D0 to D99.

(8) Note:

Please specify the same type number for (d1) and (d2), and make (d1) number $<(\mathrm{d} 2$) number. When (d 1) number \geq (d 2) number, only 1 point will be reset for the device specified in (d1).

ZRST(P) instruction is a 16-bit instruction, which can specify (LC) and (HSC) devices for (d1) and (d2).

Error code

Error code	Content
4084 H	When the device type specified in (d1) is different from the device type specified in (d2).
4085 H	When the device specified in the read application instruction (d1) and (d2) exceeds the corresponding device range
4086 H	When the device specified in the write application instruction (d1) exceeds the corresponding device range

Example

$\mathrm{H}^{\text {M0 }} \longmapsto \quad$ [ZRST \quad D0 \quad D100 $]$

The function of this Circuit program instruction is to set the value of the D0 to D100 device to 0 .

ZSET/Data batch set

ZSET(P)

Perform a batch set between the devices specified in (d1) and (d2) of the same type.

Content, range and data type

Parameter	Content	Range	Data type	Data type(label)
(d1)	The start bit device number of batch set	-	Bit	ANY_BOOL
$(\mathrm{d} 2)$	The final bit device number of batch set	-	Bit	ANY_BOOL

Device used

Instruction	Parameter	Devices																			Offset modification [D]
		X Y	Y/M	M	SM	T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	Kns	T/C	D	RSD	LC	HSC	K H	
ZSET	Parameter 1		- -	-	\bullet					-											\bullet
	Parameter 2		$\bullet \bullet$	- \bullet	\bullet					\bullet											\bullet

Features

-Perform a batch set between the devices specified in (d1) and (d2) of the same type.
-Write ON (set) in the entire device range of (d1) to (d2)

-As a separate set instruction for the device, the SET instruction can be used for bit devices.

* Note:

Please specify the same type number for (d1) and (d2), and make (d1) number < (d2) number. When (d1) number \geq (d2) number, only 1 point will be set for the device specified in (d1).

Error code

Error code	Content
4084 H	When the device type specified in (d1) is different from the device type specified in (d2).
4085 H	When the device specified in the read application instruction (d1) and (d2) exceeds the corresponding device range
4086 H	When the device specified in the write application instruction (d1) exceeds the corresponding device range
4087 H	When the device type specified in (d1) and (d2) are not bit device.

Example

The function of this LAD instruction is to set the value of the M 1 to M 4 device to ON .

CRC/cyclic redundancy check instruction

CRC(P)
Calculate the CRC (Cyclic Redundancy Check) value, which is one of the error checking methods used in communications. In addition to CRC, error checking methods include parity and

Sum check (checksum), calculate horizontal parity check value and sum check value can use $\operatorname{CCD}(\mathrm{P})$ instruction. And this instruction is used in the generator polynomial that generates the CRC value (CRC-16)
"X 16 +X 15 +X 2 +1".
$-[\operatorname{CRC}(P) \quad(\mathrm{s}) \quad(d) \quad(n)]$
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The device start number storing the data of CRC value generated objects	-	Signed BIN16	ANY16
(d)	The destination device number of the generated CRC value	-	Signed BIN16	ANY16
(n)	The number of 8-bit data (bytes) for calculating the CRC value or the number of the device storing the number of data	1 to 256	Unsigned BIN16	ANY16_U

Device used

Instruction	Parameter	Devices																				Offset modification	Pulse extension
		XYMSSM			T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b Kn		KnY	KnM KnS 7			T CD		R SD LCHSCKHE					[D]	XXP
	Parameter 1									\bullet	\bullet	\bullet	-		-		-	\bullet				\bullet	\bullet
CRC	Parameter 2										\bullet	\bullet	-		-		-	-				\bullet	\bullet
	Parameter 3									\bullet	\bullet	\bullet	\bullet	-	\bullet			\bullet			$\bullet \bullet$		\bullet

Features

Start with the device specified in (s), generate the CRC value of 8 -bit data (byte unit) at (n) point, and store it in (d).
The mode used by this instruction in calculation includes 16 -bit conversion mode and 8 -bit conversion mode. For the operation of each mode, please refer to the following content.
(1) 16-bit conversion mode (when SM161=OFF)

Calculate the upper 8 bits (byte) and lower 8 bits (byte) of the (s) device. The result is stored in 16 bits of 1 point of the device specified in (d). In the case of the following program, perform the conversion as shown below.

			Example (s)=D100, (d)=D0, (n)=6		
			Devices	Content of object data	
				8-bit	16-bit
CRC value generation target data storage destination	(s)	Low byte	D100 low	01H	0301H
		High byte	D100 high	03H	
	(s)+1	Low byte	D101 low	03H	0203H
		High byte	D101 high	02H	
	(s) +2	Low byte	D102 low	OOH	1400 H
		High byte	D102 high	14H	
	...				
	(s)+(n)/2-1	Low byte			
		High byte			

CRC value storage target	(d)	Low byte	DO low	E4H	41E4H
		High byte	DO high	41 H	

(2) 8-bit conversion mode (when SM8161=ON)

In 8-bit conversion mode, only the lower 8 bits (lower byte) of the (s) device are operated on. As a result, 2 points are used starting from the device specified in (d), the lower 8 bits (bytes) are stored in (d), and the upper 8 bits (bytes) are stored in (d) +1 .
In the case of the following program, perform the conversion as shown below.

			Example) (s)=D100, (d)=D0, (n)=6	
			Devices	Content of object data
CRC value generation target data storage destination	(s)	Low byte	D100 low	01H
	(s) +1	Low byte	D101 low	03H
	(s) +2	Low byte	D102 low	03H
	(s) +3	Low byte	D103 low	02H
	(s) +4	Low byte	D104 low	OOH
	(s) +5	Low byte	D105 low	14H
	...			
	$(\mathrm{s})+(\mathrm{n})-1$	Low byte		
CRC value storage target	(d)	Low byte	D0	E4H
	(d) +1	Low byte	D1	41H

In the $C R C(P)$ instruction, the generator polynomial of the $C R C$ value ($C R C-16$) uses " $\mathrm{X} 16+X 15+X 2+1$ ", but there are also many standardized generator polynomials for the CRC value. If the generator polynomial is different, it will become a completely different CRC value, which should be noted. The main CRC value generator polynomials are shown below.

Name	Generator polynomial
CRC-12	$X^{12}+X^{11}+X^{3}+X^{2}+X+1$
CRC-16	$X^{16}+X^{15}+X^{2}+1$
CRC-32	$X^{32}+X^{26}+X^{23}+X^{22}+X^{16}+X^{12}+X^{11}+X^{10}+X^{8}+X^{7}+X^{5}+X^{4}+X^{2}+X+1$
CRC-CCITT	$X^{16}+X^{12}+X^{5}+1$

* Note:

When (s1) use KnX, KnY, KnM, KnS, n must be specified as 4.

Error code

Error code	Content
4084 H	The range of (n) exceeds 1 to 256
4085 H	The data address of (s) to be converted exceeds the device range
4086 H	The (d) write address exceeds the device range
4087 H	Unsupported device type is used by (s) and (d)

Example
(1) 16-bit conversion mode

(2) 8-bit conversion mode

7.6 Matrix input instructions

MTR/Matrix input

MTR

The instruction to read the input signal (switch) of 8 points multiply by n columns in the time division method of 8 input and (n) output (transistor).
-[MTR
(s) (d1)
(d2) (n)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The start device (X) number $\mathrm{X} 000, \mathrm{X010}, \mathrm{X} 020$ of the row signal input of the matrix is up to the final input X number. 8 consecutively occupied.	The lowest bit number of X can only be 0	Bit	ANY_BOOL
(d1)	The starting device (Y) number of the column signal output of the matrix is $\mathrm{Y} 000, \mathrm{Y} 010, \mathrm{Y} 020 \ldots$ to the final output Y number. 8 consecutively occupied.	The lowest bit number of Y can only be 0	Bit	ANY_BOOL
(d2)	The start device ($\mathrm{Y}, \mathrm{M}, \mathrm{S}$) number of the ON output destination address is Y000, Y010, Y020..., M000, M010, M020..., S000, S010, S020... until the final Y, M, S number. Y occupies $8^{*}(n)$ continuously, and the others occupy 10*(n) continuously.	-	Bit	ANY_BOOL
(n)	Set the number of columns in the matrix input.	2 to 8	Unsigned BIN 16 bit	ANY16_U

Device used

MTR	Parameter 1																					
	Parameter 2	\bullet																				
	Parameter 3	-	-	\bullet																		
	Parameter 4																		-			

Features

This instruction generally uses the normally ON contact SM100.
$\left.\begin{array}{|cclllll|}\text { SM100 } & \text { MTR } & \text { X30 } & \text { Y30 } & \text { M10 } & \text { K8 }\end{array}\right]$

According to the example in the figure:
M10 will turn ON when Y 30 and X 30 are connected, M 14 will be ON when Y 30 and X 34 are connected, M 26 will be ON when Y 31 and X36 are connected
(D2) is recommended to use a minimum of 0 , mainly when using an address such as $M 4$, the first start is $M 4$, and then it will continue to occupy M11, which is inconvenient to calculate and view, so it is recommended to use a software with a minimum of 0 element.

Special device used

Devices	Content
SM229	SM229 will turn ON after one cycle of execution is completed

* Note:

The MTR instruction can only run one instruction at the same time.

Error code

Error code	Content
4085 H	The read address of (s) and (n) exceeds the device range
	(s) use the numbered device whose low bit is not 0
4086 HA	The write address of (d1) and (d2) exceeds the device range
	(d2) use the numbered device whose low bit is not 0
4084 H	(n) is not in the range of 2 to 8
4089 H	Multiple MTR instructions are executed at the same time

7.7 Convenient instructions

ABSD/BIN 16-bit data absolute method

ABSD

Create multiple output modes corresponding to the current counter (BIN 16-bit value).
-[ABSD
(s1) (s2)
(d) (n$)]$

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	The start device number storing the data table (rising edge point and falling edge point)	-	Signed BIN 16 bit	ANY16
(s2)	The counter number used for monitoring of the current value compared to the data table	-	Signed BIN 16 bit	ANY16
(d)	The number of points of the output start device	-	Bit	ANY16_BOOL
(n)	Number of table rows and output bit device points	1 to 64	Signed BIN 16 bit	ANY16

Device used

Instruction	Parameter	Devices																			Offset modification	Pulse extension
		X Y M		S SM	T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	$\mathrm{Kn} \times$	KnY KnM		KnS T		T C D	R SD		LCHSCKHE			[D]	XXP
	Parameter 1									-	-	\bullet	-	\bullet	- \bullet	\bullet	\bullet				\bullet	
	Parameter 2														\bullet						\bullet	
	Parameter 3	-	\bullet	$\bullet \bullet$					\bullet												\bullet	
	Parameter 4									-	\bullet	-	-	\bullet	- \bullet	-	\bullet			$\bullet \bullet$	\bullet	

Features

Take the turntable to rotate 1 revolution (0 to 360 degrees) to control the output ON/OFF as an example. (1 degree, 1 pulse angle signal)

Compare the data table of row (n) starting from (s 1) (row (n) multiply by 2 points) with the current value of the counter (s 2), from (d) to continuous (n) in the course of one revolution The output is ON/OFF control up to the point.

Use the transfer instruction to write the following data into (s1) to (s1)+2(n)-1 in advance. For example, the rising edge point data stores 16-bit data to even-numbered devices in advance, and the falling edge point data stores 16-bit data to odd-numbered devices in advance.

Rising edge point		Falling edge point		Object output
-	Data value (example)	-	Data value (example)	
(S1)	40	(S1)+1	140	(D)
(S1)+2	100	(S1) +3	200	(D) +1
(S1) +4	160	(S1) +5	60	(D) +2
$(\mathrm{S} 1)+6$	240	$(\mathrm{S} 1)+7$	280	(D) +3
...		\ldots		...
$(\mathrm{S} 1)+2(\mathrm{n})-2$		$(\mathrm{S} 1)+2(\mathrm{n})-1$		(D) $+\mathrm{n}-1$

If the instruction input is set to $\mathrm{ON},(\mathrm{d})$ is the start, (n) point is the output mode as shown below. Each rising edge point and falling edge point can be individually changed by rewriting the data from (s1) to (s1)+2(n)-1.

* Note:

When specifying the number of bit devices in (s1), the device number should be a multiple of $16(0,16,32,64 \ldots)$, and only K4 should be specified for the number of bits.

The number of target output points is determined by the value of $(n) .(1 \leq(n) \leq 64)$
Even if the instruction input is turned off, the output does not change.

Error code

Error code	Content
4084 H	When the value specified in (n) exceeds the range of 1 to 64
4085 H	When the device specified in the read application instruction (s1), (s2)and (n) exceeds the corresponding device range
4086 H	When the device specified in the write application instruction (d) exceeds the corresponding device range

Example

Refer to the example in the function description.

DABSD/BIN 32-bit data absolute method
DABSD
Create multiple output modes corresponding to the current counter (BIN 32-bit value).
-[DABSD
(s 1) (s 2)
(d) (n)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	The start device number storing the data table (rising edge point and falling edge point)	-	Signed BIN 32 bit	ANY32
(s2)	The counter number used for monitoring of the current value compared to the data table	-	Signed BIN 32 bit	ANY32
(d)	The number of points of the output start device	-	Bit	ANY16_BOOL
(n)	Number of table rows and output bit device points	1 to 64	Signed BIN 32 bit	ANY32

Device used

Instruction	Parameter	Devices																					Offset modification	Pulse extension
		XY\|		SS	SM T(bit)		C(bit)	LC(bit)	HSC(bit)	D.b	KnX KnY KnM				KnS T		CDR		R SD LCHSCKHE				[D]	XXP
	Parameter 1										\bullet	\bullet	-	-		\bullet		\bullet -	-	-			\bullet	
BSD	Parameter 2																\bullet			-	-		\bullet	
DABSD	Parameter 3	\bullet	-	\bullet	-					\bullet													\bullet	
	Parameter 4										\bullet			\bullet	\bullet	\bullet	$\bullet \bullet$	-	-	\bullet		$\bullet \bullet$	\bullet	

Features
Take the turntable to rotate 1 revolution (0 to 360 degrees) to control the output ON/OFF as an example. (1 degree, 1 pulse angle signal)

Compare the data table of row (n) starting from ($s 1$) (row (n) $\times 4$ points) with the current value of the counter ($s 2$), from (d) to continuous (n) in the course of one revolution The output is ON/OFF control up to the point.

Use the transfer instruction to write the following data into $(\mathrm{s} 1),(\mathrm{s} 1)+1$ to $(\mathrm{s} 1)+4(\mathrm{n})-2,(\mathrm{~s} 1)+4(\mathrm{n})-1$ in advance. For example, the rising edge point data stores 32-bit data to even-numbered devices in advance, and the falling edge point data stores 32-bit data to odd-numbered devices in advance.

Rising edge point		Falling edge point		Object output
-	Data value (example)	-	Data value (example)	
(S1)+1, (S1)	40	(S1)+3, (S1)+2	140	(D)
$(\mathrm{S} 1)+5,(\mathrm{~S} 1)+4$	100	$(\mathrm{S} 1)+7,(\mathrm{~S} 1)+6$	200	(D) +1
$(\mathrm{S} 1)+9,(\mathrm{~S} 1)+8$	160	$(\mathrm{S} 1)+11,(\mathrm{~S} 1)+10$	60	(D) +2
$(\mathrm{S} 1)+13,(\mathrm{~S} 1)+12$	240	$(\mathrm{S} 1)+15,(\mathrm{~S} 1)+14$	280	(D) +3
...	
$\begin{aligned} & (S 1)+4(n)-3 \\ & (S 1)+4(n)-4 \end{aligned}$	-	$\begin{aligned} & (S 1)+4(n)-1 \\ & (S 1)+4(n)-2 \end{aligned}$	-	(D) $+\mathrm{n}-1$

If the instruction input is set to $\mathrm{ON},(\mathrm{d})$ is the start, (n) point is the output mode as shown below. Each rising edge point and falling edge point can be individually changed by rewriting the data from (s1) to (s1) $+2(\mathrm{n})-1$.

(Note:

The high-speed counter can be specified in the DABSD instruction. When a high-speed counter is specified, the current value of the counter will have a response delay due to the scan cycle in the output mode.

When specifying the number of bit devices in (s1), the device number should be a multiple of $16(0,16,32,64 \ldots)$, and only K 8 should be specified for the number of bits.

The number of target output points is determined by the value of (n). ($1 \leq(n) \leq 64)$
Even if the instruction input is turned off, the output does not change.

Error code

Error code	Content
4084 H	When the value specified in (n) exceeds the range of 1 to 64
4085 H	When the device specified in the read application instruction (s1), (s2)and (n) exceeds the corresponding device range
4086 H	When the device specified in the write application instruction (d) exceeds the corresponding device range

Example

Refer to the example in the function description.

SER/16-bit data search

SER(P)

Search the same data and the maximum and minimum values from the data table.
-[SER
(s1) (s2)
(d) (n)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	Search for the start device number of the same data, maximum value, and minimum value	-	Signed BIN 16 bit	ANY16
(s2)	Search for the value of the same data or its storage destination device number	-	Signed BIN 16 bit	ANY16
(d)	Search for the same data, maximum value, minimum value and store the start device number	-	Signed BIN 16 bit	ANY16
(n)	Search the number of same data, maximum and minimum	1 to 256	Signed BIN 16 bit	ANY16

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		XYMS	SM T(bit)		C(bit)	LC(bit)	HSC(bit)	D.b	KnX KnY KnM			Kns ${ }^{\text {T }}$		CDR	R SD LC HSC K HE					[D]	XXP
	Parameter 1								\bullet	-	\bullet	-	\bullet	- \bullet		-				\bullet	\bullet
SER	Parameter 2								-	\bullet	\bullet	\bullet	-	-		-			- -	\bullet	\bullet
	Parameter 3									\bullet	\bullet	\bullet	-	- -		\bullet				\bullet	\bullet
	Parameter 4								\bullet	\bullet	\bullet	\bullet	\bullet	- -	\bullet	\bullet			$\bullet \bullet$	\bullet	\bullet

Features

For (s 1) as the first (n) data, search for the same data as the BIN 16-bit data of (s 2), and store the result in (d) to (d) +4 .
In the case of the same data, the number of the same data, the first/final position, and the maximum and minimum positions of the same data are stored in the device with the first 5 points (d).

If there is no identical data, the number of identical data, the first/final position, and the maximum and minimum positions of the same data are stored in the device with the first 5 points (d). However, in (d) is the first 3 points of the device (the number of the same data, the first $\backslash \backslash$ final position), 0 is stored.

- The structure and data examples of the search result table are as follows. ($\mathrm{N}=10$)

The searched device (s1)	The value of the searched data (s1)	Comparison data (S2) value	Data location	search results		
				Maximum value (d) +4	Consistent (d)	Minimum value (d+3)
(s1)	K100	K100	0		O(First time)	
(s1)+1	K111		1			
(s1)+2	K100		2		-	
(s1) +3	K98		3			
(s1) +4	K123		4			
(s1) +5	K66		5			-
(s1) +6	K100		6		\bigcirc (final)	
(s1) +7	K95		7			
(s1) +8	210		8	-		
(s1) +9	K88		9			

- The search result table based on the above example is shown below.

Device number	Content	Search result items
(d)	3	Number of identical data
(d) +1	0	The position of the same data (first time)
(d) +2	6	The position of the same data (last time)
(d) +3	5	The final position of the minimum
(d) +4	8	The final position of maximum

*Note:

Perform algebraic size comparison. (-10<2)
When there are multiple minimum and maximum values in the data, the positions behind each are stored.
If driven by this instruction , the search result (d) occupies 5 points of (d), (d) +1 , (d$)+2$, (d$)+3$, (d$)+4$. Be careful not to overlap with the device used for machine control.

Error code

Error code	Content
4084 H	When the value specified in (n) exceeds the range of 0 to 256
4085 H	When the device specified in read application instruction (s1), (s2), (d) and (n) exceeds the corresponding device range
4086 H	When the device specified in the write application instruction (d) exceeds the corresponding device range

Example

Refer to the example in the function description.

DSER/32-bit data search

DSER(P)
Search the same data and the maximum and minimum values from the data table.
$-[D S E R \quad(s 1) \quad(s 2) \quad$ (d) $\quad(n)]$

Content, range and data type

Parameter	Content												Range			Data t	ype		Data ty	e (label)
(s1)	Search for the start device number of the same data, maximum value, and minimum value												-		Signe	ed BIN	N 32			Y32
(s2)	Search for the value of the same data or its storage destination device number												-		Signe	ed BIN	N 32			Y32
(d)	Search for the same data, maximum value, minimum value and store the start device number												-		Signe	ed BIN	N 32			Y32
(n)	Search the number of same data, maximum and minimum												to 128		Signe	ed BIN	132			Y32
Device used																				
Instruction	Parameter	Devices																\qquad		Pulse extension
		XYM SSM T(bit)			C(bit)	LC(bit) HSC(bit)		D.b KnX KnY KnM				KnS T C DR SD LC HSCKHE								XXP
DSER	Parameter 1								-	-	\bullet		- \bullet	- -	- -	-			-	\bullet
	Parameter 2								\bullet	\bullet	\bullet		-	$\bullet \cdot$	- -	\bullet	$\bullet \cdot$		\bullet	\bullet
	Parameter 3									\bullet	\bullet		- \bullet	$\bullet \cdot$	- -	\bullet			\bullet	\bullet
	Parameter 4	4							-	\bullet	\bullet		- -	-	$\bullet \cdot$	\bullet	- \cdot		\bullet	\bullet

Features

For (s 1) +1 , (s 1) as the initial (n) data, search for the same data as the BIN 32 -bit data of (s 2) +1 , (s 2), and store the result in (d) +1 , (D) to $(d)+9,(d)+8$.

In the case of the same data, the number of the same data, the first/final position and the maximum and minimum values are stored in a 5-point BIN 32-bit data device starting with (d)+1 and (d) position.

In the case of no identical data, the number of identical data, the first/final position and the maximum and minimum values are stored in the device with (d)+1 and (d) as the starting BIN 32-bit data with 5 points position. However, 0 is stored in the 32-bit 3-point device (the number of the same data, the first $\backslash \backslash$ last position) with (d) +1 and (d) as the starting BIN.

- The structure and data examples of the search result table are as follows. ($\mathrm{N}=10$)

The searched device (S1)	The value of the searched data (S1)	Comparison data (S2) value	Data location	search results		
				Maximum value (d) +4	Consistent (d)	Minimum value $(\mathrm{d}+3$)
(S1)+1, (S1)	K100	K100	0		- (First time)	
(S1)+3, (S1)+2	K111		1			
$(\mathrm{S} 1)+5,(\mathrm{~S} 1)+4$	K100		2		\bigcirc	
$(\mathrm{S} 1)+7,(\mathrm{~S} 1)+6$	K98		3			
$(\mathrm{S} 1)+9,(\mathrm{~S} 1)+8$	K123		4			
(S1)+11, (S1)+10	K66		5			\bigcirc
(S1) +13, (S1) +12	K100		6		O (final)	
(S1) +15, (S1) +14	K95		7			
(S1) +17, (S1) +16	210		8	\bigcirc		
(S1) +19, (S1) +18	K88		9			

- The search result table based on the above example is shown below.

Device number	Content	Search result items
$(d)+1,(d)$	3	Number of identical data
(d) $+3,(d)+2$	0	The position of the same data (first time)
(d) $+5,(d)+4$	6	The position of the same data (last time)
(d) $+7,(d)+6$	5	The final position of the minimum
(d) $+9,(d)+8$	8	The final position of maximum

N Note:

Perform algebraic size comparison. (-10<2)
When there are multiple minimum and maximum values in the data, the positions behind each are stored.
If driven by this instruction, the search result (d) occupies [(d)+1, (d)], [(d)+3, (d)+2,], [(d)+5, (d)+4], [(d)+7, (d)+6], [(d)+9, (d)+8] 5 points. Be careful not to overlap with the device used for machine control.

Error code

Error code	Content
4084 H	When the value specified in (n) exceeds the range of 0 to 128
4085 H	When the device specified in read application instruction (s1), (s2), (d) and (n) exceeds the corresponding device range
4086 H	When the device specified in the write application instruction (d) exceeds the corresponding device range

Example

Refer to the example in the function description.

ALT/Bit device output inversion

ALT(P)

If the input turns ON , the bit device is inverted (ON \rightarrow OFF).
-[ALT \quad (d)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(d)	Alternate output device number	-	Bit	ANY16_BOOL

Device used

Features

Alternating output (level 1)
Each time the instruction input changes from OFF \rightarrow ON, the bit device specified in (d) is turned OFF \rightarrow ON inverted.

Divided frequency output (through alternate output (2 levels))
Combine multiple ALTP instructions to perform frequency division output.

Note:

If you program with the ALT instruction, the action will be reversed every operation cycle. To reverse the action by the instruction ON \rightarrow OFF, use the ALT instruction (pulse execution type) or set the instruction contact to LDP (pulse execution type).

Error code

Error code	Content
4085 H	When the device specified in the read application instruction (d) exceeds the corresponding device range
4086 H	When the device specified in the write application instruction (d) exceeds the corresponding device range

Example
(1) Start/stop via an input.

1) After pressing the button X 4 , start the action of output Y 1 and stop the action of YO .
2) After pressing the button X 4 again, stop the action of output Y 1 and start the action of YO .

(2) Flashing action
3) When input $X 6$ is $O N$, the contact of timer $T 2$ will act instantaneously every 5 seconds.
4) The contact of T 2 makes the output Y 7 alternately $\mathrm{ON} / \mathrm{OFF}$ every time it is ON .

INCD/BIN 16-bit data relative method

INCD
Use a pair of counters to create multiple output modes.
-[INCD
(s1) (s2)
(d) (n)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
$(\mathrm{s} 1)$	The start device number storing the set value	-	Signed BIN 16 bit	ANY16
$(\mathrm{s} 2)$	The start number of counter for current value monitoring	-	Signed BIN 16 bit	ANY16
(d)	The start bit device number of output	-	Bit	ANY16_BOOL
(n)	Number of output bit device points	1 to 64	Signed BIN 16 bit	ANY16

Device used

Instruction	Parameter	Devices																			Offset modification	Pulse extension
		X Y	M	S	SM	T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS	TC	CDR	R SD	LC	HSC	KHE	[D]	XXP
INCD	Parameter 1										-	-	\bullet	\bullet	$\bullet \bullet$	- - -	- -				\bullet	
	Parameter 2															\bullet					\bullet	
	Parameter 3	-	-	-	\bullet					\bullet											\bullet	
	Parameter 4										\bullet	\bullet	\bullet	-	-	- - -	- -			$\bullet \bullet$	\bullet	

Features

Compare the data table of row (n) starting from $(s 1)$ (row $(n) \times 2$ points occupied) with the current value of the counter (s2), reset if they match, and control the output on/off in turn.

Example

The operation is explained by the following circuit example. (S2) Take up 2 points. C 0 and C 1 are equivalent to this in the following timing chart.

- It is assumed that the following data is written using the transfer instruction in advance.

Storage device		Output	
-	Data value (example)	-	Example
(S1)	D300 $=20$	(D)	M0
(S1) +1	D301=30	(D) +1	M1
(S1) +2	D302 $=10$	(D) +2	M2
(S1) +3	D303=40	(D) +3	M3
\ldots	\ldots	\ldots	\ldots
(S1)+(n)-1	-	(D) $+\mathrm{n}-1$	-

Timing diagram

If the instruction contact turns on, the M0 output turns on.
The output (M 0) is reset when the current value of C0 reaches the comparison value D 300 , the count value of the process counter $C 1$ is +1 , and the current value of the counter CO is also reset.

The next output M1 turns ON.
Compare the current value of C0 with the comparison value D301. When the comparison value is reached, the output M1 is reset, the count value of the process counter C 1 is +1 , and the current value of the counter C 0 is also reset.

Compare the same to the point (K4) specified in (n). (1<(n)<64)
After the final process specified in (n) is completed, the execution end flag SM229 turns ON for 1 operation cycle. SM229 is the instruction execution end flag used in multiple instructions, so it should be used as a contact after the instruction to execute the end flag dedicated to the instruction.

Return to the beginning and repeat output.

* Note:

In (s1), when specifying the device number by specifying the digits of the bit device, the device number should be a multiple of 16 (0 , $16,32,64 \ldots$...

Up to 4 INCD instructions can be driven simultaneously in the program.
Error code

Error code	Content
4084 H	When the value specified in (n) exceeds the range of 1 to 64
4085 H	When the device specified in read application instruction (s1), (s2), (d) and (n) exceeds the corresponding device range
4086 H	When the device specified in the write application instruction (s2) and (d) exceeds the corresponding device range
4089 H	The number of instruction drives exceeds the limit.

Example

Refer to the example in the function description.

RAMP/Control ramp signal

RAM(P)

Obtain data that changes between the start (initial value) and end (target value) two values specified (n) times.
-[RAMP
(s1) (s2)
(d) (n)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	The device number that stores the initial value of the set ramp	-	Signed BIN 16 bit	ANY16
(s2)	The device number that stores the set ramp target value	-	Signed BIN 16 bit	ANY16
(d)	The device number that stores the current value data of ramp	-	Signed BIN 16 bit	ANY16
(n)	Ramp transition time (scan period)	$1-32767$	Signed BIN 16 bit	ANY16

Device used

Instruction	Parameter	Devices																			Offset modification	Pulse extension
		XYM S SM			T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	Kns	T	C D	DR	R SD	LC	HSC	KHE	[D]	XXP
RAMP	Parameter 1									\bullet	\bullet	\bullet	\bullet	-		- -	- -				\bullet	
	Parameter 2									\bullet	\bullet	\bullet	\bullet	-		- -	- \bullet				\bullet	
	Parameter 3													-		-	- -				\bullet	
	Parameter 4									-	-	\bullet	-	\bullet		$\bullet \cdot$	\bullet -			$\bullet \bullet$	\bullet	

Features
Specify the start value ($s 1$) and the value to end ($s 2$) in advance. If the instruction input is turned ON, the value divided by the number of times specified in (n) will be added to (s 1) in sequence in each operation cycle The value of is stored in (d). This instruction and analog output can be combined to output soft start/stop instructions.

$(\mathrm{d})+1$ stores the number of scans $(0 \rightarrow \mathrm{n}$ times $)$.
The time from the start to the end value requires operation cycle $\times(n)$ scan.
If the input instruction is turned OFF during operation, it will be in the execution interrupt state ((d): current value data retention. (d) +1 scan times clear), if it is turned ON again, (d) will be cleared (S1) Restart the action.

After the transition is completed, the instruction execution completed flag SM229 will act, and the value of (d) will return to the value of (s 1).

In the case of obtaining the calculation result at a certain time interval (constant scan mode), write the specified scan time to SD120 (a value slightly longer than the actual scan time), and turn on SM120. For example, when the value is specified as 20 ms and $\mathrm{n}=100$ times, the value of (d) changes from (s 1) to (s 2) in 2 seconds.

The value of the constant scan mode can also be set by the parameter setting of the engineering tool (the constant scan execution interval setting of the CPU parameter).

According to the ON/OFF action of the mode flag SM226, the content of (d) is changed as shown below.

Note:

When the power failure retention device (retention area) is specified in (d), the instruction input remains ON. When the CPU module is set to RUN (start), clear (d) in advance.

Error code

Error code	Content
4084 H	When the value specified in (n) exceeds the specified range of 1 to 32767
4085 H	When the device specified in read application instruction (s1), (s2), (d) and (n) exceeds the corresponding device range
4086 H	When the device specified in the write application instruction (d) exceeds the corresponding device range

Example

As in the above procedure, turn SM120 ON, and the program will run with a constant scan cycle (the value in SD120 is 10 ms). When $\mathrm{MO}=\mathrm{ON}$, it changes from 10 to 100 within $100 \times 10 \mathrm{~ms}$.

ROTC/Rotary table proximity control

ROTC

In order to take out the items on the rotating table, take out the window according to the requirements, and make the rotating table rotate nearby.
-[ROTC
(s) (n 1)
(n2) (d)]

Content, range and data type

Parameter		Content	Range	Data type	Data type (label)
(s)	The specified register of the calling condition (pre-set according to the transfer instruction)	(s)+0: Register for counting	-	Signed BIN 16 bit	ANY16
		(s)+1: Call the window number setting			
		(s)+2: Call the item number setting			
(n1)	Number of divisions		2 to 32767	Signed BIN 16 bit	ANY16
(n 2)	Singular in low speed zone		0 to 32767	Signed BIN 16 bit	ANY16
(d)	The specified bit of the calling condition (constitutes an internal contact circuit driven in advance from the input signal (X))	(d): phase A signal	-	Signed BIN 16 bit	ANY16
		(d) +1 : phase B signal			
		(d)+2: zero point detection signal			
		(d)+3: high-speed forward rotation			
		(d)+4: low speed forward rotation			
		(d)+5: stop			
		(d)+6: low speed reverse rotation			
		(d)+7: high-speed reverse rotation			

Device used

Instruction	Parameter	Devices																			Offset modification	Pulse extension
		X Y	M S	S SM	T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS	T	C D	R	SD	LC	HSC	K HE	[D]	XXP
ROTC	Parameter 1															-	\bullet				-	
	Parameter 2									-	\bullet	\bullet	\bullet	-	- -	-	\bullet			- -	-	
	Parameter 3									\bullet	\bullet	\bullet	-	-	- -	-	\bullet			- -	\bullet	
	Parameter 4	\bullet	- -	$\bullet \bullet$					\bullet												\bullet	

Features

In order to take out the items on the rotating table divided into n1 $(=10)$ as shown in the figure below, take out the inserted window as required, and rotate the rotating table nearby under the condition of $n 2$ or (s), (d). If the following operating conditions are specified, (d)+3 to (d)+7 can be used for forward/reverse, high-speed/low-speed/stop output.

Set up the switch X2 that is used to detect the two-phase shape ($\mathrm{XO}, \mathrm{X} 1$) of the forward/reverse rotation of the rotary table and window 0 . Replace XO to X 2 with (d) to (d) +2 internal contacts. The start device number specified in X or (d) can be arbitrary.

(s) is a counter, which counts how many items come to window 0 .
$(s)+1$ set the number of the window to be called.
$(s)+2$ sets the number of the recalled item.
Specify the number of divisions (n 1) and low-speed operation section (n 2) of the rotary table.

* Note:

If the instruction input is turned $O N$ to drive the instruction, the result of $(d)+3$ to $(d)+7$ will be automatically obtained. If the instruction input is turned off, (d)+3 to (d)+7 will turn off.

As an example, when the rotation detection signal $((\mathrm{d})$ to $(\mathrm{d})+2)$ is set to 10 actions within 1 division interval, the division number setting, calling window number setting, and article number setting should all be 10 Times the value. In this way, the setting value of the low-speed section can be set to the middle value of the number of divisions, etc.

When the instruction input is $O N$ and the 0 point detection signal (M 2) is turned $O N$, the content of the counting register (s) is cleared to 0 . It is necessary to perform this clear operation in advance before starting operation.

ROTC instructions can drive up to 4.

Error code

Error code	Content
4084H	When the value specified in (n 1) exceeds the range of 2 to 32767
	When the value specified in (n 2) exceeds the range of 0 to 32767
	When the values specified in (n 1$)$ and (n 2$)$ meet the condition of $(\mathrm{n} 1)<(\mathrm{n} 2)$
	When one of (s), (s)+1 and (s)+2 is negative.
	When one of (s), (s)+1 and (s)+2 is (n1) or more.
4085H	When the device specified in read application instruction (s1), (n1), (n2) and (d) exceeds the corresponding device range
4086H	When the device specified in the write application instruction (s2) and (d) exceeds the corresponding device range
4089H	The number of instruction drives exceeds the limit.

Example

D200
K10 K2 M0 \}

Variable	Features	
D200	Used as a counting register	Instructions
D201	Call window number setting	
D202	Call work piece number setting	

MO	Phase A signal	The user program executes before each scan of this statement:
M1	Phase B signal	
M2	Zero point detection signal	
M3	High speed forward rotate	When XO is ON , the result of M 3 to M 7 could be automatically obtained. When X0 is OFF, M3 to M7 are all OFF.
M4	Low speed forward rotate	
M5	Stop	
M6	Low speed reverse rotate	
M7	High spped reverse rotate	

STMR/Special function timer

STMR

Use the 4 points starting from the device specified in (d) to perform 4 types of timer output.
-[STMR
(s1) (s2)
(d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	Timer number used: T0 to T511 (100ms timer)	-	Device Name	ANY16
(s2)	Timer setting value	$1-32767$	Signed BIN 16 bit	ANY16
(d)	The start bit number of the output (occupies 4 points)	-	Bit	ANYBIT_ARRAY

Device used

Instruction	Parameter	Devices																				Offset modification	Pulse extension
			Y M		SM	T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS		CD	R	SD	LC	HSC	K HE	[D]	XXP
STMR	Parameter 1														-							\bullet	
	Parameter 2										\bullet	\bullet	\bullet	\bullet	-	- -	\bullet	\bullet			- -	\bullet	
	Parameter 3	\bullet	- \bullet	-	\bullet					\bullet												\bullet	

Features

Use the 4 points starting from the device specified in (d) to perform 4 types of timer output.

(1) STMR instruction instruction
(2) The setting value specified in (S2)

The blink will be in (d)+3 normally closed contact through the following program which turns on/off the STMR instruction (T10 is allocated in (s1), K100 is allocated in (s2), and M0 is allocated in (d)) Output to (d)+1, (d)+2.

The setting value of (S2) can be specified in the range of 1 to 32767 (1 to 3276.7 seconds).

* Note:

The timer number specified by this instruction cannot be reused with other general circuits (OUT instructions, etc.). In the case of repetition, the timer action cannot be executed correctly.

The timer specified in (s1) is regarded as a 100 ms timer, starting from the rising edge of the instruction contact.
Occupy the device specified in 4 points (d) at the beginning. Be careful not to overlap with the device used for machine control.
When the instruction contact is turned off, (d), (d) +1 , (d) +3 will turn off after the set time. (D) +2 and timer ($s 1$) are reset immediately.

Error code

Error code	Content
4084 H	When the value specified in (s2) is less or equal to 0
4085 H	When the device specified in the read application instruction (s2) and (d) exceeds the corresponding device range

Example

Y0: When X10 changes from Off \rightarrow On, $\mathrm{YO}=\mathrm{On}$, when X 10 changes from On \rightarrow Off, Y0=Off after a delay of 10 seconds.

Y1: When X10 changes from On \rightarrow Off, make Y1=On output once for 10 seconds.

Y2: When X10 changes from Off to On, output Y2=On once for 10 Y3: When X10 changes from Off to On, Y3=On after 10 seconds of delay. When X10 changes from On to Off, Y3=Off after 10 seconds

If the component $(\mathrm{d})+3$ is introduced into the instruction stream, the oscillator output can be easily realized (this function can also be realized by the ALT instruction), as shown in the following figure:

TTMR/Demonstration timer

TTMR

Test the time when the TTMR instruction is ON. It is used when adjusting the timer setting time with buttons.
-[TTMR (d) (s)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(d)	Device for storing teaching data	-	Signed BIN 16 bit	ANY16
(s)	Multiplying ratio of teaching data	$0-2$	Signed BIN 16 bit	ANY16

Device used

Instruction	Parameter	Devices																			Offset modification	Pulse extension
		X Y M S		SM	T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS		CDR	RSD		LC	HSC	K HE	modification [D]	extension XXP
	Parameter 1													-	-		\bullet				\bullet	
	Parameter 2									-	-	-	-				-			- -	\bullet	

Features

Measure the pressing time of the execution instruction (button) in seconds, multiply it by the magnification (10 ${ }^{\mathrm{S}}$) specified in (s) and store it in the device specified in (d).

For the time stored in (d), when the hold time is $\tau 0$ (unit: second), the actual value of (d) is as follows according to the magnification specified in (s).

(s)	Magnification	(D)
K0	$\tau 0$	(D) $\times 1$
K1	$10 \tau 0$	(D) $\times 10$
K2	$100 \tau 0$	(D) $\times 100$

(s)	(d)	(d) +1 (unit: 100 milliseconds)
K0 (unit: second)	$1 \times \tau 0$	(d) $+1=(d) \times 10$
K1 (unit: 100 milliseconds)	$10 \times \tau 0$	(d) $+1=(d)$
K2 (unit: 10 milliseconds)	$100 \times \tau 0$	(d) $+1=(d) / 10$

* Note:

If the instruction contact turns from $O N \rightarrow O F F$, the current value of the hold time (d) +1 is cleared, and the teaching time (d) does not change.

Occupy the device specified in the 2 teaching time (d) at the beginning. Be careful not to overlap with the device used for machine control.

Error code

Error code	Content
4084 H	When the value specified in (n) exceeds the range of 0 to 2
4085 H	When the device specified in read application instruction (d) and (s) exceeds the corresponding device range
4086 H	When the device specified in the write application instruction (d) exceeds the corresponding device range

Example

Example 1
$139 \mathrm{H}^{\mathrm{X} 0} \longmapsto \quad$ TTMR \quad D10 \quad K1 $\left.\quad\right]$

When X 0 is closed, $\mathrm{D} 10=\mathrm{D} 11$; when X 0 is opened, the value of D 10 remains unchanged, while D 11 becomes 0 .

Example 2

TRH/Conversion of wet and dry bulb temperature and humidity

TRH

This instruction completes the conversion of dry bulb temperature, wet bulb temperature and corresponding humidity.
-[TRH (d1) (s) (d2) (n)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(d1)	humidity	0 to 100	Single precision floating point	ANYREAL_32
(s)	Dry bulb temperature	-	Single precision floating point	ANYREAL_32
(d2)	Wet bulb temperature	-	Single precision floating point	ANYREAL_32
(n)	mode	0 to 1	Signed BIN 32 bit	ANY32

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		XYM S SM T(bit)			C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY KnM		KnS T		CD		R SD LCHSCKHE				[D]	XXP
	Parameter 1													-		- -				\bullet	
TRH	Parameter 2													-		- \bullet				\bullet	
	Parameter 3													-		\bullet				\bullet	
	Parameter 4								-	\bullet	\bullet	-		\bullet		- -			$\bullet \bullet$	\bullet	

Features

(n) There are two modes to choose from:
Mode 0: Calculate the corresponding humidity by wet bulb temperature and dry bulb temperature.
Mode 1: Calculate the corresponding wet bulb temperature by dry bulb temperature and humidity.
The conversion process formula is as follows:
Assuming that the wet bulb temperature is A , the dry bulb temperature is B , and the corresponding current humidity is C , the three meet the following conditions:

$$
\begin{gather*}
E X P\{(A \times 17.27) /(A+237.36)\} \times 611=x \tag{1}\\
E X P\{(B \times 17.27) /(B+237.36)\} \times 611=y \tag{2}\\
z=x-C \times y / 100 \\
A=B-z / 65.566
\end{gather*}
$$

(Note:

- The wet bulb temperature is not greater than the dry bulb temperature. When the two are the same, the humidity reaches the maximum 100\%.
- The unit of dry and wet bulb temperature is $\left({ }^{\circ} \mathrm{C}\right)$.
- The general value range of dry bulb is between 0 to $100^{\circ} \mathrm{C}$, the command does not judge its range, so pay special attention when using this command.

Error code

Error code	
4084 H	The value specified in (n) is out of the following range. 0 to 1
	The value specified in (d1) is out of the following range. 0 to 100
	A negative value is specified in (s).

PLC LX5V Series Programming Manual (V2.2)

4085 H	A negative value is specified in (d2).
4086 H	The output result of $(\mathrm{d} 1)(\mathrm{s})(\mathrm{d} 2)(\mathrm{n})$ in the read application instruction exceeds the device range
	The output result of $(\mathrm{d} 1)(\mathrm{d} 2)$ in the writing application instruction exceeds the device range

Dry and wet bulb humidity comparison table
Dry/wet ball temperature and humidity conversion table

		25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100
10.0	2. 55	3.06	3.58	4.09	4.58	5.07	5.54	6.02	6. 49	6.95	7.41	7.86	8.29	8.73	9.16	9. 59	10.00
11.0	3.24	3.78	4.32	4.85	5.37	5.88	6.38	6.87	7.36	7.84	8.31	8.77	9.24	9,69	10.13	10.57	11.00
12.0	3.94	4. 50	5.06	5. 62	6. 15	6.68	7.21	7.72	8.23	8.72	9.21	9.70	10.17	10.64	11.10	11.56	12.00
13.0	4. 62	5.21	5.79	6. 38	6.93	7.49	8.04	8.57	9.09	9.61	10.12	10.62	11.12	11.59	12.07	12.54	13.00
14.0	5.30	5.92	6. 53	7.13	7.72	8.29	8.85	9. 42	9.96	10.50	11.02	11.54	12.05	12.55	13.05	13.52	14.00
15.0	5. 98	6. 62	7. 26	7.89	8.50	9.10	9.68	10.26	10.83	11.38	11.93	12.47	12.99	13.50	14.02	14.51	15.00
16.0	6. 64	7.32	7.99	8.64	9.28	9.90	10.51	11.11	11.69	12.27	12.83	13.38	13.93	14.47	14.98	15.50	16.00
17.0	7.31	8.02	8.72	9.39	10.05	10.70	11.34	11.95	12.56	13.16	13.73	14.31	14.87	15.42	15.95	16.48	17.00
18.0	7.98	8.72	9.43	10.13	10.82	11.50	12.15	12.80	13.42	14.03	14.64	15.23	15.80	16.37	16.93	17.46	18.00
19.0	8.64	9.40	10.15	10.89	11.59	12.29	12.97	13.64	14.28	14.92	15.54	16.15	16.75	17.33	17.90	18.45	19.00
20.0	9.30	10.09	10.87	11.63	12.37	13.09	13.79	14.49	15.16	15.81	16.45	17.07	17.69	18.28	18.87	19.44	20.00
21.0	9.95	10.78	11.59	12.38	13.14	13.89	14.61	15.33	16.02	16.69	17.35	17.99	18.62	19.24	19.84	20.43	21.00
22.0	10.60	11.47	12.31	13.12	13.92	14.69	15.44	16.17	16.88	17.58	18.26	18.92	19.56	20.19	20.81	21.41	22.00
23.0	11.25	12.14	13.02	13.86	14.68	15.48	16.26	17.02	17.75	18, 46	19.16	19.84	20.50	21.15	21.77	22.40	23,00
24.0	11.89	12.83	13.73	14.61	15.46	16.28	17.08	17.86	18.61	19.35	20.06	20.76	21.44	22.11	22.75	23.39	24.00
25.0	12.53	13.51	14.44	15.35	16.22	17.08	17.90	18.70	19.48	20.24	20.97	21.68	22.38	23.06	23.73	24.37	25.00
26.0	13.18	14.18	15.15	16.09	16.99	17.87	18.73	19.54	20.34	21.13	21.88	22.62	23.33	24.02	24.70	25, 36	26.00
27.0	13.82	14.86	15.83	16.84	17.76	18.67	19.55	20.39	21.21	22.01	22.79	23.53	24.26	24.98	25.67	26.35	27.00
28.0	14.46	15.53	16.57	17.57	18.54	19.46	20.37	21.24	22.08	22.90	23. 70	24.46	25.20	25.94	26.64	27.33	28.00
29.0	15.10	16.21	17.28	18.31	19.31	20.26	21.20	22.09	22.95	23.79	24.61	25.39	26. 15	26.90	27.61	28.32	29.00
30.0	15.73	16.88	17.99	19.05	20.08	21.07	22.02	22.94	23.82	24.68	25.51	26.31	27.10	27.85	28.58	29.30	30.00
31.0	16.37	17.56	18.70	19.80	20.85	21.87	22.84	23.78	24.69	25,57	26, 42	27.24	28.04	28.82	29.56	30.29	31.00
32.0	17.00	18.22	19.41	20.54	21.62	22.67	23.67	24.63	25.56	26, 47	27.33	28.17	28.99	29.76	30.54	31.27	32.00
33.0	17.63	18.90	20.12	21.28	22. 40	23.47	24.50	25.48	26.43	27.35	28.24	29.10	29.93	30.73	31.51	32.27	33.00
34.0	18.26	19.58	20.83	22.02	23.18	24.28	25,32	26.33	27.31	28.25	29.15	30.03	30.87	31.69	32.49	33.25	34.00

Example

7.8 External IO instructions

ARWS/Arrow switch

ARWS

Use the arrow switches for digit movement and increase or decrease of digit values to input data instructions.
-[ARWS
(s) (d1)
(d2) (n)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The start device number that input	-	BIN16 bit	ANY_BOOL
(d1)	The word device number storing BCD conversion data	-	BIN16 bit	ANY_BOOL
(d2)	The start bit device (Y) that connect the display of the 7-segment digital tube	0 to 9999	BIN16 bit	ANY16_S
(n)	Specify the number of digits displayed by the 7-segment digital tube (Setting range: K K0 to K3)	0 to 3	BIN16 bit	ANY16_S

Device used

Instruction	Parameter	Devices																				Offset modification	Pulse extension
		X Y ${ }^{\text {N }}$		SSI	SM T(bit)		C(bit)	LC(bit)	HSC(bit)	D.b	KnX KnY KnM KnS				T C		D R SD LC			HSCKHE		[D]	XXP
	Parameter 1	- -	-	\bullet	\bullet					\bullet												-	
ARWS	Parameter 2														-		- -	-				\bullet	
ARWS	Parameter 3	\bullet	-																			\bullet	
	Parameter 4																				$\bullet \bullet$		

Features

16-bit operation (ARWS). The 16-bit BIN value from 0 to 9999 is stored in D+1. For the sake of convenience, the following description is displayed in BCD conversion.

When the instruction input is ON, the ARWS instruction will operate as shown below

Display and operation part of the content

(1) The digit specification of n displayed by the 7 -segment digital tube with BCD code

A 4-digit (10^{3} digit) is used as an example in the following operation description, .
(2) The action of the digit selection switch (S+2, S+3)

1) The action when input $S+2$ with reduced digits is ON.Each time the switch is pressed, the number of digits specification is changed according to $10^{3} \rightarrow 10^{2} \rightarrow 10^{1} \rightarrow 10^{0} \rightarrow 10^{3}$.
2) The action when the input $S+3$ with increased digits is $O N$. Each time the switch is pressed, the number of digits specification is changed according to $10^{3} \rightarrow 10^{0} \rightarrow 10^{1} \rightarrow 10^{2} \rightarrow 10^{3}$.
(3) The action of the LED for displaying the selected digits (D2+4 to D2+7). The specified number of digits can be displayed by LED by strobe signal D2+4 to D2+7.
(4) The operation of the data change switch in units of digits $(S, S+1)$. The data is changed for the number of digits specified by the "digit selection switch" above.
3) Increase the action when the input is ON. Each time the switch is pressed, the content of D1 changes according to $0 \rightarrow 1 \rightarrow 2 \rightarrow \ldots \rightarrow 8 \rightarrow 9 \rightarrow 0 \rightarrow 1$.
4) Reduce the action when the input is ON. Each time the switch is pressed, the content of D1 changes according to $0 \rightarrow 9 \rightarrow 8 \rightarrow 7 \ldots 1 \rightarrow 0 \rightarrow 9$.

These contents can be displayed in the 7-segment digital tube display.
As shown above, through a series of operations, you can write the target value into D1 while viewing the 7-segment display.

(8) Note:

(1) The setting of parameter n

Please refer to the parameter setting of SEGL (FNC 74) instruction. The setting range is 0 to 3 .
(2) The output format of the programmable controller, please use a transistor output type programmable controller.
(3) About scan time (operation cycle) and display timing

The ARWS instruction is executed synchronously with the scan time (operation cycle) of the programmable controller.
In order to perform a series of displays, the scan time of the programmable controller needs to exceed 10 ms .
When it is less than 10 ms , please use the constant scan mode and run with a scan time longer than 10 ms .
(4) Number of occupied points of the device

- The input of the device s occupies 4 points.
- The output of the device d 2 occupies 8 points.
(5) Restrictions on the times of the uses of instructions

Only one ARWS instruction can be used in the program.
Error code

Error code	Content
4084 H	The data input in the application instruction (d1) and (d2) exceeds the specified range
4085 H	The output result of the read application instruction (s), (d1) and (d2) exceeds the device range
4086 H	The output result of the write application instruction (d1) and (d2) exceeds the device range

Example

The corresponding hardware wiring is shown in the figure below, and the PLC should be transistor output type:

(1) The digital tube in the figure shows the value of D0. Press X10 to X13 to modify the value. The value of D0 can only be between 0 and 9999.
(2) When X 20 is ON , the cursor position is thousands. Each time the back key (X12) is pressed, the specified position is switched in the order of "thousands \rightarrow hundred \rightarrow ten \rightarrow pieces \rightarrow thousand"; if the forward key (X13) is pressed, the switching sequence is reversed; the cursor position is determined by the strobe pulse signal (YO04 to YOO7) LED indication of connection.
(3) For the cursor position, each time you press the increment key (X11), the content of the position changes by $0 \rightarrow 1 \rightarrow$ $2 \rightarrow \ldots . .8 \rightarrow 9 \rightarrow 0 \rightarrow 1$, and when you press the decrement key (X10), press $0 \rightarrow 9 \rightarrow 8 \rightarrow 7 \rightarrow \ldots . .1 \rightarrow 0 \rightarrow 9$ changes, the modified value takes effect immediately.

DSW/Numeric key input

DSW
This instruction is to read the state of the matrix type setting switch, with 4 BCD setting switches as a group, and store the setting value in the specified unit after reading it. Up to 2 groups of setting switches can be read.
-[DSW (s) (d1) (d2) (n)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The start device (X) number connected to the digital switch (occupies 4 points)	-	Bit	ANY_BOOL
(d1)	The start device (Y) number that strobe signal outputed (occupies 4 points)	-	Bit	ANY_BOOL
(d2)	The device number that stores the value of the digital switch (occupies n points)	0 to 9999	Signed BIN16	ANY16_S
(n)	Number of groups of digital switches (4 digits a group) (n=1 or 2)	1 to 2	Signed BIN16	ANY16_S

Device used

Instruction	Parameter	Devices																				Offset modification	Pulse extension
		X Y M S SM T(bit)				C(bit)	LC(bit)	HSC(bit)	D.b	KnX		KnM	KnS	T		D	R S	SD		HSC	K HE	[D]	XXP
DSW	Parameter 1																					\bullet	
	Parameter 2	\bullet	-																			\bullet	
	Parameter 3													\bullet	-	-	-	\bullet				\bullet	
	Parameter 4																				$\bullet \cdot$ -		

Features

This instruction is to read the state of the matrix type setting switch, with 4 BCD setting switches as a group, and store the setting value in the specified unit after reading it. Up to 2 groups of setting switches can be read.
(1) About the input value (d1)

4 digits from 0 to 9,999 could be read.
Data is saved in BIN (binary number) value.
The first group is saved in (d2), and the second group is saved in (d2)+1.
(2) specification of the number of groups n
(1) When using 4 digits/1 group $\times 1$ [$n=K 1]$ pass the strobe signal

From (s) to [(s)+3], sequentially read the BCD 4-digit digital switches connected in (d1) to [(d1)+3], and save the value as BIN value in (d2).
(2) When using 4 digits/1 group $\times 2$ [$n=K 2]$ pass the strobe signal

From (s) to [(s)+3], sequentially read the BCD 4-digit digital switches connected in (d1) to [(d1)+3], and save the value as BIN value in (d2).

Through the strobe signal (d1) to [(d1)+3], read the BCD 4-digit digital switch connected in (s)+4 to [(s)+7] in turn, and save its value as a BIN value To (d2)+1.

* Note:

(1) When the instruction contact is OFF

Even if it is OFF, the content of (d2) does not change, but from (d1) to [(d1)+3] all become OFF.
(2) Occupied points of the device

1) When using 4 digits 2 groups ($n=K 2$), 2 points starting from (d2) are occupied.
2) When it is 4 digits and 1 group (s), 4 points are occupied, and when it is 4 digits and 2 groups, 8 points are occupied.
(3) When connecting a digital switch with less than 4 digits

For unused digits, the strobe signal <output for specified digits> (d1) does not need to be wired, but even if there are unused digits, its output is already occupied by this instruction, so it cannot be used for other purposes. Be sure to leave unused output empty.
(4) It is recommended to use transistor output type

In order to read the value of the digital switch continuously, be sure to use a transistor output type programmable controller.
(5) About digital switches

Please use a digital switch of BCD output type.
(6) About the read timing of keyboard input

In order to prevent reading omissions caused by the filter delay of keyboard input, please use the "Constant Scan Mode" and
"Timer Interrupt" functions flexibly.
(7) The limit number of instructions

A maximum of two can be used at the same time

Related device

Devices	Name	Content
SM229	End of instruction execution	After a reading cycle is over, SM229 will be set for a scan cycle

Error code

Error code	Content
4084 H	The data input in the application instruction (n) and (d2) exceeds the specified range
4085 H	The output result of the read application instruction (s) and (d2) exceeds the device range
4086 H	The output result of the write application instruction (d1) and (d2) exceeds the device range
4089 H	The number of application instructions exceeds the limit

Example

Program

Wiring diagram

[^4]
HKY/Hexadecimal numeric key input

HKY

Use the keyboard (16 keys) of 0 to F to input, set the numerical value (0 to 9) and operating conditions (A to F function keys) and other instructions for data input.

When the extended function is ON , the hexadecimal number of the 0 to F keys could be used for keyboard input.
-[HKY
(s) (d1)
(d2)
(d3)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The start bit device (X) number that input 16-key (occupies 4 points)	-	Bit	ANY_BOOL
(d1)	The start device (Y) number that outputs (occupies 4 points)	-	Bit	ANY_BOOL
(d2)	The device number that stores the value input from the 16 keys	0 to 9999	BIN16 bit	ANY16_S
(d3)	The start bit device number whose key is ON (occupies 8 points)	-	BIN16 bit	ANY16_S

Device used

| Instruction | Parameter | Devices | | | | | | | | | | | | | | | | | | | Offset modification
 [D] | Pulse
 extension$\|$\begin{tabular}{\|c|c|}
\hline
\end{tabular} |
| :---: |
| | | X Y M S | | S SM | T(bit) | C(bit) | LC(bit) | HSC(bit) | D.b | KnX | KnY KnM | | KnS T | | CDR | | RSDLCHSCKHE | | | | | |
| | Parameter 1 | \bullet | | | | | | | | | | | | | | | | | | | \bullet | |
| | Parameter 2 | \bullet | | | | | | | | | | | | | | | | | | | \bullet | |
| | Parameter 3 | | | | | | | | | | | | | - | | - \bullet | - | | | | \bullet | |
| | Parameter 4 | - | - | $\bullet \bullet$ | | | | | \bullet | | | | | | | | | | | | \bullet | |

Features

16-bit operation (HKY)

Scan the input [S to $\mathrm{S}+3$] and column output [D1 to D1+3] signals connected with 16 keys (0 to F), press the 0 to 9 keys, the value will be saved in D2, and the keyboard detection will be output to D3 +7 in.

In addition, after pressing the A to F keys, the key information corresponding to the keyboard [D3 to D3+5] is ON, and the keyboard detection is output to D3+6.
(1) About using the keys 0 to 9 to input the values D3, D3+7

If it is more than 9,999, overflow from the high digit. The entered value is stored in D2 as BIN (binary number). When any key from 0 to 9 is pressed, the keyboard detection output D3+7 is ON.
(2) Information about A to F keys D3 to D3+6

Corresponding to the A to F keys, the first 6 o'clock of $D 3$ is $O N$. When any key from A to F is pressed, the keyboard detection output $\mathrm{D} 3+6$ is ON .

Keyboard	Key information
A	D3
B	D3+1
C	D3+2
D	D3+3
E	D3+4
F	D3+5

Extensions

After SM167 is ON and the extended function becomes valid, the data of the hexadecimal keys from 0 to F is saved in BIN mode.
Except for the following, it is the same as the above-mentioned [Function and Operation Description].
The hexadecimal data input using the 0 to F keys is written into D 2 as it is.
(1) Regarding the numerical input using the 0 to F keys D2 When it is FFFF or more, overflow from the upper digits.

For example, when inputting $1 \rightarrow 2 \rightarrow 3 \rightarrow B \rightarrow F$, " $23 B F$ " is saved in $D 2$ in $B I N$ mode. When F is input, 1 overflows.

* Note

1. Restrictions on the number of uses of instructions

HKY instructions, only one of them can be used in the program.
(2) When the keyboard is pressed simultaneously

When multiple keys are pressed at the same time, the key pressed first is effective.
(3) When the instruction contact is OFF

Even if it is OFF, the content of D2 does not change, but D3 to D3 +7 all become OFF.
(4) Number of occupied points of the device

When 16 keys are connected, 4 points from the start device S of input (X) are occupied.
When 16 keys are connected, 4 points from the start device D1 of output (Y) are occupied.
It occupies 8 points from the start device D3 for key information output.
Please do not to overlap with the devices used in other controls of the machine.
D3 to D3+5: A to F key key information
D3+6: Keyboard detection output of A to F keys
D3+7: 0-9 key keyboard detection output
(5) About the read timing of keyboard input

HKY instruction is executed synchronously with the operation cycle of the programmable controller.
It takes 8 operation cycles to complete a series of keyboard scans.
In order to prevent reading omissions caused by the filter delay of keyboard input, please use the [Constant Scan Mode] and [Timer Interrupt] functions flexibly.

6 6. Output form
Please use a transistor output type programmable controller.
Related device

Devices	Name	Content
SM229	End of instruction execution	OFF: (d1) to (d1)+3 is being scanned, or the instruction is not executed
ON: (d1) to (d1)+3 cyclic output operation (1 to 4 digit scan) and then turn ON		

Error code

Error code	Content
4085 H	The output result of the read application instruction (s) and (d2) exceeds the device range
4086 H	The output result of the write application instruction (d1), (d2) and (d3) exceeds the device range

Example

Program

Wiring diagram

When inputting $[1] \rightarrow[2] \rightarrow[3] \rightarrow[B] \rightarrow[F]$, save "23BF" in DO in BIN mode.
When [F] is input, [1] overflows.

DHKY/32 system numeric key input

DHKY

Use the keyboard (16 keys) of 0 to F to input, set numerical value (0 to 9) and operating conditions (A to F function keys) and other instructions for data input.

When the extended function is ON, the hexadecimal number of 0 to F key can be used for keyboard input.
-[DHKY (s) (d1) (d2) (d3)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The start bit device (X) number that input 16-key (occupies 4 points)	-	Bit	ANY_BOOL
$(\mathrm{d} 1)$	The start device (Y) number that outputs (occupies 4 points)	-	Bit	ANY_BOOL
$(\mathrm{d} 2)$	The device number that stores the value input from the 16 keys	0 to 99999999	BIN32 bit	ANY32_S
$(\mathrm{d} 3)$	The start bit device number whose key is ON (occupies 8 points)	-	BIN16 bit	ANY16_S

Device used

Features

32-bit operation (DHKY)
Scan the input [S to $\mathrm{S}+3$] and column output [D 1 to $\mathrm{D} 1+3$] signals connected with 16 keys (0 to F), press the 0 to 9 keys, and the value will be saved in [D2+1, D2] , The keyboard detection is output to D3+7.
In addition, after pressing the A to F keys, the key information corresponding to the keyboard [D3 to $\mathrm{D} 3+5$] is ON , and the keyboard detection is output to D3+6.
(1) Regarding the use of keys from 0 to 9 to input values [D2+1, D2], D3+7

If it is $99,999,999$ or more, overflow from the high digit.
The entered value is stored in [D2+1, D2] as BIN (binary number).
When any key from 0 to 9 is pressed, the keyboard detection output D3+7 is ON.
(2) Button information about A to F keys D3 to D3+6

For keyboard press information, please refer to 16 -bit operation (HKY) on the previous page
extensions
After SM167 is ON and the extended function becomes valid, the data of the hexadecimal keys from 0 to F is saved in BIN mode.
Except for the following, it is the same as the above-mentioned "Function and Operation Description".
The hexadecimal data input using the 0 to F keys are written in [D2+1, D2] as they are.
(1) Regarding the numerical input using 0 to F keys [D2+1, D2]
-When it is FFFFFFFF or more, overflow from the upper digits.
For example, when inputting $[9] \rightarrow[2] \rightarrow[3] \rightarrow[B] \rightarrow[F] \rightarrow[A] \rightarrow[F]$, save " $923 B F A F$ " in $[D 2+1, D 2]$ in BIN mode.

* Note

(1) Restrictions on the number of uses of instructions

Only one of the DHKY instructions can be used in the program.
(2) When the keyboard is pressed simultaneously

When multiple keys are pressed at the same time, the key pressed first is effective.
(3) When the instruction contact is OFF

Even if it is OFF, the content of D2 does not change, but D3 to D3 +7 all become OFF.
(4) Number of occupied points of the device

When 16 keys are connected, 4 points from the start device S of input (X) are occupied.
When 16 keys are connected, 4 points from the start device D1 of output (Y) are occupied
It occupies 8 points from the start device D3 for key information output.
Please be careful not to overlap with the devices used in other controls of the machine.
D3 to D3+5: A to F key key information
D3+6: Keyboard detection output of A to F keys
D3+7: 0-9 key keyboard detection output
(5) About the read timing of keyboard input

The DHKY instruction is executed synchronously with the operation cycle of the programmable controller.
It takes 8 operation cycles to complete a series of keyboard scans.
In order to prevent reading omissions caused by the filter delay of keyboard input, please use the "Constant Scan Mode" and "Timer Interrupt" functions flexibly.
(6) Output form

Please use a transistor output type programmable controller.

Related device

Devices	Name	Content
SM229	End of instruction execution	OFF: (d1) to (d1)+3 is being scanned, or the instruction is not executed
ON: (d1) to (d1)+3 cyclic output operation (1 to 4 digit scan) and then turn ON		

Error code

Error code	Content
4085 H	The output result of the read application instruction (s) and (d2) exceeds the device range
4086 H	The output result of the write application instruction (d1), (d2) and (d3) exceeds the device range

Example

Program

.Wiring diagram

When inputting $1 \rightarrow 2 \rightarrow 3 \rightarrow B \rightarrow F \rightarrow 5 \rightarrow 7 \rightarrow 6$, save "123BF576" in BIN to [D1,D0].

PR/ASCII code printing

PR

This instruction is to output ASCII data in parallel to the output (Y).
$-\left[\begin{array}{lll}P R & (s) & (d)\end{array}\right]$

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	Start number of the device storing ASCII code data		String (ASCII code only)	ANY_ASC
(d)	The start number Y of output ASCII code data	-	Bit	ANY_BOOL

Device used

Instruction	Parameter	Devices																			Offset modification	Pulse extension
		X Y M S SM			T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	Kns	T	C			LC	HSC	KHE	[D]	XXP
	Parameter 1													-		-	\bullet				\bullet	
	Parameter 2	\bullet																			\bullet	

Features

The ASCII code stored in the lower 8 bits (1 byte) of (S) to $(S)+7$ is output to (D) to (D)+7 character by character in a time division manner.

The ASCII code saved in is shown below, and the following timing diagram is based on this example.
The sequence of sending starts from $(S)=$ " A ", and ends with $(S)+7=$ " H " for this purpose, sending eight bytes.

(S.)	(S.) +1	(s.) +2	(s.) +3	(S.) +4	(S. +5	(S.) +6	(s. +7
A(H41)	$\mathrm{B}(\mathrm{H} 42)$	$\mathrm{C}(\mathrm{H} 43)$	D(H44)	$\mathrm{E}(\mathrm{H} 45)$	$\mathrm{F}(\mathrm{H} 46)$	$\mathrm{G}(\mathrm{H} 47)$	$\mathrm{H}(\mathrm{H} 48)$

Timing diagram

The type of output signal

- (D.) $\sim(\bar{D}+7$: Send output (D. Low bit D• +7 High bit
- D. +8 : Strobe signal
- D. +9 : Flag bit in execution Operate by the sequence diagram above

Related device

Devices	Name	Content
SM227	PR mode	OFF: 8 bytes serial output (fixed to 8 characters) ON: 16 bytes serial output (1 to 16 characters)

* Note

(1) Instruction input and instruction action

Instruction input=ON: Even if the instruction is continuously ON or the pulse instruction is executed, as long as the output of one cycle ends, the execution ends.

SM229 only works when SM227=ON.
instruction input=OFF: all outputs are OFF.
(2) Relationship with scan time (operation time)

The instruction is executed synchronously with the scan time.
When the scan time is short, you can use the constant scan mode to drive; when the scan time is longer, you can use the timer interrupt drive.
(3) About the output of the programmable controller

Please use a transistor output type programmable controller.
(4) When 00 H (NUL) exists in the data (when $\mathrm{SM} 227=\mathrm{ON}$)

After the instruction is executed, the remaining data is not output.
In addition, SM229 maintains an operation cycle ON.
(5) Restrictions on the number of uses of instructions

Only one PR instruction can be used in the program.

Error code

Error code	Content
4085 H	The output result of the read application instruction (s) exceeds the device range
4086 H	The output result of the write application instruction (d) exceeds the device range

Example

Program

If the ASCII code in D200 to D203 is "Stopped", the corresponding output port signal and its timing are as follows:

SEGD/Numeric key input

SEGD(P)
Instruction to light up the 7 -segment digital tube (1 digit).
-[SEGD (s) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	Decoded start word device	-32767 to 32767	Bit	ANY_BOOL
(d)	Word device number for storing 7-segment display data	-32767 to 32767	Bit	ANY_BOOL

Device used

Instruction	Parameter	Devices																			Offset modification	Pulse extension
		X Y M S SM T(bit)				C(bit)	LC(bit)	HSC(bit)	D.b	KnX KnY KnM Kns T					T C	DR SD		LC HSC		K HE	[D]	XXP
	Parameter 1									-	\bullet	\bullet	\bullet	-		\bullet	\bullet			- -	-	\bullet
SEGD	Parameter 2										\bullet	\bullet	-	-	- -	-	-				\bullet	\bullet

Features

Decode the low 4-digit (1 digit) of 0 to F (hexadecimal number) of $(\mathrm{S}$) into 7 -segment display data and save it in the low 8 -digit of (d).
1.7-segment code decode table

(s)					Seven segment code	(D)											Display
HEX	b3	b2	b1	bo		B15	\cdots	B8	B7	B6	B5	B4	B3	B2	B1	B0	
0	0	0	0	0	B5 $\sim_{84}^{\text {B }}$	-		-	0	0	1	1	1	1	1	1	\square
1	0	0	0	1		-		-	0	0	0	0	0	1	1	0	1
2	0	0	1	0		-		-	0	1	0	1	1	0	1	1	2
3	0	0	1	1		-		-	0	1	0	0	1	1	1	1	3
4	0	1	0	0		-		-	0	1	1	0	0	1	1	0	4
5	0	1	0	1		-		-	0	1	1	0	1	1	0	1	5
6	0	1	1	0		-		-	0	1	1	1	1	1	0	1	5
7	0	1	1	1		-		-	0	0	1	0	0	1	1	1	7
8	1	0	0	0		-		-	0	1	1	1	1	1	1	1	8
9	1	0	0	1		-		-	0	1	1	0	1	1	1	1	9
A	1	0	1	0		-		-	0	1	1	1	0	1	1	1	П
B	1	0	1	1		-		-	0	1	1	1	1	1	0	0	b
C	1	1	0	0		-		-	0	0	1	1	1	0	0	1	L
D	1	1	0	1		-		-	0	1	0	1	1	1	1	0	\square
E	1	1	1	0		-		-	0	1	1	1	1	0	0	1	E
F	1	1	1	1		-		-	0	1	1	1	0	0	0	1	F

* Note

Number of occupied points of the device: The low 8 bits of the output of the device (S) are occupied, and the high 8 bits do not change.

Error code

Error code	Content
4085 H	The output result of the read application instruction (s) and (d) exceeds the device range
4086 H	The output result of the write application instruction (d) exceeds the device range

Example

0 [SEGD D0 K2Y10]

When MO is set, the lower 4 bits of the data in DO are decoded and output to the Y10 to Y17 ports. The corresponding table for translation is shown in the above table (7-segment code decoding table). The table does not need to be prepared by the user, and the comparison table is already available in the PLC system.

SEGL/7SEG code hour and minute display

SEGL
Control 1 or 2 groups of 4-digit 7-segment digital tube display instructions with latch.
-[SEGL (s) (d) (n)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	Start word device for BCD conversion	0 to 9999	BIN16 bit	ANY16
(d)	The starting Y number to be output	-	Bit	ANY_BOOL
(n)	Parameter number [Setting range: $\mathrm{KO}(\mathrm{HO})$ to $\mathrm{K7}(\mathrm{H} 7)]$	0 to 7	BIN16/32 bit	ANY16_U

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		X Y M S SM T(bit)				C(bit)	LC(bit)	HSC(bit)	D.b KnX		KnY	KnM KnS		T/CD		DRSD LCHSCKHE				[D]	XXP
	Parameter 1									\bullet	\bullet	-	\bullet	$\bullet \cdot$	- \bullet	-	\bullet		$\bullet \bullet$	\bullet	
SEGL	Parameter 2	-																		-	
	Parameter 3																		$\bullet \bullet$		

Features
Convert the 4-bit value of (s) into BCD data, and use the time-division method to sequentially output each 1 digit to a 7-segment digital tube with BCD decoding. (s) is valid when BIN data in the range of 0 to 9999.

The parameter (n) should be set as follows based on the positive and negative logic on the programmable controller side and the positive and negative logic on the 7-segment side.

Programmable controller output logic	Data input	Strobe signal	Parameter n	
			4 digits in 1 group	4 digits in 2 groups
Negative logic	Negative logic (consistent)	Negative logic (consistent)	0	4
		Positive logic (inconsistent)	1	5
	Positive logic (inconsistent)	Negative logic (consistent)	2	6
		Positive logic (inconsistent)	3	7
Positive logic	Positive logic (consistent)	Negative logic (consistent)	0	4
		Positive logic (inconsistent)	1	5
	Negative logic (inconsistent)	Negative logic (consistent)	2	6
		Positive logic (inconsistent)	3	7

(1) When using 4 digits in 1 group ($n=K 0$ to 3)

After converting the 4-digit value of (s) from $B I N \rightarrow B C D$, use the time division method to output each digit in turn from (d) to (d)+3. In addition, the strobe signal output (d)+4 to (d)+7 is also output in a time-division manner, locked to the 7-terminal display of the first group of 4 digits
(2) When using 4 digits in 2 groups ($\mathrm{n}=\mathrm{K} 4$ to 7)

1) 4-digit group 1

After converting the 4-digit value of (s) from BIN $\rightarrow B C D$, use the time division method to output each digit in turn from (d) to (d)+3. The strobe signal output (d) +4 to (d)+7 is output in time-division manner in turn, locked to the 7 -segment display of the first group of 4 digits.
2) 4-digit group 2

After converting the 4-digit value of $(\mathrm{s})+1$ from $\mathrm{BIN}+\mathrm{BCD}$, use the time division method to output each digit in turn from (d)+10 to $(d)+13$. The strobe signal output $(d)+4$ to $(d)+7$ is output in a time-division manner in turn, locked to the 7 -segment display of the
second group of digits.

* Note

(1) About the time required to update the 7-segment 4-digit display

The time required to update the 4-digit display (1 group or 2 groups) is 12 times the scan time (operation time).
(2) Action when command input is OFF

When the command input is ON , the action is repeated. However, if the command contact turns off during an action, the action will be interrupted. When it is ON again, it will start from the original action.
(3) Occupied points of the device

When using 4 digits in 1 group: 1 point from the start device specified in S is occupied.
Occupy 8 points from the start device specified in D. Even when the number of bits is small, the occupied points cannot be used for other purposes.
When using 4 digits 2 groups: 2 points from the start device specified in S are occupied.
Occupy 12 points from the start device specified in D. Even when the number of bits is small, the occupied points cannot be used for other purposes.
(4) About scan time (operation cycle) and display timing

The SEGL instruction is executed synchronously with the scan time (operation cycle) of the programmable controller.
In order to perform a series of displays, the scan time of the programmable controller needs to exceed 10 ms .
When it is less than 10 ms , please use the constant scan mode and run with a scan time longer than 10 ms .
(5) Regarding the output format of the programmable controller

Please use a transistor output type programmable controller.
(6) Limit number of instructions

This instruction can be used at most 2 at the same time.
Related device

Devices	Name	Content
SM229	End of instruction execution	After the processing is completed, SM229 is ON for one scan cycle

Error code

Error code	Content
4084 H	The data input in the application instruction (n) exceeds the specified range
4085 H	The output result of the read application instruction (s) exceeds the device range
4086 H	The output result of the write application instruction (d) exceeds the device range
4089 H	The number of application instructions exceeds the limit

Example

Program

The corresponding hardware wiring is shown in the following figure. The content of DO is displayed on the first group of digital tubes, and the content of D1 is displayed on the second group of digital tubes. If the reading of D0 or D1 exceeds 9999, the program will run into an error:

The digital tube used in the wiring diagram has its own display data latch, 7-segment decoding and driving, and 7-segment digital of negative logic type (when the input port is low, it means that the input data is 1 , or is strobed) Show tube. During display processing, PLC's Y4 to Y 7 ports will scan automatically, and only one port is ON each time as a bit strobe signal. At this time, the data on Y0 to Y3 ports is the BCD code data sent to the corresponding bit. When the bit strobe signal turns from $O N \rightarrow O F F$, it is latched into the latch in the digital tube. After internal decoding and driving, the digital tube displays the number. The PLC system cyclically processes Y 4 to Y 7 in turn, until all 4 bits are processed. In the same way, Y10 to Y13 are the data output ports of the second group of 4-digit digital tubes, which share the bit strobe lines of $Y 4$ to $Y 7$. The processing methods are the same, and the display processing of the two groups is performed at the same time. In the example, if D0=K2468 and D1=K9753, the first group will display 2468 and the second group will display 9753 .

It takes 12 scan cycles to complete a display refresh. After the processing is completed: According to the positive and negative logic of the programmable controller, the positive and negative logic of the seven-segment code, etc., select according to the following principles:

For a group of 4 digits, $n=0$ to 3 . When two groups of 4 digits, $n=4$ to 7 .

Display group number	Group 1			Group 2				
Y data output polarity	PNP		NPN		PNP			
Strobe and data polarity	Identical	Opposite	Identical	Opposite	Identical	Opposite	Identical	Opposite
the value of n	0	1	2	3	4	5	6	7

TKY/Numeric key input

TKY
Use the keyboard (number keys) of 0 to 9 to input instructions for setting data such as timers and counters.
$-\left[\begin{array}{lll}T K Y & \text { (s) } & \text { (d1) } \\ \text { (d2) }\end{array}\right]$

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The start bit device that input the numeric key (occupies 10 points)	-	Bit	ANY_BOOL
(d1)	Word device number for storing data	0 to 9999	Signed BIN16	ANY16_S
(d2)	The start bit device number whose key start bit device is ON (occupies 11 points)	-	Bit	ANY_BOOL

Device used

Instruction	Parameter	Devices																				Offset modification [D]	Pulse extension XXP
		X Y M		S 5	SM T(bit)		C(bit)	LC(bit)	HSC(bit)	D.b KnX		KnY	KnM	KnS T		CD ${ }_{\text {c }}$		RSD	LCHSCKHE				
	Parameter 1	- -	-	-	\bullet					\bullet												\bullet	
TKY	Parameter 2											\bullet	\bullet	\bullet	-	-	-	\bullet				\bullet	
	Parameter 3	\bullet	-		\bullet					\bullet												\bullet	

Features

Input [(s) to +9] to the connected number keys and press the keyboard, save the input value in (d1), and output in (d2) to +10 Keyboard input information and detected keyboard output.
(1) About the input value (d1)

If it is more than 9,999, overflow from the high digit.
The entered value is saved in BIN (binary number).
After pressing the number keys in the order of (1), (2), (3), (4), it is stored as 2130 in (d1).
(2) About (d2) to 10 of key information
(d2) to 9 key information, according to the pressed key ON/OFF.
When any key from 0 to 9 is pressed, the keyboard detection output of (d 2) +10 is ON .

* Note
(1) When the keyboard is pressed simultaneously

When multiple keys are pressed at the same time, only the key pressed first is effective.
(2) When the instruction contact is OFF

Even if it is OFF, the content of (d2) will not change, but (d2) to (d2)+10 will be OFF.
(3) Occupied points of the device
(2) Connect the input of the number keys, occupying 10 points from (s).

Even when the number key is not connected (not used), since (d 2) is already occupied, it cannot be used for other purposes.
(8) It occupies 11 points from the start device (d2) for key information output.

Please be careful not to overlap with the devices used in other controls of the machine.
(D2) to (d2)+9: Turn ON according to the input of number keys 0 to 9.
(D2)+10: It is ON when any key between 0 to 9 is pressed. (Keyboard detection output)
4 Restrictions on the number of uses of instructions
Only one of the TKY instruction or DTKY instruction can be used in the program.

Error code

Error code	Content
4085 H	The output result of the read application instruction (s) exceeds the device range
4086 H	The output result of the write application instruction (d) exceeds the device range

Example
0 [TKY X0 D0 M0 \}

To input the number "2013", press the keys $2,0,1,3(X 2, X 0, X 1, X 3)$ in order. The operation of the PLC internal variables is shown in the figure below.

According to the parameter setting in the instruction, X0toX11 correspond to Oto9 numeric keys; M0toM9 correspond to the state of the keys; when any key is pressed, the key output unit M10 will be set;

The key value (such as 2013) is converted to BIN format and stored in the specified D1 unit D0; (D0=0x7DD), even if the power flow of the drive turns OFF, DO will not change;

When multiple keys are pressed, the first detected key is valid; when the input number exceeds 4 digits, the first input number changes overflow, leaving only the last 4 numbers input.

DTKY/Numeric key input

DTKY

Use the 4 points starting from the device specified in (d) to perform 4 types of timer output
-[STMR
(s1)
(d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The start bit device that input the numeric key (occupies 10 points)	-	Bit	ANY_BOOL
(d1)	Word device number for storing data	0 to 99999999	Signed BIN32	ANY32_S
(d2)	The start bit device number whose key start bit device is ON [occupies 11 points]	-	Bit	ANY_BOOL

Device used

Instruction	Parameter	Devices																				Offset modification	Pulse extension
		X Y M S SM T(bit)			C(bit)	LC(bit)	HSC(bit) D		D.b KnX Kn		KnY KnM		KnS 7		TCDRSD			LCHSCKHE				[D]	XXP
DTKY	Parameter 1	- • - -	\bullet					-														-	
	Parameter 2										\bullet	\bullet	-		-	- •	-	\bullet	-			\bullet	
	Parameter 3	$\bullet \cdot \bullet$	-					-														\bullet	

Features

Input [(s) to +9$]$ to the connected number keys and press the keyboard, save the input value in (d1), and output in (d2) to +10 Keyboard input information and detected keyboard output.
(1) About the input value (d1)

If it is more than 9,999, overflow from the high digit.
The entered value is saved in BIN (binary number).
(2) (d2) to 10 of key information
(d2) to +9 key information, according to the pressed key ON/OFF.
When any key from 0 to 9 is pressed, the keyboard detection output of (d2) +10 is ON .

N Note

(1) When the keyboard is pressed simultaneously

When multiple keys are pressed at the same time, only the key pressed first is effective.
(2) When the command contact is OFF

Even if it is OFF, the content of (d 2) will not change, but (d 2) to (d 2) +10 will be OFF.
(3) Occupied points of the device
(4) Connect the input of the number keys, occupying 10 points from (s).

Even when the number key is not connected (not used), since (d2) is already occupied, it cannot be used for other purposes.
(2) It occupies 11 points from the start device (d2) for key information output.

Please be careful not to overlap with the devices used in other controls of the machine.
(D2) to (d2)+9: Turn ON according to the input of number keys 0 to 9.
(D2)+10: It is ON when any key between 0 to 9 is pressed. (Keyboard detection output)
(4) Restrictions on the number of uses of instructions

Only one of the TKY instruction or DTKY instruction can be used in the program.
Error code

Error code	Content
4085 H	The output result of the read application instruction (s) and (d1) exceeds the device range
4086 H	The output result of the write application instruction (d1) and (d2) exceeds the device range

Example

0 -

When X20 is on, if you want to input the number "20205689", press $2,0,2,0,5,6,8,9(X 2, X 0, X 2, X 0, X 5, X 6, X 10, X 11)$ in sequence , Then (the value in (D1,D0) is 20205689)

7.9 Data conversion instruction

BCD/BIN \rightarrow BCD

BCD(P)
Convert the BIN data of the device specified in (s) to BCD, and store it in the device specified in (d).
The calculation of the CPU module uses BIN (binary number) data for processing, which is used to display values in a 7-segment display equipped with a BCD decoder.
$-[B C D \quad$ (s) (d)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	BIN data or start device storing BIN data	0 to 9999	Signed BIN16	ANY16
(d)	Start device for storing BCD data	-	BCD 4 digits	ANY16

Device used

Instruction	Parameter	Devices																				Offset modification	Pulse extension
		XYM SSM T(bit)				C(bit)	LC(bit)	HSC(bit)	D.b K		KnX KnY KnM ${ }^{\text {KnS }}$ T					CD	R SD		LCHSCKHE			[D]	XXP
BCD	Parameter 1									\bullet	-	-				- \bullet	-	\bullet			$\bullet \bullet$	\bullet	\bullet
	Parameter 2										-	-				\bullet	\bullet	\bullet			$\bullet \bullet$	\bullet	\bullet

Features

The BIN 16-bit data (0 to 9999) of the device specified in (s) is converted to BCD 4-bit data and stored in the device specified in (d).
The data specified in (s) can be converted within the range of 0 to 9999 (BCD).
When the data specified in (s) or (d) is digit specification, the conditions are as shown in the table below.

(1): Must be set to 0 .

The data specified in (s) can be converted in the range of K0 to K9999 by BCD (decimal number).
When the data specified in (s) or (d) is digit specification, the conditions are as shown in the table below.

(d)	Digits	Data range
K1Y0	1-bit	0 to 9
K2Y0	2-bit	00 to 99
K3Y0	3-bit	000 to 999
K4Y0	4-bit	0000 to 9999

* Note

The four arithmetic operations (+-×ㄷ), increment, decrement instructions and other operations in the CPU module are all performed by BIN (binary number). Therefore, when sending BCD (decimal) digital switch information to the CPU module, please use the BIN(P) command (BCD \rightarrow BIN conversion transfer command). In addition, when outputting to the 7-segment display of BCD (decimal number), please use the $B C D(P)$ command ($\mathrm{BIN} \rightarrow \mathrm{BCD}$ conversion transmission).
Error code

Error code	Content
4084 H	The data input in the application instruction (s) exceeds the specified range
4085 H	The output result of the read application instruction (s) exceeds the device range
4086 H	The output result of the write application instruction (d) exceeds the device range

Example

When MO is set, the BIN value of D200 is converted into BCD and stored in K1Y0.

BIN/4-bit BCD \rightarrow BIN

BIN(P)

Convert the BCD data of the device specified in (s) to BIN and store it in the device specified in (d).
Similar to the digital switch, it converts the value set in BCD (decimal number) to BIN (binary number) that can be operated by the CPU module and is used for reading.
$-[B I N \quad$ (s) (d)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	BCD data or start device storing BIN data	0 to 9999	BCD 4 digits	ANY16
(d)	Start device for storing BIN data	-	Signed BIN16	ANY16

Device used

Instruction	Parameter	Devices																			Offset modification	Pulse extension
		X Y M S SM T(bit)				C(bit)	LC(bit)	HSC(bit)	D.b	KnX KnY KnM ${ }^{\text {KnS }}$ T					CD	R SD		LCHSCKHE			[D]	extension XXP
	Parameter 1									-	-	-	-		- -	-	\bullet			- -	\bullet	\bullet
	Parameter 2										\bullet	\bullet	\bullet		- -	-	\bullet				\bullet	\bullet

Features

The BCD 4-bit data (0 to 9999) of the device specified in (s) is converted into BIN 16-bit data and stored in the device specified in (d).

The data specified in (s) can be converted within the range of 0 to 9999 (BCD).
When the data specified in (s) or (d) is digit specification, the conditions are as shown in the table below.

(d)	Digits	Data range
K1X0	1-bit	0 to 9
K2X0	2-bit	00 to 99
K3X0	3-bit	000 to 999
K4X0	4-bit	0000 to 9999

* Note

The calculations in the CPU module such as the four arithmetic operations ($+-\times \div$), increment and decrement instructions are all performed by BIN (binary number). Therefore, when sending BCD (decimal) digital switch information to the CPU module, please use the $\mathrm{BIN}(\mathrm{P})$ command $(\mathrm{BCD} \rightarrow \mathrm{BIN}$ conversion transfer command). In addition, when outputting to the 7 -segment display of BCD (decimal number), please use the $\mathrm{BCD}(\mathrm{P})$ command ($\mathrm{BIN} \rightarrow \mathrm{BCD}$ conversion transmission).

Error code

Error code	Content
4084 H	The data input in the application instruction (s) exceeds the specified range
4085 H	The output result of the read application instruction (s) exceeds the device range
4086 H	The output result of the write application instruction (d) exceeds the device range

Example

When M0 is set, the BCD value of K1Y0 is converted into BIN and stored in D200.

DBIN/8-bit BCD \rightarrow BIN

DBIN(P)

Convert the BCD data of the device specified in (s) to BIN and store it in the device specified in (d).
Similar to the digital switch, it converts the value set in BCD (decimal number) to BIN (binary number) that can be operated by the CPU module and is used for reading.
$-[D B I N \quad(s) \quad(d)]$

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	BCD data or start device storing BIN data	0 to 99999999	BCD 8 digits	ANY32
(d)	Start device for storing BIN data	-	Signed BIN32	ANY32

Device used

Instruction	Parameter	Devices																			Offset modification	Pulse extension
		X Y M S SM T(bit)			C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS		CD		SD	LC	HSC		HE	[D]	XXP
DBIN	Parameter 1								-	\bullet	\bullet	\bullet	-	-	\bullet	\bullet	\bullet	\bullet	-	\bullet	\bullet	\bullet
	Parameter 2									-	-			- \cdot	\bullet	\bullet					\bullet	\bullet

Features

The BCD 8-bit data (0 to 99999999) of the device specified in (s) is converted to BIN 32-bit data and stored in the device specified in (d).

(1): Must become 0.

The data specified in (s) can be converted within the range of 0 to 99999999 (BCD).
When the data specified in (s) or (d) is digit specification, the conditions are as shown in the table below.

(d)	Bit	data range
K1X0	1-bit	0 to 9
K2X0	2-bit	00 to 99
K3X0	3-bit	000 to 999
K4X0	4-bit	0000 to 9999
K5X0	5-bit	00000 to 99999
K6X0	6-bit	000000 to 999999
K7X0	7-bit	0000000 to 9999999
K8X0	8-bit	00000000 to 99999999

© Note
The calculations in the CPU module such as the four arithmetic operations ($+-\times \div$), increment and decrement instructions are all performed by BIN (binary number). Therefore, when sending BCD (decimal) digital switch information to the CPU module, please use the $\mathrm{BIN}(\mathrm{P})$ command ($\mathrm{BCD} \rightarrow \mathrm{BIN}$ conversion transfer command). In addition, when outputting to the 7-segment display of BCD (decimal number), please use the $B C D(P)$ command ($B I N \rightarrow B C D$ conversion transmission).
Error code

Error code	Content
4084 H	The data input in the application instruction (s) exceeds the specified range
4085 H	The output result of the read application instruction (s) exceeds the device range
4086 H	The output result of the write application instruction (d) exceeds the device range

Example

When M0 is set, the BCD value of K8YO is converted into BIN and stored in D200.

FLT/BIN integer \rightarrow binary floating point number

FLT(P)
An instruction to convert a BIN 16-bit integer value into a binary floating point number (real number).
$-[$ FLT $\quad(\mathrm{s}) \quad$ (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The data register number that saves the BIN integer value	-	Signed BIN 16 bit	ANY16
(d)	The data register number that saves the binary floating-point number (real number)	-	Single precision real number	ANYREAL_32

Device used

Features

The signed 16 -bit data specified in (s) is converted into a binary floating point data and stored in (d)+1, (d).

	$[\mathrm{MOV}$	K-1234	D0
	FLT	D0	D100

Note

In each binary floating point number (real number) operation instruction, the specified K and H values will be automatically converted into a binary floating point number (real number), so there is no need to use the FLT instruction for conversion.

The inverse conversion instruction of this instruction is INT (convert a binary floating point value into a BIN integer).

Error code

Error code	Content
4085 H	When the device specified in the read application instruction (s) exceeds the corresponding device range
4086 H	When the device specified in the write application instruction (d) exceeds the corresponding device range

Example

Four arithmetic using binary floating point operations
(1) Calculation example

(2) Sequence control program

DFLT/BIN integer \rightarrow binary floating point number

DFLT(P)

An instruction to convert a BIN 32-bit integer value into a binary floating point number (real number).
-[DFLT \quad (s) (d)]
Content, range and data type

Paramete	Content											Range			Data type				Data type (label)	
(s)	The data register number that saves the BIN32 integer value											-			Signed BIN 32 bit				ANY32	
(d)	The data register number that saves the binary floating-point number (real number)											-			Single precision real number				ANYREAL_32	
Device used																				
Instruction	Parameter	Devices																	Offset modification	Pulse extension
		X Y M S SM T(bit)			C(bit)	LC(bit)	HSC(bit)	D.b	KnX KnY KnM Kns				TCD		R SDLCHSCKHE				[D]	XXP
DFLT	Parameter 1								\bullet	\bullet	\bullet	\bullet	\bullet	-	- -	- •	$\bullet \bullet$	- •	\bullet	\bullet
	Parameter 2													-	$\bullet \bullet$	- -	$\bullet \bullet$		\bullet	\bullet

Features

Convert the signed BIN 32-bit data specified in (s) to binary floating point data and store them in (d)+1, (d).

N ote

In each binary floating-point number (real number) operation instruction, the specified K and H values are automatically converted into a binary floating-point number (real number), so there is no need to use the DFLT instruction for conversion.
The inverse conversion instruction of this instruction is INT (convert a binary floating point value into a BIN integer).

Error code

Error code	Content
4085 H	When the device specified in the read application instruction (s) exceeds the corresponding device range
4086 H	When the device specified in the write application instruction (d) exceeds the corresponding device range

Example

$\left.\begin{array}{|llll|}\hline \text { M2 } & \text { [DMOV } & \left.\begin{array}{lll}\text { K-7963590 } & \text { D0 } \\ {[\text { DFLT }} & \text { D0 } & \text { D100 }\end{array}\right]\end{array}\right]$

When M2=ON, convert the BIN 32-bit integer -7963590 in [D1, D0] into a single-precision floating point number -7963590.0 and store it in the [D101, D100] device.

VAL/ String \rightarrow BIN 16-bit data conversion
 VAL(P)

After converting the character string stored in the device number specified in (s) and later into BIN 16-bit data, store the number of digits in (d1) and store the BIN data in (d2).
[VAL (s) (d1) (d2)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The character string converted to BIN data or the start device that stores the character string	-	String	ANYSTRING_SINGLE
(d1)	The start device that stores the number of digits of converted BIN data	-	Signed BIN 16 bit	ANY16_S_ARRAY
(d2)	Start device for storing converted BIN data	-	Signed BIN 16 bit	ANY16_S

Device used

Instruction	Parameter	Devices																				Offset modification	Pulse extension
		XYMS		SM T(bit)		C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY KnM		KnS	T C		DRSD		LCHSCKHE				[D]	XXP
	Parameter 1													\bullet		- -						\bullet	\bullet
VAL	Parameter 2										\bullet	-	\bullet	-		-						\bullet	\bullet
	Parameter 3										\bullet	\bullet	\bullet	\bullet		\bullet						\bullet	\bullet

Features

After converting the character string stored in the device number specified in (s) and later into BIN 16-bit data, store the number of digits in (d1) and store the BIN data in (d2). In the conversion from character string to BIN, the data from the device number specified in (s) to the device number storing 00 H is treated as a character string.

The total number of digits stored in (d1) stores the number of all characters (including signs and decimal points) representing the value. The number of decimal places stored in (d1)+1 stores the number of characters representing the decimal part after $2 \mathrm{EH}($.$) . For$ the BIN 16-bit data stored in (d2), the character string ignoring the decimal point is converted into a BIN value and stored.

Error code

Error code	Content
	The character string specified by (s) could not be converted into a numeric value For example: The first character is not a negative sign or a space, space appears in the middle of the number, decimal point appears twice. Except for the first character that appears non-characters and decimal points, the number in the symbolic string with the decimal point is removed and the range between -32768 and 32767 is exceeded Except for the first character, there are non-character and decimal Signs For example, 3.4000 is 34000 after removing the decimal point, which is out of range.
4085 H	(s) read address exceeds the device range
408 AH	When the character number of character string the specified in (s) is other than 2 to 8.

408 BH	The maximum range of the device is read when (s) taking character string, but 00H is not found as the end
4086 H	When using offset, the offset address of (d) exceeds the device range

Example

20

The result obtained above:
D0 corresponds to str length is 7 .
D1 corresponds to a decimal point length of 3 .

D10 corresponds to -12356 ignoring the decimal point.

Device	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F	
D10	0	0	1	1	1	1	0	1	1	1	1	1	0	0	1	1	-12356

DVAL/String \rightarrow BIN32-bit data conversion

DVAL(P)

After converting the character string stored in the device number specified in (s) into BIN 32-bit data, store the number of digits in (d1) and store the BIN data in (d2).
-[DVAL
(s) (d1) (d2)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The character string converted to BIN data or the start device that stores the character string	-	String	ANYSTRING_SINGLE
(d1)	The start device that stores the number of digits of converted BIN data	-	Signed BIN 16 bit	ANY16_S_ARRAY
(d2)	Start device for storing converted BIN data	-	Signed BIN 32 bit	ANY32_S

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		X Y M S SM T(bit)			$C(\text { bit })$	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS	T CD		D	R SD	LCHSCKHE			[D]	XXP
	Parameter 1													-	-	-				\bullet	\bullet
DVAL	Parameter 2									\bullet	\bullet	\bullet	\bullet	-	- \bullet	\bullet				\bullet	\bullet
	Parameter 3									\bullet	\bullet	\bullet	-	-	$\bullet \cdot$	-	\bullet	\bullet		\bullet	\bullet

Features

After converting the character string stored in the device number specified in (s) into BIN 32-bit data, store the number of digits in (d1) and store the BIN data in (d2). In the conversion from character string to BIN, the data from the device number specified in (s) to the device number storing 00 H is treated as a character string.
The total number of digits stored in (d1) stores the number of all characters (including signs and decimal points) representing the value. The number of decimal places stored in (d1)+1 stores the number of characters representing the decimal part after 2 EH (.). For the BIN 32-bit data stored in (d2), the character string ignoring the decimal point is converted into a BIN value and stored.

Error code

Error code	Content
4082 H	The character string specified by (s) could not be converted into a numeric value. For example:The first character is not a negative sign or a space, space appears in the middle of the number, decimal point appears twice. Except for the first character that appears non-characters and decimal points, the number in the symbolic string with the decimal point is removed and the range between -2147483648 and 2147483647 is exceeded Except for the first character, there are non-character and decimal Signs For example, 3.000000000 is 3000000000 after removing the decimal point, which is out of range.
4085 H	(s) read address exceeds the device range
408 AH	When the character number of character string the specified in (s) is other than 2 to 13.
408 BH	The maximum range of the device is read when (d1) and (d2) taking character string, but 00H is not found as the end
4086 H	When using offset, the offset address of (d) exceeds the device range

Example

SM102				
	,	[ASC		R0
10	$\stackrel{\text { M8 }}{\vdash} \longmapsto \text { DVAL }$	R0	D0	D10

The result obtained above
DO corresponds to str length is 7 .
D1 corresponds to a decimal point length of 3 .
$\left.\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}\hline \text { DO } & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 7 \\ \hline \text { D1 } & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

D10 corresponds to - 12356 ignoring the decimal point

Device	+0	+1	+2	+3
D0	196615	0	0	0
D8	0	-12356	0	0

ASCI/HEX code data \rightarrow ASCII conversion

ASCI(P)

After the n characters (bits) in the HEX code data specified in (s) are converted into ASCII codes, they are stored after the device number specified in (d).
$-\left[\begin{array}{llll}\mathrm{ASCl} & \text { (s) } & \text { (d) } & (\mathrm{n})\end{array}\right]$

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The start number of the device storing the HEX code to be converted	-	BIN16 bit	ANY16
(d)	The start number of the device storing the converted ASCII code	-	String	ANYSTRING_SINGLE
(n)	The number of characters (digits) of the HEX code to be converted	1to256	BIN16 bit	ANY16_U

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		XYM S SM T(bit)			C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS		CD	R		LC	HSC	KHE	[D]	XXP
	Parameter 1								-	\bullet	\bullet	\bullet	\bullet	- \bullet		-			$\bullet \bullet$	\bullet	\bullet
ASCI	Parameter 2									\bullet	\bullet	\bullet	\bullet	- \bullet		-				\bullet	\bullet
	Parameter 3													-	-				$\bullet \bullet$		\bullet

Features

The number of characters (bits) specified by (n) in the HEX code data specified in (s) is converted into ASCII code and stored in the device number specified in (d) or later.
$\mathrm{ASCI}(\mathrm{P})$ instruction uses 16 -bit mode and 8 -bit mode when converting. For the operation of each mode, please refer to the following content.

(1) 16-bit conversion mode (when SM8161=OFF)

Convert the digits of the HEX code after the device specified in (s) into ASCII, and transfer to the upper and lower 8 bits (bytes) of the device specified in (d). When using in 16-bit conversion mode, SM161 should always be turned OFF.

In the case of the following program, perform the conversion as shown below.

Devices after (s): D100=OABCH, D101 $=1234 \mathrm{H}, \mathrm{D} 102=5678 \mathrm{H}$
Specify the number of bits (characters) and the conversion result

Bit structure in the case of (n)=K4

ASCII code

"0"=30H	"1"=32H	"5"=35H
" A " $=41 \mathrm{H}$	"2" $=32 \mathrm{H}$	"6"=36H
"B" $=42 \mathrm{H}$	"3"=33H	"7"=37H
4	4"=3	

(2) 8-bit conversion mode (when SM161=ON)

Convert the digits of the HEX code after the device specified in (s) into ASCII, and transfer to the lower 8 bits (bytes) of the device specified in (d). When using in 8-bit conversion mode, SM161 should always be set to ON for use.

In the case of the following program, perform the conversion as shown below.

Devices after (s1): D100=OABCH, D101=1234H, D102=5678H

If SM161 is set to ON, it will become 8-bit mode,
Perform conversion processing as shown below.

(n)	K1	K2	K3	K4	K5	K6	K7	K8	K9
(d)									
D200	C	B	C	0	4	3	2	1	8
D201		C	B	C	0	4	3	2	1
D202		Unchanged		B	C	0	4	3	2
D203				C	B	C	0	4	3
D204					C	B	C	0	4
D205						C	B	C	0
D206							C	B	C
D207								C	B
D208									C

Bit structure in the case of (n)=K2

ASCII		
" 0 " $=30 \mathrm{H}$	"1"=31H	" 5 " $=35 \mathrm{H}$
"A" $=41 \mathrm{H}$	"2"=32H	"6"=36H
"B" $=42 \mathrm{H}$	"3"=33H	"7"=37H
"C" $=43 \mathrm{H}$	"4"=34H	"8"=38H

Error code

Error code	Content
4085 H	When the specified device range is read to exceed the corresponding device range
4086 H	When the specified device range is written to exceed the corresponding device range
4084 H	When the value specified in (n) exceeds the range of 1 to 256

Example

- 16-bit conversion mode (when SM161=OFF)

Convert the digits of the HEX code after the device specified in d100 into ASCII, and transfer to the upper and lower 8 bits (bytes) of the device specified in d200. When using in 16-bit conversion mode, SM161 should always be turned OFF.

HEX/ASCII \rightarrow HEX code data conversion

HEX(P)
After the device number specified in (s), the ASCII data stored in the number of characters specified in (n) is converted to HEX code, and then stored in the device number specified in (d) or later.
-[HEX (s) (d) (n)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The start device that stores the ASCII data converted to HEX code	-	String	ANYSTRING_SINGLE
(d)	The start device that stores converted HEX code	-	BIN16 bit	ANY16
(n)	Number of characters (bytes) of converted ASCII data	1 to 256	BIN16 bit	ANY16_U

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		X Y M S SM T(bit)			C(bit)	LC(bit)	HSC(bit)	D.b				KnS		CD	R	SD	+	HSC	KHE	[D]	XXP
	Parameter 1								\bullet	\bullet	\bullet	\bullet	-	-	-	\bullet			- •	-	\bullet
HEX	Parameter 2									\bullet	\bullet	\bullet	-	-	-	\bullet				\bullet	\bullet
	Parameter 3													-	-	\bullet			$\bullet \bullet$		-

Features

- After the device number specified in (s), the ASCII data stored in the number of characters specified in (n) is converted to HEX code, and then stored in the device number specified in (d) or later. The $\operatorname{HEX}(\mathrm{P})$ instruction uses 16 -bit conversion mode and 8 -bit conversion mode when converting. For the operation of each mode, please refer to the following content.
(1) 16-bit conversion mode (when SM161=OFF)

After converting the ASCII data stored in the upper and lower 8 digits (bytes) of the device specified in (s) into HEX code, it transmits every 4 digits to the device specified in (d). The number of characters to be converted is specified in (n).

SM161 is shared with ASC, ASCI, BCC, CCD and CRC instructions. When using in 16-bit conversion mode, please always set SM161 to OFF.

SM161 is cleared when RUN \rightarrow STOP.
In addition, it is necessary to store the ASCII data in the 16-bit conversion mode in the upper 8 bits of the device specified in (s). In the following program, the conversion will be performed in the following manner.

Transform the source data

(s)	ASCII data	HEX conversion
Under D200	30 H	0
D200 on	41 H	A
Under D201	42 H	B
D201 on	43 H	C
Under D202	31 H	1
D202 on	32 H	2
Under D203	33 H	3
D203 on	34 H	4
Under D204	35 H	5

Bit structure in the case of (n)=K4

The number of characters specified and the conversion result becomes 0 .

(n)		1	2	3	4	5	6	7	8	9
(d)	D102	Unchanged								...OH
	D101					...OH	..OAH	. OABH	OABCH	ABC1H
	D100	... OH	..OAH	. OABH	OABCH	ABC1H	BC12H	C 123 H	1234H	2345H

(2) 8-bit conversion mode (when SM161=ON)

After converting the ASCII data stored in the lower 8 digits of the device specified in (s) into HEX code, it will be transmitted to the device specified in (d) every 4 digits.

The number of characters to be converted is specified in (n).
SM161 is shared with ASC, ASCI, BCC, CCD and CRC instructions. When using in 8-bit conversion mode, please always turn on SM161.
SM161 is cleared when RUN \rightarrow STOP.
In the following program, the conversion will be performed in the following manner.

Transform the source data

(s)	ASCI data	HEX conversion
D200	30 H	0
D201	41 H	A
D202	42 H	B
D203	43 H	C
D204	31 H	1
D205	32 H	2
D206	33 H	3
D207	34 H	4
D208	35 H	5

Bit structure in the case of $(\mathrm{n})=\mathrm{K} 2$

The number of characters specified and the conversion result becomes 0 .

(n)		1	2	3	4	5	6	7	8	9
(d)	D102	Unchanged								...OH
	D101					...OH	..OAH	. OABH	OABCH	ABC1H
	D100	...OH	..OAH	. OABH	OABCH	ABC1H	BC12H	C 123 H	1234H	2345H

Error code

Error code	Content
4084 H	When the value specified in (n) exceeds the range.
	When ASCII codes other than 30 H to 39 H and 41 H to 46 H are set in (s).
4085 H	When the specified device range is read to exceed the corresponding device range
4086 H	When the specified device range is written to exceed the corresponding device range

Example

After converting the ASCII data stored in the upper and lower 8 digits (bytes) of the device specified in (s) into HEX code, it transmits every 4 digits to the device specified in (d). The number of characters to be converted is specified in (n).

SM161 is shared with ASC, ASCI, BCC, CCD and CRC instructions. When using in 16-bit conversion mode, please always set SM161 to OFF.

CCD/Check code

CCD(P)

Calculate the horizontal parity value and the sum check value of the error checking method used in communication and the like. In addition to these error checking methods, there are CRC (Cyclic

Redundancy Check). To calculate the CRC value, use the $\mathrm{CRC}(\mathrm{P})$ command
-[CCD (s) (d) (n)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The start number of object device	-	BIN16 bit	ANY16
(d)	The start number of the storage destination device of the calculated data	-	BIN16 bit	ANY16_ARRAY (number of elements: 2)
(n)	Number of data	1 to 256	BIN16 bit	ANY16_U

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		XYM S	SM T(bit)		C(bit)	LC(bit)	HSC(bit)	D.b	KnX KnY KnM Kns				TC		CDR	RSD	LCHSCKHE			[D]	XXP
	Parameter 1								-	\bullet	\bullet	-	-	- -	-	\bullet				\bullet	\bullet
CCD	Parameter 2									\bullet	\bullet	\bullet	\bullet	- \bullet	-	\bullet				\bullet	\bullet
	Parameter 3															-			- -		\bullet

Features

Calculate the addition data and horizontal parity data of the data stored in (s) to (s) $+(\mathrm{n})-1$, and store the addition data in (d), horizontal parity

The data is stored in (d) +1 . The modes used by this instruction in calculation are 16 -bit mode and 8 -bit mode. For the operation of each mode, please refer to the following content.
(1) 16-bit conversion mode (when SM161=OFF)

Regarding the data at point (n) starting with (s), the addition data and horizontal parity data of the high and low 8-bit data are stored in the Devicess (d) and (d)+1.

SM161 is shared with ASC, ASCI, BCC, CCD and CRC instructions. When using in 16 bits, always set to OFF for use.
SM161 is cleared when RUN \rightarrow STOP.
In the case of the following program, perform the conversion as shown below.

s)	Example of the content of the data	\leftarrow	If the number of 1 is odd,
D100 Down	$\mathrm{K} 100=0 \begin{array}{llllllll}0 & 1 & 0 & 1 & 0\end{array}$		
D100 UP	K111 = $\begin{array}{llllllllll}0 & 1 & 1 & 0 & 1 & 1 & 1 & \text { (1) }\end{array}$		
D101 Down	$\mathrm{K} 100=0 \begin{array}{llllllll}0 & 1 & 0 & 0 & 1 & 0 & 0\end{array}$		
D101 UP	K $98=0 \begin{array}{llllllll}0 & 1 & 1 & 0 & 0 & 0 & 1 & 0\end{array}$		the horizontal parity is 1
D102 Down	$\mathrm{K} 123=\begin{array}{lllllllll}0 & 1 & 1 & 1 & 1 & 0 & 1 & \text { (1) }\end{array}$	\leftarrow	If the number of 1 is
D102 UP	K $66=0 \begin{array}{llllllll}0 & 1 & 0 & 0 & 0 & 1 & 0\end{array}$		If the number of 1 is even,
D103 Down	$\mathrm{K} 100=0 \begin{array}{llllllll}0 & 1 & 0 & 1 & 1 & 0\end{array}$		the horizontal parity is 0
D103 UP	K $95=0 \begin{array}{llllllll}\text { (1) }\end{array}$	\leftarrow	
D104 Down			
D104 UP	K $88=0 \begin{array}{lllllll}0 & 1 & 1 & 1 & 0 & 0\end{array}$		
Total	K1091	\leftarrow	
Horizontal parity	10000010		

(2) 8-bit conversion mode (when SM161=ON)

Regarding (s) as the starting point (n) data (lower 8 bits only), its addition data and horizontal parity data are stored in the devices (d) and (d) +1 .

SM161 is shared with ASC, ASCI, BCC, CCD and CRC instructions. If it is used in 8 bits, it should always be set to ON for use.
SM161 is cleared when RUN \rightarrow STOP.
In the case of the following program, perform the conversion as shown below.

Error code

Error code	Content
4084 H	When the value specified in (n) exceed the range of 1 to 256.
4085 H	When the specified device range is read to exceed the corresponding device range
4086 H	When the specified device range is written to exceed the corresponding device range

Example

Regarding D10 as the initial 10-point data, the addition data and horizontal parity data of the high and low 8-bit data are stored in the Devicess of D0 and D0+1.

SM161 is shared with ASC, ASCI, BCC, CCD and CRC instructions. When using in 16 bits, always set to OFF for use.

GBIN/Gray code \rightarrow BIN 16-bit data conversion

GBIN(P)

Convert the BIN 16-bit Gray code data stored in the device specified in (s) into BIN 16-bit data, and store it in the device specified in (d).
-[GBIN
(s) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	Gray code data or the start device that stores Gray code	0 to 32767	BIN16 bit	ANY16_S
(d)	The start device that stores the converted BIN data	-	BIN16 bit	ANY16_S

Device used

Features

Convert the BIN 16-bit Gray code data stored in the device specified in (s) into BIN 16-bit data, and store it in the device specified in (d).
(s)

(d) BIN
1234

GRY \rightarrow BIN Mathematical Algorithm: Starting from the second bit from the left, XOR each bit with the decoded value of the left bit as the decoded value of the bit (the leftmost bit remains unchanged).

Error code

Error code	Content
4084 H	When the value specified in (s) exceeds the range
4085 H	When the specified device range is read to exceed the range of the corresponding device
4086 H	When the specified device range is written to exceed the range of the corresponding device

Example

It could be used when the encoder of Gray code method is used to detect the absolute position.
For S, the numerical are valid in the range of 0 to 32767.

DGBIN/Gray code \rightarrow BIN32-bit data conversion

DGBIN(P)
Convert the BIN32-bit Gray code data stored in the device specified in (s) to BIN 32-bit data and store it in the device specified in (d).

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	Gray code data or the start device that stores Gray code	0 to 2147483647	BIN32 bit	ANY32_S
(d)	The start device that stores converted BIN data	-	BIN32 bit	ANY32_S

Device used

Instruction	Parameter	Devices																			Offset modification	Pulse extension
		X Y M S SM T(bit)			C(bit)	LC(bit)	HSC(bit)	D.b					,			R			SC	KHE	[D]	XXP
DGBIN	Parameter 1								\bullet	\bullet	-		-	-	- -	\bullet	\bullet	-	\bullet	$\bullet \bullet$	\bullet	\bullet
DGBIN	Parameter 2									\bullet	-		-	\bullet	- -	-	\bullet	-	\bullet		\bullet	\bullet

Features

Convert the BIN32-bit Gray code data stored in the device specified in (s) into BIN 32-bit data, and store it in the device specified in (d).

(s) +1 : high 16 bits
(s): low 16 bits

GRY \rightarrow BIN Mathematical Algorithm: Starting from the second bit from the left, XOR each bit with the decoded value of the left bit as the decoded value of the bit (the leftmost bit remains unchanged).

Error code

Error code	Content
4084 H	When the value specified in (s) exceeds the range
4085 H	When the specified device range is read to exceed the corresponding device range
4086 H	When the specified device range is written to exceed the corresponding device range

Example

GRY/BIN 16-bit data \rightarrow Gray code conversion

GRY(P)
After converting the BIN 16-bit data of the device specified in (s) to BIN 16-bit Gray code data, it is stored in the device specified in (d).
-[GRY (s) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	BIN data or the start device that stores BIN data	0 to 32767	BIN16 bit	ANY16_S
(d)	The start device that stores the converted Gray code	-	BIN16 bit	ANY16_S

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		X Y M S SM T(bit)			C(bit)	LC(bit)	HSC(bit)	D.b	Kn	Kn	KnM	KnS		CD	R	SD	LC	HSC	KHE	[D]	XXP
PY	Parameter 1								\bullet	\bullet	\bullet	\bullet	-	- \bullet	-	\bullet			- •	\bullet	\bullet
Y	Parameter 2									\bullet	-	\bullet		- -	-	\bullet				\bullet	\bullet

Features

Convert the BIN 16-bit data specified in (s) into BIN 16-bit Gray code, and store it in the device specified in (d).
(s) BIN
(d)

BIN \rightarrow GRY Mathematical Algorithm: Starting from the rightmost bit, XOR each bit with the left bit as the value corresponding to the GRY bit, and the leftmost bit remains unchanged (equivalent to 0 on the left) .

Error code

Error code	Content
4084 H	When the value specified in (s) exceeds the range
4085 H	When the specified device range is read to exceed the corresponding device range
4086 H	When the specified device range is written to exceed the corresponding device range

Example

As shown in the above Circuit program:

BIN 1234	b15															b0	
	0	0	0	0	0	1	0	0	1	1	0	1		10			
	Ω																
GRY 1234					0	1	1	0	1	10	1	1		10			

For S, the range of 0 to 32767 is valid.

DGRY/BIN 32-bit data \rightarrow Gray code conversion

DGRY(P)

After converting the BIN 16-bit data of the device specified in (s) to BIN 16-bit Gray code data, it is stored in the device specified in (d).
-[GRY (s) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	BIN data or the start device that stores BIN data	0 to 2147483647	BIN32 bit	ANY32_S
(d)	The start device that stores the converted Gray code	-	BIN32 bit	ANY32_S

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		X Y M SSM T(bit)			C(bit)	LC(bit)	HSC(bit)	D.b	KnX		KnM	Kns		CD			C	HSC	KHE	[D]	XXP
	Parameter 1								-	\bullet	-	-	-	- \bullet	\bullet	\bullet	\bullet	\bullet	$\bullet \bullet$	\bullet	\bullet
DGRY	Parameter 2									-	-	\bullet	\bullet		\bullet	-	-	\bullet		\bullet	\bullet

Features

Convert the BIN32-bit data specified in (s) into BIN32-bit Gray code and store it in the device specified in (d)

(s)+1: high 16 bits
(s): low 16 bits

BIN \rightarrow GRY Mathematical Algorithm: Starting from the rightmost bit, XOR each bit with the left bit as the value corresponding to the GRY bit, and the leftmost bit remains unchanged (equivalent to 0 on the left) .

Error code

Error code	Content
4084 H	When the value specified in (s) exceeds the range
4085 H	When the specified device range is read to exceed the corresponding device range
4086 H	When the specified device range is written to exceed the corresponding device range

Example

$$
0 \text { X }
$$

As shown in the above Circuit program:

DPRUN/Otal digit transmission (32-bit data)

DPRUN(P)
After processing the device numbers of (s) and (d) with specified digits as octal numbers, transfer the data.
-[PRUN
(s) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	Digit specification*1	-	BIN32 bit	ANY32
(d)	Transfer destination device number*1	-	BIN32 bit	ANY32

Device used

Features

- Octal digit device to decimal digit device

- Decimal digit device \rightarrow octal digit device

Error code

Error code	Content
4085 H	When the specified device range is read to exceed the corresponding device range
4086 H	When the specified device range is written to exceed the corresponding device range

Example

As shown in the above Circuit program:
X 0 to X 27 take the value of octal digits and pass them to the Devices corresponding to M .

7.10 Floating point instructions

DACOS/Single precision real number COS-1 operation

DACOS(P)
After calculating the COS^{-1} (arc cosine) value of the angle specified in (s), the calculation result is stored in the device number specified in (d).
$-[D A C O S ~(s) \quad(d)]$
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The angle data for $\cos ^{-1}$ (arc cosine) calculation or the start device number that stores the angle data	$0,2^{-126} \leq\|(\mathrm{s})\|<1$	Single precision real number	ANYREAL_32
(d)	The start device number that stores operation result	0 to π	Single precision real number	ANYREAL_32

Device used

Instruction	Parameter	Devices																			Pulse xtension
		XYM SSM T(bit)		C(bit)	LC(bit)	HSC(bit)	D.b KnX		KnY KnM		KnS T C DR RDLCHSCKHE								[D]		XXP
	Parameter 1												- \cdot	\bullet	$\bullet \bullet$	\bullet	\bullet		\bullet		\bullet
DACOS	Parameter 2												- \cdot	\bullet	$\bullet \bullet$	-			-		-

Features

After calculating the $\cos ^{-1}$ (arc cosine) value of the angle specified in (s), the calculation result is stored in the device number specified in (d).

The COS value specified in (s) can be set within the range of -1.0 to 1.0 .
The angle (calculation result) stored in (d) stores the value from 0 to π in radians.
Related device are as follows:

Devices	Name	Content	
		Operation	
SM153	Zero	The operation result is zero	The zero flag (SM153) turns ON.
SM152	Borrow	The absolutevalue of operation result<2 ${ }^{-126}$	The value of (d) becomes the minimum value of 32-bit real numbers $\left(2^{-126}\right)$, and the borrow flag (SM152) turns ON.

Error code

Error code	Content
4085 H	The write address in (s) exceeds the device range
4086 H	The write address in (d) exceeds the device range
4084 H	When the content of the device specified by (s) is an irregular number, a non-number, $\pm \infty$ and exceeds -1.0 to 1.0

Example

$0 \mathrm{M}^{\text {M0 }} \longmapsto$ [DACOS E0. $4 \quad$ D0 $\left.\quad\right\}$

Calculate the arc cosine value of 0.4 and the result is 1.159279 .

DASIN/Single precision real number SIN $^{-1}$ operation

DASIN(P)

After calculating the SIN -1 (arc sine) value of the angle specified in (s), the calculation result is stored in the device number specified in (d).
-[DASIN (s) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The angle data for SIN $^{-1}$ (arcsine) calculation or the start device number that stores the angle data	$0,2^{-126} \leq\|(s)\|<1$	Single precision real number	ANYREAL_32
(d)	The start device number that stores operation result	$-\pi / 2$ to $\pi / 2$	Single precision real number	ANYREAL_32

Device used

Instruction	Parameter	Devices																				Offset modification	Pulse extension
		XYMSS		SM T(bit)		C(bit)	LC(bit)	HSC(bit)	D.b	KnX KnY KnM KnS					TCD		R SD LCHSCKHE					[D]	XXP
DAS	Parameter 1													\bullet		- -	- -	- -	-	\bullet	\bullet	\bullet	\bullet
DASIN	Parameter 2														-	- -	- -	- -	-	\bullet		\bullet	\bullet

Features

- After calculating the SIN-1 (arc sine) value of the angle specified in (s), the calculation result is stored in the device number specified in (d).

The SIN^{-1} value specified in (s) can be set within the range of -1.0 to 1.0.
The angle (calculation result) stored in (d) is stored in the unit of radians $(-\pi / 2)$ to $(\pi / 2)$.

- The related devices are as follows.

Devices	Name	Content	
		Condition	
SM153	Zero	The operation result is zero	The zero flag (SM153) turns ON.
SM152	Borrow	The absolute value of operation result<2 ${ }^{-126}$	The value of (d) becomes the minimum value of 32-bit real numbers (2

Error code

Error code	Content
4085 H	The write address in (s) exceeds the device range
4086 H	The write address in (d) exceeds the device range
4084 H	When the content of the device specified by (s) is an irregular number, a non-number, $\pm \infty$ and exceeds -1.0 to 1.0

Example

0 MO [DASIN E0.4 D0

Calculate the arc sine of 0.4 and the result is 0.4115168 .

DATAN/Single precision real number TAN ${ }^{-1}$ operation

DATAN(P)

After calculating the TAN -1 (arctangent) value of the angle specified in (s), the calculation result is stored in the device number specified in (d).
-[DATAN (s) (d)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The angle data for TAN the (arctangent) calculation or the start device number that stores the angle data	$0,2^{-126} \leq\|(\mathrm{s})\|<2^{128}$	Single precision real number	ANYREAL_32
(d)	The start device number that stores operation result	$-\pi / 2$ to $\pi / 2$	Single precision real number	ANYREAL_32

Device use

Instruction	Parameter	Devices																					Offset modification	Pulse extension	
		XYMSS		SM T(bit)		C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY KnM		Kns T		CD		R SD		LC HSCK\|H	E				[D]	XXP
	Parameter 1														-	-	-	\bullet	\bullet	\bullet		\bullet	\bullet	\bullet	
	Parameter 2														\bullet	-	\bullet	-	\bullet	\bullet			\bullet	\bullet	

Features

Calculate the TAN -1 ((arctangent) value of the angle specified in (s), and store the calculation result in the device number specified in (d).

The angle (calculation result) stored in (d) is stored in the unit of radians $(-\pi / 2)$ to $(\pi / 2)$.

- The related devices are as follows.

Devices	Name	Content	
		Condition	
SM153	Zero	The operation result is zero	The zero flag (SM153) turns ON.
SM152	Borrow	The absolute value of operation result<2 2^{-126}	$\left.\begin{array}{l}\text { The value of (d) becomes the minimum value of 32-bit real } \\ \text { numbers }\left(2^{-126}\right)\end{array}\right)$, and the borrow flag (SM152) turns ON.

Error code

Error code	Content
4085 H	The write address in (s) exceeds the device range
4086 H	The write address in (d) exceeds the device range
4084 H	When the content of the device specified by (s) is an irregular number, a non-number and $\pm \infty$

Example

$\stackrel{\text { M0 }}{ } \stackrel{\text { LDATAN }}{ }$ E4.6 D0

Calculate the arctangent value of 4.6 and the result is 1.356736

DCOS/Single precision real number COS operation

DCOS (P)
After calculating the COS (cosine) value of the angle specified in (s), the calculation result is stored in the device number specified in (d).
$-[\operatorname{DCOS} \quad(\mathrm{s}) \quad$ (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The angle data for COS (cosine) calculation or the start device number that stores the angle data	$0,2^{-126} \leq\|(s)\|<2^{128}$	Single precision real number	ANYREAL_32
(d)	The start device number that stores operation result	-	Single precision real number	ANYREAL_32

Device used

Instruction	Parameter	Devices																					Offset modification	Pulse extension
		XYMS		SM T(bit)		C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY KnM		KnS T		CD		RSD	LCHSCKHE					[D]	XXP
DCOS	Parameter 1														-	-	-	-	-	\bullet		-	\bullet	\bullet
DCOS	Parameter 2														-	$\bullet \cdot$	$\bullet \bullet$	-	-	\bullet			\bullet	\bullet

Features

After calculating the COS (cosine) value of the angle specified in (s), store the calculation result in the device number specified in (d).

For the angle specified in (s), set it in radians (angle $\times \pi \div 180$).

- The related devices are as follows.

Devices	Name	Condition	
		Operation	
SM153	zero	The operation result is zero	The zero flag (SM153) turns ON.
SM152	Borrow	The absolute value of operation result<2 ${ }^{-126}$	$\left.\begin{array}{l}\text { The value of (d) becomes the minimum value of 32-bit real } \\ \text { numbers }\left(2^{-126}\right)\end{array}\right)$, and the borrow flag (SM152) turns ON.

Error code

Error code	Content
4085 H	The write address in (s) exceeds the device range
4086 H	The write address in (d) exceeds the device range
4084 H	When the content of the device specified by (s) is an irregular number, a non-number and $\pm \infty$

Example

Calculate the cosine value of 1.3 and the result is $2.674989 \mathrm{E}-1$

DCOSH/Single precision real number COSH operation

DCOSH(P)

After calculating the DCOSH (hyperbolic cosine) value of the angle specified in (s), the calculation result is stored in the device number specified in (d).
-[DCOSH
(s) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The angle data for DCOSH (hyperbolic cosine) calculation or the device start number that stores the angle data	$0,2^{-126} \leq\|(\mathrm{s})\|<2^{128}$	Single precision real number	ANYREAL_32
(d)	The start device number that stores operation result	-	Single precision real number	ANYREAL_32

Device used

Instruction	Parameter	Devices																			Offset modification	Pulse extension
		XYMS		SM T(bit)		C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY KnM		KnS T		TCD	RSD	LCHSCKHE				[D]	XXP
DCOSH	Parameter 1														- - -	\bullet	\bullet	\bullet		\bullet	\bullet	\bullet
DCOSH	Parameter 2														- - \bullet	-	\bullet	\bullet			\bullet	\bullet

Features

- After calculating the DCOSH (hyperbolic cosine) value of the angle specified in (s), the calculation result is stored in the device number specified in (d).

This instruction is to take the COSH value of a binary floating point number. The calculation formula is cosh value=(es+e $-s) / 2$.

- The related devices are as follows.

Devices	Name	Content	
SM151	carry	The absolition	Operation

Error code

Error code	Content
4085 H	The write address in (s) exceeds the device range
4086 H	The write address in (d) exceeds the device range
4084 H	When the content of the device specified by (s) is an irregular number, a non-number and $\pm \infty$

Example

Calculate the hyperbolic cosine value of 2.5 , and the result is 6.132289
\square

DSIN/Single precision real number SIN operation

DSIN(P)

After calculating the SIN (sine) value of the angle specified in (s), the calculation result is stored in the device number specified in (d).
-[DSIN
(s) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The angle data for SIN (sine) calculation or the device start number that stores the angle data	$0,2^{-126} \leq\|(s)\|<2^{128}$	Single precision real number	ANYREAL_32
(d)	The start device number that stores operation result	-	Single precision real number	ANYREAL_32

Device used

Features

After calculating the SIN (sine) value of the angle specified in (s), the calculation result is stored in the device number specified in (d).

For the angle specified in (s), set it in radians (angle $\times \pi \div 180$).

- The related devices are as follows.

Devices	Name	Condition	
SM153	Zero	The operation result is zero	Operation
SM152	Borrow	The absolute value of operation result <2 -126	The value of ((d) becomes the minimum value of a 32-bit real number $\left(2^{-126}\right)$, and the borrow flag (SM152) turns on.

Error code

Error code	Content
4085 H	The write address in (s) exceeds the device range
4086 H	The write address in (d) exceeds the device range
4084 H	When the content of the device specified by (s) is an irregular number, a non-number and $\pm \infty$

Example

0 M0 0 [DSIN E1. 4 D0 $\}$

Calculate the sine of 1.4 and the result is 0.9854497

DSINH/Single precision real number SINH operation

DSINH(P)

After calculating the SINH (hyperbolic sine) value of the angle specified in (s), the calculation result is stored in the device number specified in (d).
-[DSINH (s) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The angle data for SINH (hyperbolic sine) calculation or the device start number that stores the angle data	$0,2^{-126} \leq\|(s)\|<2^{128}$	Single precision real number	ANYREAL_32
(d)	The start device number that stores operation result	-	Single precision real number	ANYREAL_32

Device used

Instruction	Parameter	Devices																				Offset modification	Pulse extension
		XYM M SM T(bit)				C(bit)	LC(bit)	HSC(bit)	D.b KnX		KnY $\mathbf{K n M}^{\text {K }}$ KnS T				TCD	RSD		LCHSCKHE				[D]	XXP
DSIN	Parameter 1													-		- -	- \bullet	-		-	\bullet	\bullet	\bullet
DSIN	Parameter 2													\bullet		-	- -	-		-		\bullet	\bullet

Features

After calculating the SINH (hyperbolic sine) value of the angle specified in (s), the calculation result is stored in the device number specified in (d).

The instruction is to take the SINH value from a binary floating point number. The calculation formula is sinh value $=(\mathrm{es}-\mathrm{e}-\mathrm{s}) / 2$.
The related devices are shown below.

Devices	Name	Content	
		Condition	Operation
SM153	Zero	The operation result is zero	The zero flag (SM153) turns ON.
SM152	Borrow	The absolute value of operation result $<2^{-126}$	The value of (d) becomes the minimum value of a 32-bit real number $\left(2^{-126}\right)$, and the borrow flag (SM152) turns on.
SM151	Carry	The absolute value of operation result > 2^{128}	The value of (d) becomes the maximum value of 32 -bit real numbers $\left(2^{128}\right)$, and the carry flag (SM151) turns on.

Error code

Error code	Content
4085 H	The write address in (s) exceeds the device range
4086 H	The write address in (d) exceeds the device range
4084 H	When the content of the device specified by (s) is an irregular number, a non-number and $\pm \infty$

Example

0 M0

Calculate the hyperbolic sine value of 3.2 and the result is 12.24588

DTAN/Single precision real number TAN operation
DTAN(P)
After calculating the TAN (tangent) value of the angle specified in (s), the calculation result is stored in the device number specified in (d).
-[DTAN (s) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The angle data for TAN (tangent) calculation or the device start number that stores the angle data	$0,2^{-126} \leq\|(s)\|<2^{128}$	Single precision real number	ANYREAL_32
(d)	The start device number that stores operation result	-	Single precision real number	ANYREAL_32

Device used

Instruction	Parameter	Devices																					Offset odification	Pulse extension
		XYM S	SM T(bit)		C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS		CD	DR	RSD	D	LC	HSC	K	E		[D]	XXP
	Parameter 1													-	- -	-	-	-	\bullet		\bullet		\bullet	\bullet
	Parameter 2	,												\bullet	-	-	-	\bullet	\bullet				\bullet	\bullet

Features

After calculating the TAN (tangent) value of the angle specified in (s), the calculation result is stored in the device number specified in (d).

For the angle specified in (s), set it in radians (angle $\times \pi \div 180$).
The related devices are shown below.

Devices	Name	Content	
		Condition	Operation
SM153	Zero	The operation result is zero	The zero flag (SM153) turns ON.
SM152	Borrow	The absolute value of operation result <2 2^{-126}	The value of (d) becomes the minimum value of a 32-bit real number (2 2^{-126}), and the borrow flag (SM152) turns on.
SM151	Carry	The absolute value of operation result> 2^{128}	The value of (d) becomes the maximum value of 32-bit real numbers $\left(2^{128}\right)$, and the carry flag (SM151) turns on.

Error code

Error code	Content
4085 H	The write address in (s) exceeds the device range
4086 H	The write address in (d) exceeds the device range
4084 H	When the content of the device specified by (s) is an irregular number, a non-number and $\pm \infty$

Example

Calculate the tangent of 1.4 and the result is 5.797883

DATANH/Single precision real number TANH operation

DTANH(P)
After calculating the DTANH (hyperbolic tangent) value of the angle specified in (s), the calculation result is stored in the device number specified in (d).
-[DTANH (s) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The angle data for DTANH (hyperbolic tangent) calculation or the device start number that stores the angle data	$0,2^{-126} \leq\|(s)\|<2^{128}$	Single precision real number	ANYREAL_32
(d)	The start device number that stores operation result	-	Single precision real number	ANYREAL_32

Device used

Instruction	Parameter	Devices																				Offset modification	Pulse extension
		XYM S	SM T(bit)		C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS		CD	DR	RSD	D	LC	HSC	KH	E	[D]	XXP
	Parameter 1													-	- -	-	-	-	\bullet		\bullet	\bullet	\bullet
	Parameter 2	,												\bullet	-		-	\bullet	\bullet			\bullet	\bullet

Features

After calculating the DTANH (hyperbolic tangent) value of the angle specified in (s), the calculation result is stored in the device number specified in (d).

The instruction is to take the TANH value of a binary floating point number. The calculation formula is tanh value $=\left(e^{s}-e^{-s}\right) /\left(e^{s}+e^{-s}\right)$.
The related devices are shown below.

Device	Name	Content	
		Condition	
SM153	Zero	The operation result is zero	The zero flag (SM153) turns ON.
SM152	Borrow	The absolute value of operation result <2 ${ }^{-126}$	The value of (d) becomes the minimum value of a 32-bit real number (2

Error code

Error code	Content
4085 H	The write address in (s) exceeds the device range
4086 H	The write address in (d) exceeds the device range
4084 H	When the content of the device specified by (s) is an irregular number, a non-number and $\pm \infty$

Example

Calculate the hyperbolic tangent of 2.5 , and the result is 0.9866143

DDEG/Single precision real number radian \rightarrow angle conversion
DDEG(P)
Convert the size unit of the angle from the radian unit specified in (s) to the degree unit (DEG. unit), and store it in the device number specified in (d).
-[DDEG (s) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)		
(s)	The radian angle that converts the degree unit or the device start number that stores the radian angle	$0,2^{-126} \leq\|(\mathrm{s})\|<2^{128}$	Single precision real number	ANYREAL_32		
(d)	The device start number that stores the value converted in degrees	$-\pi / 2$ to $\pi / 2$				Single precision real number
:---:						
ANYREAL_32						

Device used

Instruction	Parameter	Devices																				Offset modification	Pulse extension
		XY/MSSMT(bit)				C(bit)	LC(bit)	HSC(bit)	D.b	KnX		KnM	KnS			DR	SD	LC	HSC	K	E	[D]	XXP
DDEG	Parameter 1													-	-	- -	-	-	\bullet		-	\bullet	\bullet
	Parameter 2													-	\bullet		-	-	\bullet			\bullet	-

Features

The angle size unit is converted from the radian unit specified in (s) to the degree unit (DEG. unit), and then stored in the device number specified in (d).

The conversion from degree unit to radian unit is performed as follows.
Radian unit $=$ degree unit * $180 / \pi$

- The related devices are as follows.

Devices	Name	Content	
		Operation	
SM153	Zero	The operation result of is zero (when the mantissa part is zero)	The zero flag (SM153) turns ON.
SM151	Carry	The absolute value of the operation result>2 ${ }^{128}$	The value of (d) becomes the maximum value of 32-bit real numbers (2 ${ }^{128}$), and the carry flag (SM151) turns on.

Error code

Error code	Content
4085 H	The write address in (s) exceeds the device range
4086 H	The write address in (d) exceeds the device range
4084 H	When the content of the device specified by (s) is an irregular number, a non-number and $\pm \infty$

Example

$0 \mathrm{MO}^{\text {M0 }} \vdash$ [DDEG \quad E3. $4 \quad$ D0 $\left.\quad\right\} \mid$

The result is 194.8057

DRAD/Single precision real number conversion angle \rightarrow radian conversion
DRAD(P)
The angle size unit is converted from the degree unit (DEG. unit) specified in (s) to the radian unit and stored in the device number specified in (d).
-[DRAD (s) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The radian angle that converts the degree unit or the device start number that stores the angle	$0,2^{-126} \leq\|(s)\|<2^{128}$	Single precision real number	ANYREAL_32
(d)	The device start number that stores the value converted in degrees	-	Single precision real number	ANYREAL_32

Device used

Instruction	Parameter	Devices																				Offset modification	Pulse extension
		XYMS		SM T(bit)		C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY KnM		KnS T		CD		RSD	LCHSCKHE				[D]	XXP
DRAD	Parameter 1													\bullet		- -	-	\bullet	-		\bullet	\bullet	\bullet
	Parameter 2																-	-	-	-		-	

Features

The angle size unit is converted from the degree unit (DEG. unit) specified in (s) to the radian unit and stored in the device number specified in (d).

Degree unit \rightarrow radian unit
The conversion is performed as follows.
Radian unit $=$ degree unit* $\pi / 180$

- The related devices are as follows.

Devices	Name	Content	
		Condition	
SM153	Zero	The operation result is zero	The zero flag (SM153) turns ON.
SM152	Borrow	The absolute value of operation result <2 ${ }^{-126}$	The value of (d) becomes the minimum value of a 32-bit real number (2

Error code

Error code	Content
4085 H	The write address in (s) exceeds the device range
4086 H	The write address in (d) exceeds the device range
4084 H	When the content of the device specified by (s) is an irregular number, a non-number and $\pm \infty$

Example

$0 \quad$ M0 1 DRAD E60 \quad D0 $\quad\} \mid$

The result is 1.047197

DEADD/Single precision real number addition operation

DEADD(P)

Add the binary floating point data specified in (s1) and the binary floating point data specified in (s2), and store the result in the device specified in (d).
-[DEADD
(s1) (s2)
(d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	The added data or the device start number that stores the added data	$0,2^{-126} \leq\|(s)\|<2^{128}$	Single precision real number	ANYREAL_32
(s2)	Addition data or the device start number that stores the addition data	$0,2^{-126} \leq\|(s)\|<2^{128}$	Single precision real number	ANYREAL_32
(d)	the device start number that stores the operation result	-	Single precision real number	ANYREAL_32

Device used

Instruction	Parameter	Devices																		Offset odification	Pulse extension
		XYM M S SM T (bit)			C(bit)	LC(bit)	HSC(bit)	D.b/	KnX KnY		Y KnM Kns		TCDRSDLCHSCKHE							[D]	XXP
	Parameter 1												$\bullet \bullet \bullet$	-	-	-	-	-••		\bullet	\bullet
DEADD	Parameter 2												$\bullet \bullet \bullet$	\bullet	- -	-	-	$\bullet \bullet \bullet$		\bullet	\bullet
	Parameter 3												$\bullet \bullet \bullet$	-	- -	\bullet	\bullet			\bullet	\bullet

Features

Add the binary floating point data specified in (s1) and the binary floating point data specified in (s2), and store the result of the addition in the device specified in (d).

When constants (K, H) to (s 1), (s 2) are specified, the value is automatically converted to a binary floating point data.

- The related devices are as follows.

Devices	Name	Content	
		Condition	Operation
SM153	Zero	The operation result is zero	The zero flag (SM153) turns ON.
SM152	Borrow	The absolute value of operation result $<2^{-126}$	The value of (d) becomes the minimum value of a 32-bit real number (2-126) , and the borrow flag (SM152) turns on.
SM151	Carry	The absolute value of operation result> 2^{128}	The value of (d) becomes the maximum value of 32-bit real numbers $\left(2^{128}\right)$, and the carry flag (SM151) turns on.

Error code

Error code	Content
4085 H	The write address in (s1) and (s2) exceed the device range
4086 H	The write address in (d) exceeds the device range
4084 H	When the content of the device specified by (s1) and (s2) is an irregular number, a non-number and $\pm \infty$

Example

The result is $1.2+63.2=64.4$
DO
1.2
6. $32 \mathrm{E}+1$
6. $44 \mathrm{E}+1$

DESUB/Single precision real number subtraction operation

DESUB(P)

Subtract the binary floating point data specified in (s1) and the binary floating point data specified in (s2), and store the result in the device specified in (d).
-[DESUB (s1) (s2) (d)]
Content, range and data type

Parameter	Content	Range	Data type	
(s1)	The subtracted data or the device start number that stores the subtracted data			
(s2)	subtract data or the device start number that stores the subtracted data	$0,2^{-126} \leq\|(s)\|<2^{128}$	Single precision real number	ANYREAL_32
(d)	the device start number that stores the operation result	-	Single precision real number	ANYREAL_32

Device used

Instruction	Parameter	Devices																			Offset modification	Pulse extension
		XY	M S SM		T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX KnY		KnM KnS T			TCD	RSDLCHSCKHE					[D]	XXP
	Parameter 1													\bullet	-	$\bullet \bullet$	-	\bullet	\bullet	$\bullet \bullet \bullet$	\bullet	\bullet
DESUB	Parameter 2													\bullet	-	$\bullet \cdot$	\bullet	\bullet	\bullet	- - -	\bullet	\bullet
	Parameter 3													-	\bullet		\bullet	\bullet	\bullet		\bullet	\bullet

Features

- Subtract the binary floating point data specified in ($s 1$) and the binary floating point data specified in ($s 2$), and store the subtraction result in the device specified in (d).

When constants (K, H) to $(\mathrm{s} 1),(\mathrm{s} 2)$ are specified, the value is automatically converted to a binary floating point data.

- The related devices are as follows.

Devices	Name	Content	
		Condition	
SM153	Zero	The operation result is zero	The zero flag (SM153) turns ON.
SM152	Borrow	The absolute value of operation result <2 ${ }^{-126}$	The value of (d) becomes the minimum value of a 32-bit real

PLC LX5V Series Programming Manual (V2.2)

			number (2^{-126}), and the borrow flag (SM152) turns on.
SM151	Carry	The absolute value of operation result> 2^{128}	The value of (d) becomes the maximum value of 32-bit real numbers $\left(2^{128}\right)$, and the carry flag (SM151) turns on.

Error code

Error code	Content
4085 H	The write address in (s1) and (s2) exceeds the device range
4086 H	The write address in (d) exceeds the device range
4084 H	When the content of the device specified by (s1) and (s2) is an irregular number, a non-number and $\pm \infty$

Example

The calculation result is $1.2-63.2=-62$
DO
1.2
6. $32 \mathrm{E}+1$
-6. 2E+1

DEMUL/Single precision real number multiplication operation

DEMUL(P)
Multiply the binary floating point data specified in (s1) and the binary floating point data specified in (s2), and store the result in the device specified in (d).
-[DEMUL (s1) (s2) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	The multiplication data or the device start number that stores the multiplication data	$0,2^{-126} \leq\|(s)\|<2^{128}$	Single precision real number	ANYREAL_32
(s2)	Multiplication operation data or the device start number that stores the multiplication data	$0,2^{-126} \leq\|(s)\|<2^{128}$	Single precision real number	ANYREAL_32
(d)	the device start number that stores the operation result	-	Single precision real number	ANYREAL_32

Device used

Instruction	Parameter	Devices																	Offset odification	Pulse extension
		XY M S SM T ${ }^{\text {(bit) }}$			C(bit)	LC(bit)	HSC(bit)	D.b\|Knx		X KnY KnM KnS			STCDRSDLCHSCKHE						[D]	XXP
	Parameter 1												$\bullet \bullet \bullet$	$\bullet \bullet$	- •	-	$\bullet \bullet \bullet$		\bullet	\bullet
DEMUL	Parameter 2												$\bullet \bullet \bullet$	- \bullet	- \bullet	-	- ••		\bullet	\bullet
	Parameter 3												$\bullet \bullet \bullet$	- \bullet	-	-			\bullet	-

Features

Multiply the binary floating point data specified in (s1) and the binary floating point data specified in (s2), and store the multiplication result in the device specified in (d).

When constants (K, H) to (s 1), (s 2) are specified, the value is automatically converted to a binary floating point data.

- The related devices are as follows.

Devices	Name	Content	
		Condition	
SM153	Zero	The operation result is zero	The zero flag (SM153) turns ON.
SM152	Borrow	The absolute value of operation result <2 2^{-126}	The value of (d) becomes the minimum value of a 32-bit real number (2
SM126) , and the borrow flag (SM152) turns on.			

Error code

Error code	Content
4085 H	The write address in (s1) and (s2) exceeds the device range
4086 H	The write address in (d) exceeds the device range
4084 H	When the content of the device specified by (s1) and (s2) is an irregular number, a non-number and $\pm \infty$

Example

SM102					
		[DEMOV	E1. 2	D0	
		[DEMOV	E63. 2	D2	
$\stackrel{\text { SM102 [DEMUL D0 D2 }}{ }$					

The calculated result: $1.2 * 63.2=75.84$

Device	+0	+2	+4	+6
10	$1.200000 \mathrm{E}+000$	$6.320000 \mathrm{E}+001$	$7.584000 \mathrm{E}+001$	$0.000000 \mathrm{E}+000$

DEDIV/Single precision real number division operation

DEDIV(P)

Divide the binary floating point data specified in (s1) and the binary floating point data specified in (s2), and store the result in the device specified in (d).
-[DEDIV (s1) (s2) (d)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	The divided data or the device start number that stores the devided data	$0,2^{-126} \leq\|(\mathrm{s})\|<2^{128}$	Single precision real number	ANYREAL_32
(s2)	Division operation data or the device start number that stores the division operation data	$0,2^{-126} \leq\|(\mathrm{s})\|<2^{128}$	Single precision real number	ANYREAL_32
(d)	the device start number that stores the operation result	-	Single precision real number	ANYREAL_32

Device used

Instruction	Parameter	Devices																	Offset modification [D]		Pulseextension XXP	
		XYM ${ }^{\text {S SM T }}$ (bit)			C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	Kns	TCD	R S	SDLC	CHS	SCK	KHE				
	Parameter 1												$\bullet \bullet \bullet$	-	- •		-	$\bullet \bullet \bullet$		\bullet		\bullet
DEDIV	Parameter 2												$\bullet \bullet \bullet$	\bullet	- -		-	$\bullet \bullet \bullet$		-		\bullet
	Parameter 3												$\bullet \bullet \bullet$	\bullet	-		\bullet			\bullet		\bullet

Features

Divide the binary floating point data specified in (s1) and the binary floating point data specified in (s2), and store the result of the division in the device specified in (d).

When constants (K, H) to $(\mathrm{s} 1),(\mathrm{s} 2)$ are specified, the value is automatically converted to a binary floating point data.

- The related devices are as follows.

Devices	Name	Content	
		Condition	Operating
SM153	Zero	The operation result is zero	The zero flag (SM153) turns ON.
SM152	Borrow	The absolute value of operation result $<2^{-126}$	The value of (d) becomes the minimum value of a 32-bit real number $\left(2^{-126}\right)$, and the borrow flag (SM152) turns on.
SM151	Carry	The absolute value of operation result> 2^{128}	The value of (d) becomes the maximum value of 32-bit real numbers $\left(2^{128}\right)$, and the carry flag (SM151) turns on.

Error code

Error code	Content
4085 H	The write address in (s1) and (s2) exceeds the device range
4086 H	The write address in (d) exceeds the device range
4084 H	When the content of the device specified by (s1) and (s2) is an irregular number, a non-number and $\pm \infty$
4080 H	(s2) value is 0

Example
$\left.\begin{array}{|ccrlll|}\hline \text { SM102 } & & \text { [DEM0V } & \text { E1.2 } & \text { D0 } &] \\ \text { SM102 } & & \text { [DEM0V } & \text { E63.2 } & \text { D2 } &] \\ \hline \text { [DEDIV } & \text { D2 } & \text { D0 } & \text { D4 } &]\end{array}\right]$

Get the calculation result: $63.2 / 1.2=52.66666667$

10	1.2	$6.32 \mathrm{E}+1$	$5.266666 \mathrm{E}+1$

DEMOV/Single precision real data transmission

DEMOV(P)

Transfer the binary floating point data data stored in the device specified in (s) to the device specified in (d).
-[DEMOV (s) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The transmitted data or the device that stores the transmitted data	$0,2^{-126} \leq\|(s)\|<2^{128}$	Single precision real number	ANYREAL_32
(d)	The device number that stores the transmit destination data	-	Single precision real number	ANYREAL_32

Device used

Instruction	Parameter	Devices																					Offset modification	Pulse extension
		XYM S		SM T(bit)		C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY KnM		KnS ${ }^{\text {T }}$		TCD	RSD			LCHSCKHE				[D]	XXP
DEMOV	Parameter 1														-	-	-	-	-	\bullet		-	\bullet	\bullet
DEM	Parameter 2														-	-	-	-	-	\bullet			-	\bullet

Features

Transfer the binary floating point data data stored in the device specified in (s) to the device specified in (d).

Error code

Error code	Content
4085 H	(s) read address exceeds the device range
4086 H	(d) write address exceeds the device range

Example

Assign 3.265 to R10

Device	+0	+1
R8	$0.000000 \mathrm{E}+000$	3.256

DEBCD/Binary floating point \rightarrow decimal floating point conversion
DEBCD(P)
After converting the binary floating point specified in (s) into a decimal floating point, it is stored in the device specified in (d).
$-[D E B C D \quad$ (s) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The device number that stores the binary floating point data	$0,2^{-126} \leq\|(s)\|<2^{128}$	Single precision real number	ANYREAL_32
(d)	The device number that stores the converted decimal floating point data	-	Real number	ANY32

Device used

Instruction	Parameter	Devices																				Offset modification	Pulse extension
		XYMSS		SM T(bit)		C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY KnM Kns			TCD		R SD		LCHSCKH\|E				[D]	XXP
BCD	Parameter 1													-		- -	- -	-	-		\bullet	\bullet	\bullet
BCD	Parameter 2														-	-	- -	-	-			\bullet	\bullet

Features

After converting the binary floating point specified in (s) into a decimal floating point, it is stored in the device specified in (d).

N Note

All floating-point operations are performed in binary floating-point. However, the binary floating point is a difficult-to-understand value (special monitoring method), so by converting it into a decimal floating point operation, it is convenient for peripheral equipment to monitor and so on.

Error code

Error code	Content
4085 H	The write address in (s) exceeds the device range
4086 H	The write address in (d) exceeds the device range
4084 H	When the content of the device specified by (s) is an irregular number, a non-number and $\pm \infty$

Example

MO

Get the result: $5600 \times 10-5$

| DO | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 5600 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -5 |

PLC LX5V Series Programming Manual (V2.2)
DEBIN/Decimal floating point \rightarrow binary floating point conversion

DEBIN(P)

Convert the decimal floating point specified in (s) to binary floating point and store it in the device specified in (d).
-[DEBIN (s) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The device number that stores the decimal floating point data	-	Real	ANY32
(d)	The device number that stores the converted binary floating point data	-	Single precision real number	ANYREAL_32

Device used

Instruction	Parameter	Devices																				Offset modification	Pulse extension
		XYMSS		SM T(bit)		C(bit)	LC(bit)	HSC(bit)	D.b	KnX KnY KnM KnS ${ }^{\text {T }}$					TCD		R SD		LCHSCKHE			[D]	XXP
DEBIN	Parameter 1															-		-	-	\bullet		\bullet	\bullet
D	Parameter 2														-	- -	-	-	-	\bullet		\bullet	\bullet

Features

Convert the decimal floating point specified in (s) to binary floating point and store it in the device specified in (d).

- The related devices are as follows.

Devices	Name	Content		
		Condition		Operation
SM153	Zero	The operation result is zero		The zero flag (SM153) tur
SM152	Borrow	The absolute value of opera	on result <2-126	The value of (d) becomes the minimum value of a 32-bit real number $\left(2^{-126}\right)$, and the borrow flag (SM152) turns on.
SM151	Carry	The absolute value of opera	ion result> 2^{128}	The value of (d) become numbers $\left(2^{128}\right)$, and the
Error code				
		Error code	Content	
		4085H	(s) read address exceeds the device range	
		4086H	(d) write address exceeds the device range	

Example

The result after conversion:

DENEG/Single precision real number sign inversion

DENEG(P)

After inverting the sign of the single precision real number of the device specified in (d), it is stored in the device specified in (d). -[DEBEG (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(d)	The device start number that stores the sign-inverted binary floating point data	-	Single precision real number	ANYREAL_32

Device used

Features

The sign of the binary floating point data of the device specified in (d) is inverted and stored in the device specified in (d).

Used when inverting positive and negative signs.

Error code

Error code	Content
4086 H	The write address in (d) exceeds the device range

Example

It becomes -1.43 after conversion

$$
\begin{array}{l|l}
\text { D0 } & -1.43
\end{array}
$$

DECMP/Single precision real number comparison
DECMP(P)
Compare two data (binary floating point data), and output their large, small, and consistent results to the bit device (3 points).
-[DECMP (s1) (s2) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	Comparison data or the device number that stores the comparison data	$0,2^{-126} \leq\|(s)\|<2^{128}$	Single precision real number	ANYREAL_32
(s2)	Comparison data or the device number that stores the comparison data	$0,2^{-126} \leq\|(\mathrm{s})\|<2^{128}$	Single precision real number	ANYREAL_32
(d)	The start bit device number that outputs the comparison result (occupies 3 points)	-	Bit	ANYBIT_ARRAY

Device used

Instruction	Parameter	Devices																					Offset modification	Pulse extension
		X Y	M S	SM T(bit)		C(bit)	LC(bit)	HSC(bit)	D.b	KnX KnY KnM ${ }^{\text {KnS T }}$					T CD		DSDLCHSCKHE						[D]	XXP
	Parameter 1														\bullet	-	-	\bullet			- -	\bullet	\bullet	\bullet
DECMP	Parameter 2															- -	\bullet	\bullet			- \bullet	\bullet	\bullet	\bullet
	Parameter 3	-	- \bullet	-					-														\bullet	\bullet

Features

Compare the comparison value (s1) and the comparison source (s2) as a floating point comparison. According to the result of small, consistent, and large, one of (d), (d)+1, (d)+2 turns ON.

(1) : Even if the command input is turned OFF and the DECMP command is not executed, (d) to (d) +2 will keep the state before XO is turned OFF.

When the constant (K, H) to the device specified in (s 1), (s 2) is specified, the value BIN \rightarrow binary floating point data conversion is processed automatically

* Note: The device specified in (d) occupies 3 points [(d), (d)+1, (d)+2]. Please be careful not to overlap with devices used for other purposes.

Error code

Error code	Content
4085 H	The write address in (s1) or (s2) exceeds the device range
4086 H	The write address in (d) exceeds the device range
4084 H	When the content of the device specified by (s) or $(\mathrm{s} 2)$ is an irregular number, a non-number and $\pm \infty$

Example

Since the floating point number in R30 is greater than the floating point number in D30, M12 turns ON.

$M 10$	0
$M 11$	0
$M 12$	1

DEZCP/Binary floating point bandwidth comparison

DEZCP(P)

Compare the comparison range and data (binary floating point) of high and low 2 points, and output the result of its large, small, and bandwidth to the bit device (3 points).
-[DEZCP (s1) (s2) (s3) (d)]
Content, range and data type

Parameter	Content	Range	Data type (label)	
$(s 1)$	Comparison data or the device number that stores the comparison data	$0,2^{-126} \leq\|(s)\|<2^{128}$	Single precision real number	ANYREAL_32
(s2)	Comparison data or the device number that stores the comparison data	$0,2^{-126} \leq\|(s)\|<2^{128}$	Single precision real number	ANYREAL_32
(s3)	Comparison data or the device number that stores the comparison data	$0,2^{-126} \leq\|(s)\|<2^{128}$	Single precision real number	ANYREAL_32
(d)	The start bit device number that outputs the comparison result (occupies 3 points)	-	Bit	ANYBIT_ARRAY

Device used

Instruction	Parameter	Devices																				Offset modification	Pulse extension
		X Y M	SM T(bit)			C(bit)	LC(bit)	HSC(bit)	D.b	KnX KnY		KnM KnS T			TCD	DRSD		LCHSCKHE				[D]	XXP
	Parameter 1													-		-	\bullet	-	\bullet	$\bullet \bullet$	-	\bullet	\bullet
DEZCP	Parameter 2													\bullet	-	-	\bullet	\bullet	\bullet	- -	-	\bullet	\bullet
D	Parameter 3													$\bullet \bullet$	- -	-	\bullet	-	\bullet	- -	\bullet	\bullet	-
	Parameter 4	- -	\bullet	\bullet					\bullet													\bullet	\bullet

Features

Compare the comparison value ($s 1$), ($s 2$) and the comparison source ($s 3$) as a floating point comparison, according to its small, range, and large result, one of (d), (d)+1, (d)+2 The bit turns ON.

(1): Even if the instruction input is turned OFF and DEZCP instruction is not executed, (d) to (d)+2 will keep the state before XO is turned OFF.

When the constant (K, H) to the device specified in $(\mathrm{s} 1),(\mathrm{s} 2),(\mathrm{s} 3)$ is specified, the value is automatically converted from BIN to binary floating point for processing.

* Note

The device specified in (d) occupies 3 points [(d), (d)+1, (d)+2]. Please be careful not to overlap with devices used for other purposes. Please set the size relationship of the comparison data as $[(s 1)+1,(s 1)] \leq[(s 2)+1,(s 2)]$. In the case of $[(s 1)+1,(s 1)]>[(s 2)+1,(s 2)]$, it is regarded as the value of $[(s 2)+1,(s 2)]$ and $[(s 1)+1,(s 1)]$ Same for comparison.

Error code

Error code	Content
4085 H	The write address in (s1), (s2) and (s3) exceeds the device range
4086 H	The write address in (d) exceeds the device range
4084 H	When the content of the device specified by (s 1), ($s 2$) and ($s 3$) is an irregular number, a non-number and $\pm \infty$

Example

Since 2.45 is greater than 1.456 and 2.45 is less than $2356, \mathrm{M} 41$ is set to ON

M40	0
M41	1
M42	0

DESQR/Single precision real square root

DESQR(P)

After the square root of the value specified in (s) is calculated, the calculation result is stored in the device specified in (d).
-[DESQR (s) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The data for square root operation or the device start number that stores the data	$0,2^{-126} \leq\|(s)\|<2^{128}$	Single precision real number	ANYREAL_32
(d)	The device start number stores operation result	-	Single precision real number	ANYREAL_32

Device used

Instruction	Parameter	Devices																					Offset modification	Pulse extension
		XYM S		SM T(bit)		C(bit)	LC(bit)	HSC(bit)	D.b	KnX KnY KnM Kns				TCD			R SD LCHSCKHE						[D]	XXP
D	Parameter 1														-	- \bullet	\bullet	-	-	\bullet	$\bullet \bullet$	\bullet	-	\bullet
DES	Parameter 2														-	- -	-	-	-	\bullet			\bullet	\bullet

Features

- After the square root of the value specified in (s) is calculated, the calculation result is stored in the device number specified in (d).

The value specified in (s) can only be set to a positive number. (Cannot perform operations with negative numbers.)

- The related devices are as follows.

Devices	Name	Content	
		Condition	Operation
SM153	Zero	The operation result is zero	The zero flag (SM153) turns ON.

Error code

Error code	Content
4085 H	The write address in (s) exceeds the device range
4086 H	The write address in (d) exceeds the device range
4084 H	When the content of the device specified by (s) is an irregular number, a non-number and $\pm \infty$

Example

$0 \quad$ [DESQR K4

Get the result: D0 is a floating point number 2

Device	+0	+1
D0	2	$0.000000 \mathrm{E}+000$

DESTR/Single precision real number \rightarrow string conversion

DESTR(P)

Convert the binary floating point data data stored in the device specified in (s1) into a character string according to the display specification stored after the device number specified in (s2), and store it in the device number specified in (d) or later .
-[DESTR
(s1) (s 2)
(d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	Converted single precision real number data or the device start number that stores the data	$0,2^{-126} \leq\|(s)\|<2^{128}$	Single precision real number	ANYREAL_32
(s2)	Display the specified device start number that stores the converted value. The device specified in (s1) is used as the start, and (s2)+2 is used	-	Signed BIN 16 bit	ANY16_ARRAY
(number of				
elements: 3)				
(d)	Start number of the device storing the converted character string	String	ANYSTRING_SINGLE	

Device used

Instruction	Parameter	Devices																			Offset modification	Pulse extension
		XYM S SM T(bit)				C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY KnM KnS			STC		C R SD LCHSCKHE					[D]	XXP
	Parameter 1													-		-	-	-	\bullet	\bullet	-	\bullet
DESTR	Parameter 2									-	\bullet	\bullet	\bullet	-		-	-				\bullet	\bullet
	Parameter 3										\bullet	-	-	\bullet		$\bullet \bullet$	-				-	\bullet

Features

Convert the binary floating point data data stored in the device specified in (s1) into a character string according to the display specification stored after the device number specified in (s2), and store it in the device number specified in (d) after. You can also directly specify the real number to (s1).

- The converted data differs according to the display specification specified in (s2).

Unit	Features
$(s 2)$	$0:$ Decimal point form \quad 1: Exponential form
$(s 2)+1$	All digits (total number of strings). Range: 2 to 24
$(s 2)+2$	The number of decimal digits. Range: 0 to 7

The range in the above table will change the value range according to the conversion form and other information used

Decimal form

If 0 is specified in ($s 2$), it will be in decimal form.

PLC LX5V Series Programming Manual (V2.2)
Corresponding digit range in decimal form:

Unit	Features
$(s 2)$	0: Decimal point form
$(s 2)+1$	All digits (total number of strings). Range: 2 to 24. When (s2) +2 is not $0:$ digits \geq (number of decimal places +3).
$(s 2)+2$	The number of decimal places. Range 0 to 7, When (s2) +2 is not $0:$ digits \geq (number of decimal places +3).

Example: The total number of digits is 8 , the number of decimal places is 3 , and when -1.235 is specified, (d) will be stored in the following way.

When displaying character strings, display character strings in normal order from left to right for convenience.

SM102					
1		[DEMOV	E-1. 23. . D0		
SM102		[MOV	K0	D10	,
		[MOV	K8	D11	f
		[MOV	K3	D12	f
	[DESTR	D0	D10	D20	,

Converted string

| D20 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | |
| :--- |
| D21 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
| D22 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | .2 |
| D23 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 35 |

The corresponding ASCII code is:

120	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	2020	Automatically added Spaces
D21	0	0	0	0	0	1	0	0	1	0	0	0	1	1	0	0	3120	31 H (1) 20 H (blank)
D22	0	1	1	1	0	1	0	0	0	1	0	0	1	1	0	0	322 E	32 H (2) 2 EH (.)
D23	1	1	0	0	1	1	0	0	1	0	1	0	1	1	0	0	3533	35 H (5) 33 H (3)

The first one is the sign bit. In the sign, when binary floating point data data is positive, 20 H (blank) is stored, and when it is negative, $2 \mathrm{DH}(-)$ is stored.

If the actual number of digits is less than all digits during conversion, 20 H (blank) will be added between the sign and the first number

If the decimal part of the binary floating point data data cannot be accommodated in the decimal part, the lower decimal part will be rounded off.
2. Example: The total number of digits is 8 , the number of decimal places is 2 , and when -1.234 is specified, (d) will be stored in the following way.

The converted string:

| D20 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | - |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| D21 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | |
| D22 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1. |
| D23 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 23 |

The corresponding ASCII code is:

| D20 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 202 D |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| D21 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 2020 |
| D22 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 2E31 |
| D23 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 3332 |
| D24 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0000 |

In the above example: the low byte of D20 stores the negative sign 2DH(-). Then due to insufficient number of digits, the high byte of D20 and D21 are both 20H (blank). Finally, D22 to D23 store numeric characters 1.23

Exponential form

When 1 is specified in (s2), it will be in exponential format.

The corresponding digit range in exponential form:

Unit	Features
$(s 2)$	1: Exponential form
$(s 2)+1$	All digits (total number of strings). Range: 2 to 24. $(s 2)+2$ when non-zero: digits \geq (number of decimal places +7)
$(s 2)+2$	The number of decimal places. Range 0 to 7 (s2)+2 when non-zero: digits \geq (number of decimal places +7)

For example 3, all digits are 12, decimal place is 4, and 1234.5 is specified, (d) and later will be stored as follows.

SM102				
$\stackrel{+}{1}$	[DEMOV	E123	D0	\}
SM102	[MOV	K1	D10	」
	[MOV	K12	D11	\lrcorner
	[MOV	K4	D12	,
	D0	D10	D20]

The converted string:

| D20 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | |
| :--- |
| D21 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1. |
| D22 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 23 |
| D23 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 45 |
| D24 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | E+ |
| D25 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 03 |
| D26 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | \ldots |

The corresponding ASCII code is:

D20	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	2020
D21	1	0	0	0	1	1	0	0	0	1	1	1	0	1	0	0	2 E 31
D22	0	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	3332
D23	0	0	1	0	1	1	0	0	1	0	1	0	1	1	0	0	3534
D24	1	0	1	0	0	0	1	0	1	1	0	1	0	1	0	0	2 B45
D25	0	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	3330
D26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0000

In the sign of the integer part, when the binary floating point data data is positive, 20 H (blank) is stored, and when it is negative,
$2 \mathrm{DH}(-)$ is stored.
The integer part is fixed to 1 digit. 20H (blank) is stored between the integer part and the Sign.
If the decimal part of the binary floating point data data cannot be accommodated in the decimal part, the lower decimal part will be rounded off.

When the number of decimal places is set to other than $0,2 \mathrm{EH}($.$) is automatically stored in the number of specified decimal places +1$ digit. When the decimal place is $0,2 \mathrm{EH}($.$) is not stored.$

In the sign of the exponent, $2 \mathrm{BH}(+)$ is stored when the exponent is positive, and $2 \mathrm{DH}(-)$ is stored when it is negative.
The exponent is fixed to 2 digits. When the exponent part is a 1 -digit number, $30 \mathrm{H}(0)$ is stored between the signs of the exponent part.
OOH is automatically stored at the end of the converted character string.
Example 4: All digits are 12, decimal places are 3, and -16346 is specified, (d) will be stored in the following way.

The converted string:

D20	1	0	1	1	0	1	0	0	0	0	0	0	0	1	0	0	-
D21	0	0	0	0	0	1	0	0	1	0	0	0	1	1	0	0	1
D22	0	1	1	1	0	1	0	0	0	1	1	0	1	1	0	0	6
D23	1	1	0	0	1	1	0	0	1	0	1	0	1	1	0	0	35
D24	1	0	1	0	0	0	1	0	1	1	0	1	0	1	0	0	E +
D25	0	0	0	0	1	1	0	0	0	0	1	0	1	1	0	0	04
D26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	. \cdot

The corresponding ASCII code is:

D20	1	0	1	1	0	1	0	0	0	0	0	0	0	1	0	0	202D
D21	0	0	0	0	0	1	0	0	1	0	0	0	1	1	0	0	3120
D22	0	1	1	1	0	1	0	0	0	1	1	0	1	1	0	0	362E
123	1	1	0	0	1	1	0	0	1	0	1	0	1	1	0	0	3533
D24	1	0	1	0	0	0	1	0	1	1	0	1	0	1	0	0	2B45
D25	0	0	0	0	1	1	0	0	0	0	1	0	1	1	0	0	3430
D26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0000

As in the above example:
The low byte of D20 stores the negative sign 2DH(-).
Then due to insufficient number of digits, the high byte of D20 and the low bit of D21 are both 20H (blank).
16346 becomes the string $1.635 \mathrm{E}+04$, in which the last digit " 6 " of 16346 is rounded.
The exponent part is $34 \mathrm{H}(4)$ with only one bit, then add $30 \mathrm{H}(0)$ between the Signs $2 \mathrm{DH}(-)$ and $34 \mathrm{H}(4)$.
Finally D26 automatically stores 00 H
Example 5: All digits are 12, and the number of decimal places is 0 . If -16346 is specified, (d) will be stored as follows.

The converted string:

D 20	1	0	1	1	0	1	0	0	0	0	0	0	0	1	0
0	0	-													
D 21	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0
0	0														
D 22	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0
0															
D 23	0	0	0	0	0	1	0	0	0	1	0	0	1	1	0
0	0	2													
D 24	1	0	1	0	0	0	1	0	1	1	0	1	0	1	0
0	0	$\mathrm{E}+$													
D 25	0	0	0	0	1	1	0	0	0	0	1	0	1	1	0
0	04														
D 26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

The corresponding ASCII code is:

D20	1	0	1	1	0	1	0	0	0	0	0	0	0	1	0	0	202D
D21	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	2020
D22	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	2020
D23	0	0	0	0	0	1	0	0	0	1	0	0	1	1	0	0	3220
D24	1	0	1	0	0	0	1	0	1	1	0	1	0	1	0	0	2B45
D25	0	0	0	0	1	1	0	0	0	0	1	0	1	1	0	0	3430
D26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0000

This example mainly shows that if the decimal place is set to 0 , the decimal point $2 \mathrm{EH}($.$) will be automatically omitted.$

* Note

When the binary floating point data is converted, the more digits, the lower the accuracy of the digits, the worse the accuracy of the digits, and the conversion value may be inaccurate due to the progress.

Error code

Error code	Content
4085H	The read address of (s1) and (s2) exceeds the device range
4086H	The write address of (d) exceeds the device range
4084H	When the content of the specified device (s1) and (s2) is an irregular number, a non-number, or $\pm \infty$
	When the format specified in (s2) is other than 0 or 1
	When all the digits specified in (s1) +1 exceeds the value of 24
	When the number of decimal places specified in (s2) +2 exceeds the range of 0 to 7
	In the decimal form, when $(\mathrm{s} 2)$ is 0 . (1) When the number of decimal places is $0:[(s 2)+1]<2$ (2) When the number of decimal places is other than $0:[(s 2)+1]<($ number of decimal places +3)
	In the exponential form, when ($s 2$) is 0 . (1) When the number of decimal places is $0:[(s 2)+1]<6$ (2) When the number of decimal places is other than $0:[(s 2)+1]<($ number of decimal places +7)

PLC LX5V Series Programming Manual (V2.2)

DEVAL/String \rightarrow single precision real number conversion

DEVAL(P)
The character string stored in the device number specified in (s) and later is converted to a binary floating point data, and then stored in the device specified in (d).
-[DEVAL (s) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	String data for single precision real number or the device start number that stores the string data	-	String	ANYSTRING_SINGLE
(d)	The device start number that stores the converted single precision real number	-	Single precision real number	ANYREAL_32

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		XYMS	SM T(bit)		C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY KnM ${ }^{\text {KnS }}$			TCD		DRSD		LCHSCKHE			[D]	XXP
DEV	Parameter 1								-	-	\bullet	\bullet		- -	-	\bullet				\bullet	\bullet
DEV	Parameter 2													-	-	\bullet	\bullet	-		\bullet	-

Features

The character string stored in the device number specified in (s) and later is converted to a binary floating point data, and then stored in the device specified in (d).

Whether the specified string is in decimal form or exponential form, it can be converted to a binary floating point data.
Up to 24 characters can be set for the string. 20 H (blank) and $30 \mathrm{H}(0)$ in the character string are also counted as 1 character.

(1) Decimal form

1) When the character string specified in (s) is in decimal format, the following is the case.

2) In the character string specified in (s), for the character string to be converted to a binary floating point data, the 6 digits after the sign, decimal point, and exponent are valid, and the 7 th digit and later will be discarded during conversion.

When the sign is specified as $2 \mathrm{BH}(+)$ or omitted in the decimal point format, it will be converted as a positive value. In addition, when the sign is specified as 2DH(-), it will be converted as a negative value.
3) If there are 20 H (blank) or $30 \mathrm{H}(0)$ in the character string specified in (s) other than the first $0,20 \mathrm{H}$ and 30 H will be ignored during conversion.

(2) In the case of exponential form

1) When the character string specified in (s) is in exponential form, it is executed as follows.

Among the character strings specified in (s), for the character string to be converted to a binary floating point data, the 6 digits after the sign, decimal point, and exponent are valid, and the 7th digit and later will be discarded during conversion.

If the sign of the exponent part is specified as $2 \mathrm{BH}(+)$ or omitted in the exponential form, it will be converted as a positive value. When the sign of the exponent is specified as $2 \mathrm{DH}(-)$, it will be converted as a negative value.
2) If there is 20 H (blank) or $30 \mathrm{H}(0)$ in the character string specified in (s) other than the first $0,20 \mathrm{H}$ and 30 H will be ignored during conversion.

In the exponential character string, if $30 \mathrm{H}(0)$ is stored between " E " and the value, 30 H will be ignored during conversion.

The related devices are shown below.

Devices	Name	Content	
		Condition	Operating
SM153	Zero	The operation result is zero	The zero flag (SM153) turns ON.
SM152	Borrow	The absolute value of operation result <2 2^{-126}	The value of (d) becomes the minimum value of a 32-bit real number (2-126 $)$, and the borrow flag (SM152) turns on.
SM151	Carry	The absolute value of operation result> 2^{128}	The value of (d) becomes the maximum value of 32-bit real numbers $\left(2^{128}\right)$, and the carry flag (SM151) turns on.

Error code

Error code	Content
4085H	The read address of (s) exceeds the device range
4086H	The write address of (d) exceeds the device range
408AH	The string is not read by (s), or the string length exceeds 24
408BH	When (s) reading a character string, the maximum range of the device is read, but 00 H is not found and the end
4084H	When there are characters other than $2 \mathrm{BH}(+), 2 \mathrm{DH}(-), 20 \mathrm{H}($ space $), 2 \mathrm{EH}(),. 45 \mathrm{H}(\mathrm{E}), 65 \mathrm{H}(\mathrm{e})$, and $30 \mathrm{H}(0)$ to 39 H (9) in the string specified in (s)
	When there are two or more $2 \mathrm{EH}($.$) characters in the character string specified in (s).$

When there are characters other than $45 \mathrm{H}(\mathrm{E}), 2 \mathrm{BH}(+), 2 \mathrm{DH}(-)$, and $30 \mathrm{H}(0)$ to $39 \mathrm{H}(9)$ in the exponent part specified in (s), or if there are multiple exponent parts, or exponent In some cases, $2 \mathrm{BH}(+)$ or $2 \mathrm{DH}(-)$ occurred twice or more.
$2 \mathrm{BH}(+)$ or $2 \mathrm{DH}(-)$ appears twice or more before the first digit of the string specified in (s).

Example

The stored character string of DO is: $5.2467 \mathrm{E}+12$
The resulting floating point number is: $5.2467 \mathrm{E}+12$

Device	+0	+1	+2
D96	$0.000000 \mathrm{E}+000$	$0.000000 \mathrm{E}+000$	$5.2467 \mathrm{E}+12$

PLC LX5V Series Programming Manual (V2.2)

DEXP/Single precision real number exponential operation

DEXP(P)

After performing the exponential calculation of the value specified in (s), the calculation result is stored in the device specified in (d). -[DEXP \quad (s) \quad (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	Data for exponential calculation or the device start number that stores the data	$0,2^{-126} \leq\|(s)\|<2^{128}$	Single precision real number	ANYREAL_32
(d)	The device start number that stores the operation result	-	Single precision real number	ANYREAL_32

Device used

Instruction	Parameter	Devices																					Offset modification	Pulse extension
		XYMSSM T(bit)				C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY KnM		KnS T		CD		R SD		LCHSCKHE				[D]	XXP
DEXP	Parameter 1															-	-	-	\bullet	\bullet		\bullet	\bullet	\bullet
DEXP	Parameter 2															-	-	-	\bullet	\bullet			\bullet	\bullet

Features

After performing the exponential calculation of the value specified in (s), the calculation result is stored in the device number specified in (d).

In exponential calculation, the base (e) is calculated as "2.71828".
The related devices are shown below.

Devices	Name	Condition	
			Operating
SM153	Zero	The operation result is zero	The zero flag (SM153) turns ON.
SM152	Borrow	The absolute value of operation result <2 2^{-126}	The value of (d) becomes the minimum value of a 32-bit
real number (2-126 $)$, and the borrow flag (SM152) turns on.			
SM151	Carry	The absolute value of operation result> 2^{128}	The value of (d) becomes the maximum value of 32-bit real numbers (2

Error code

Error code	Content
4085 H	The write address in (s) exceeds the device range
4086 H	The write address in (d) exceeds the device range
4084 H	When the content of the device specified by (s) is an irregular number, a non-number and $\pm \infty$

Example

Calculate the result:
DO
2. $202646 \mathrm{E}+4$

INT/Single precision real number \rightarrow signed BIN 16-bit data

INT(P)
Convert the specified single precision real number into signed BIN 16-bit data.
-[INT (s) (d)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	Single precision real number or the start device storing single precision real number	-32768 to 32767	Single precision real number	ANYREAL_32
(d)	Signed device for storing BIN data	-	BIN16 bit	ANY16_S

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		XYM S SM T(bit)			C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS			D			IS	HE	[D]	XXP
IN	Parameter 1													-	-	\bullet	\bullet	\bullet		\bullet	\bullet
	Parameter 2													-	\bullet	-				\bullet	\bullet

Features

- Convert the single precision real number specified in (s) into signed BIN 16-bit data and store it in the device specified in (d).
- The converted data will be rounded to the first digit below the decimal point of the single precision real number specified in (s).
- When setting the input value with the engineering tool, rounding errors may occur.
- The related devices are as follows.

Devices	Name	Content	
		Operation	
SM153	Zero	The operation result is zero	The zero flag (SM153) turns ON.
SM152	Borrow	Decimal places are rounded off when converting	During conversion ((s)-(d))> $\left(2^{-126}\right)$, borrow (SM152) turns ON
SM151	Carry	Conversion result is out of range	The value of (s) is out of the range -32768 to 32767 or the value of (s) is less than the minimum value of 32-bit real numbers $\left(2^{-126}\right)$ and the carry flag (SM151) turns on.

Error code

Error code	Content
4085 H	The write address in (s) exceeds the device range
4086 H	The write address in (d) exceeds the device range
4084 H	When the content of the device specified by (s) is an irregular number, a non-number and $\pm \infty$

Get the conversion result:

	Device	0	1	2	3	4	5	6	7	8	9	A	B	C
RO	D	E	F											
	0	1	0	0	0	1	0	0	0	0	0	0	0	0
0	0	34												

And the borrow means turn ON

SM151	0
SM152	1
SM153	0

DINT/Single precision real number \rightarrow signed BIN 32-bit data

DINT(P)

Convert the specified single precision real number into signed BIN 32-bit data.
-[DINT (s) (d)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	Single precision real number or the start device storing single precision real number	-2147483648 to 2147483647	Single precision real number	ANYREAL_32
(d)	The start device storing BIN data	-	Signed BIN 32 bit	ANY32_S

Device used

Instruction	Parameter	Devices																				Offset modification	Pulse extension
		XYMSSM			T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX KnY KnM KnS T					TCD		R SD		LCHSCKHE			[D]	XXP
	Parameter 1														-	- -	- -	-		\bullet		\bullet	\bullet
	Parameter 2														-	- -	-	-	-	\bullet		\bullet	\bullet

Features

- Convert the binary floating point data specified in (s) into signed BIN 32-bit data and store it in the device specified in (d).
- The converted data will be rounded to the first digit below the decimal point of the binary floating point data specified in (s).
- When setting the input value with the engineering tool, rounding errors may occur.
- The related devices are as follows.

Devices	Name	Content	
		Condition	Operating
SM153	Zero	The operation result is zero	The zero flag (SM153) turns ON.
SM152	Borrow	The absolute value of operation result $<22^{-126}$	The value of (d) becomes the minimum value of a 32-bit real number (2^{-126}), and the borrow flag (SM152) turns on.
SM151	Carry	The absolute value of operation result> 2^{128}	The value of (d) becomes the maximum value of 32-bit real numbers (2^{128}), and the carry flag (SM151) turns on.

Error code

Error code	Content
4085 H	The write address in (s) exceeds the device range
4086 H	The write address in (d) exceeds the device range
4084 H	When the content of the device specified by (s) is an irregular number, a non-number and $\pm \infty$

Example

Get the conversion result:
$\left.\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}\hline & \text { Device } & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & A & B & C & D & E \\ F & \\ \hline \text { RO } & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$

And the borrow means turn ON

SM151	0
SM152	1
SM153	0

DLOG10/Single precision real number common logarithmic operation

DLOG10(P)

Calculate the common logarithm (base 10 logarithm) of the value specified in (s), and store the result of the operation in the device specified in (d).
-[DLOG10 (s) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	Data for common logarithmic operations or the device start number storing the data	$0,2^{-126} \leq\|(s)\|<2^{128}$	Single precision real number	ANYREAL_32
(d)	The device start number storing operation result	-	Single precision real number	ANYREAL_32

Device used

Features

Calculate the common logarithm (base 10 logarithm) of the value specified in (s), and store the result of the calculation in the device number specified in (d).

The value specified in (s) can only be set to a positive number. (Cannot perform operations with negative numbers.)

- The related devices are as follows.

Devices	Name	Content	
		Condition	Operating
SM153	Zero	The operation result is zero	The zero flag (SM153) turns ON.
SM152	Borrow	The absolute value of operation result $<2^{-126}$	The value of (d) becomes the minimum value of a 32-bit real number $\left(2^{-126}\right)$, and the borrow flag (SM152) turns on.
SM151	Carry	The absolute value of operation result> 2^{128}	The value of (d) becomes the maximum value of 32-bit real numbers (2^{128}), and the carry flag (SM151) turns on.

Error code

Error code	Content
4085 H	The write address in (s) exceeds the device range
4086 H	The write address in (d) exceeds the device range
4084 H	When the content of the device specified by (s) is an irregular number, a non-number and $\pm \infty$

Example

| SM102 | [DLOG10 E3.4 | DO | |
| :---: | :--- | :--- | :--- | :--- |

Get calculation results

DLOGE/Single precision real number natural logarithm operation

DLOGE(P)

After calculating the logarithm when the natural logarithm e of the value specified in (s) is the base, store the calculation result in the device specified in (d).
-[DLOGE (s) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	Data for logarithm operation or the device start number storing the data	$0,2^{-126} \leq\|(\mathrm{s})\|<2^{128}$	Single precision real number	ANYREAL_32
(d)	the device start number storing operation result	-	Single precision real number	ANYREAL_32

Device used

Instruction	Parameter	Devices																Offset Pulse modification extension			
		XYMSSM T (bit)		C(bit)	LC(bit)	HSC(bit)	D.b KnX		KnY KnM		KnS T C DRSDLCHSCKHE								[D]		XXP
DLOGE	Parameter 1												-	-	\bullet	\bullet	\bullet		\bullet		\bullet
DLOGE	Parameter 2												- \cdot	-	\bullet	\bullet			\bullet		\bullet

Features

- After calculating the logarithm when the natural logarithm e of the value specified in (s) is the base, store the result of the calculation in the device number specified in (d).

- The value specified in (s) can only be set to a positive number. (Cannot perform operations with negative numbers.)
- The related devices are as follows.

Devices	Name	Content	
		Condition	Operating
SM153	Zero	The operation result is zero	The zero flag (SM153) turns ON.
SM152	Borrow	The absolute value of operation result $<22^{-126}$	The value of (d) becomes the minimum value of a 32-bit real number $\left(2^{-126}\right)$, and the borrow flag (SM152) turns on.
SM151	Carry	The absolute value of operation result> 2^{128}	The value of (d) becomes the maximum value of 32-bit real numbers (2^{128}), and the carry flag (SM151) turns on.

Error code

Error code	Content
4085 H	The write address in (s) exceeds the device range
4086 H	The write address in (d) exceeds the device range
4084 H	When the content of the device specified by (s) is an irregular number, a non-number and $\pm \infty$

Example

The result is as below:

7.11 Contact comparison instruction

Signed 16-bit contact comparison instruction

LD \square, AND \square, OR \square

The BIN 16-bit data of the device specified in (s1) and the BIN 16-bit data of the device specified in (s2) are compared by normal open contact processing.

LD \square : Normally open contact comparison instruction
AND \square : Normally open contact series connection comparison instruction
OR \square : Normally open contact parallel connection comparison instruction
Ladder diagram

(You can enter "=", "<>", ">", "<", ">=", "<=" in " \square ")
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	Comparison data or device storing comparison data	-32768 to 32767	Signed BIN 16 bit	ANY16_S
(s2)	Comparison data or device storing comparison data	-32768 to 32767	Signed BIN 16 bit	ANY16_S

Device used

Instruction	Parameter	Devices																			Offset modification	Pulse extension
		X Y	YMS		T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS	T		DR			HSC K	KHE	[D]	XXP
LD=	s1, s2									\bullet	\bullet	-	\bullet	\bullet	- \bullet	-				$\bullet \bullet$	\bullet	
LD>	s1, s2									\bullet	\bullet	\bullet	\bullet	-	- \bullet	-	-			- -	\bullet	
LD<	s1, s2									\bullet	\bullet	\bullet	\bullet	-	- \cdot	- \bullet	-			- -	\bullet	
LD>=	s1, s2									\bullet	\bullet	\bullet	\bullet	-	-	\bullet	\bullet			- -	\bullet	
LD<=	s1, s2									\bullet	\bullet	\bullet	\bullet	-	- \bullet	- \bullet	\bullet			$\bullet \bullet$	\bullet	
LD<>	s1, s2									\bullet	\bullet	\bullet	\bullet	-	- \bullet	-	\bullet			- -	\bullet	
AND=	s1, s2									\bullet	\bullet	\bullet	\bullet	-	- \cdot	-	\bullet			- \bullet	\bullet	
AND>	s1, s2									\bullet	\bullet	\bullet	\bullet	-	- \bullet	-	\bullet			- -	\bullet	
AND<	s1, s2									\bullet	\bullet	\bullet	\bullet	-		- \bullet	\bullet			$\bullet \cdot$	\bullet	
AND>=	s1, s2									\bullet	\bullet	\bullet	\bullet	-	- \bullet	- \bullet	-			- -	\bullet	
AND<=	s1, s2									\bullet	\bullet	\bullet	\bullet	-	- \cdot	-	\bullet			- \bullet	\bullet	
AND<>	s1, s2									\bullet	\bullet	\bullet	\bullet	-		-	\bullet			- -	\bullet	
$\mathrm{OR}=$	s1, s2									\bullet	\bullet	\bullet	-	-	-	-	-			- -	\bullet	
OR>	s1, s2									\bullet	\bullet	\bullet	\bullet	-	-	-	-			- -	\bullet	
OR<	s1, s2									\bullet	\bullet	\bullet	\bullet	-		-	\bullet			- -	\bullet	
OR>=	s1, s2									\bullet	\bullet	\bullet	\bullet	-		-	-			- -	\bullet	
OR<=	s1, s2									\bullet	\bullet	\bullet	\bullet	\bullet		-	\bullet			- -	\bullet	
OR<>	s1, s2									\bullet	\bullet	\bullet	\bullet	\bullet		- \bullet	-			$\bullet \bullet$	\bullet	

Features

The BIN 16-bit data of the device specified in (s1) and the BIN 16-bit data of the device specified in (s2) are compared by normal open contact processing.

The comparison operation result of each instruction is shown below.

Instruction Sign	Condition	Comparison operation result	Instruction Sign	Condition	Comparison operation result
$=$	(s1)=(s2)	On state	=	(s1) $=(\mathrm{s} 2)$	Non-conduction state
<>	$(s 1) \neq(s 2)$		<>	$(s 1)=(s 2)$	
>	$(s 1)>(s 2)$		>	(s1) \leq (s 2)	
$<$	$(s 1)<(s 2)$		$<$	(s 1$) \geq(\mathrm{s} 2)$	
>=	$(s 1) \geq(s 2)$		>=	(s1)<(s2)	
<	$(s 1) \leq(s 2)$		<	$(s 1)>(s 2)$	

Error code

Error code	Content
4085 H	(s) read address exceeds the device range

Example

(1) LD \square instruction:

(2) AND \square instruction

(3) $\mathrm{OR} \square$ instruction:

Signed 32-bit contact comparison instruction

LDD \square, ANDD \square, ORD \square

The BIN 32-bit data of the device specified in (s1) and the BIN 32-bit data of the device specified in (s2) are compared by normal open contact processing.

LDD \square : Normally open contact comparison command
ANDD \square : Normally open contact series link comparison instruction
ORD \square : Normally open contact parallel link comparison instruction
Ladder diagram

"=", "<>", ">", "<", ">=", "<=" can be input in " \square "
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	Comparison data or device storing comparison data	-2147483648 to	Signed BIN 32 bit	ANY32_S
(s2)	Comparison data or device storing comparison data	-2147483647		

Device used

| Instruction Parameter | Devices | Offset
 Pulse |
| :---: | :---: | :---: | :---: | :---: |
| | extension | |

Features

The BIN 32-bit data of the device specified in (s1) and the BIN 32-bit data of the device specified in (s2) are compared by normal open contact processing.

The comparison operation result of each instruction is shown below.

PLC LX5V Series Programming Manual (V2.2)

Instruction Sign	Condition	Comparison operation result	Instruction Sign	Condition	Comparison operation result
=	(s1)=(s2)	On state	=	(s 1) \ddagger (s 2)	Non-conduction state
<>	(s 1$) \neq(\mathrm{s} 2)$		<>	(s1)=(s2)	
>	(s1)>(s2)		>	(s1) \leq (2)	
<	$(\mathrm{s} 1)<(\mathrm{s} 2)$		$<$	(s 1$) \geq(\mathrm{s} 2)$	
>=	(s1) \geq (s 2)		>=	$(\mathrm{s} 1)<(\mathrm{s} 2)$	
<=	(s1) \leq (2)		<=	(s1)>(s2)	

Error code

Error code	Content
4085 H	(S) read address exceeds the device range

Example

(1) LDD \square instruction:

When the data of LC10 is 200000, Y10 is set, otherwise Y10 is reset.
When the 32-bit data composed of D201 and D200 exceeds -5000, and X1 is ON, Y11 is turned ON.
(2) ANDD \square instruction:

When X 0 is ON and the value of LC 10 is 200000, Y 10 is set, otherwise it is reset.
When X 1 is OFF and the 32-bit data composed of D1 and D0 is not equal to K-50000, Y11 is set.
(3) ORD \square instruction:

When X1 is ON, or the data of LC10 is equal to the data of LC10 is equal to 200000, Y0 is set.
When X2 and M30 are set, or the double word data composed of D101 and D100 is greater than or equal to 100000, M60 is set.

Single precision real number contact comparison instruction

LDE \square, ANDE \square, ORE \square

The single precision real number of the device specified in (s1) and the single precision real number of the device specified in (s2) are compared by normal open contact processing.

LDEם: Normally open contact comparison command
ANDEם: Normally open contact series link comparison instruction
OREa: Normally open contact parallel link comparison instruction
Ladder diagram

"=", "<>", ">", "<", ">=", "<=" can be input in " \square "
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
$(s 1)$	Comparison data or the device start number storing the comparison data	$0,2^{-126} \leq\|(s)\|<2^{128}$	Single precision real number	ANYREAL_32
$(s 2)$	Comparison data or the device start number storing the comparison data	$0,2^{-126} \leq\|(s)\|<2^{128}$	Single precision real number	ANYREAL_32

Device used

Instruction Parameter	Devices	Offset modification	Pulse extension

Features

The single precision real number of the device specified in ($s 1$) and the single precision real number of the device specified in (s2) are compared by normal open contact processing.

The comparison operation result of each instruction is shown below.

PLC LX5V Series Programming Manual (V2.2)

Instruction Sign	Condition	Comparison operation result	Instruction Sign	Condition	Comparison operation result
E=	(s1)=(s2)	On state	E=	(s 1) \ddagger (s 2)	Non-conduction state
E<>	(s 1$) \neq(\mathrm{s} 2)$		E<>	(s1)=(s2)	
E>	(s1)>(s2)		E>	(s1) \leq (2)	
E<	$(\mathrm{s} 1)<(\mathrm{s} 2)$		E<	(s 1$) \geq(\mathrm{s} 2)$	
E>=	(s1) \geq (s 2)		E>=	$(\mathrm{s} 1)<(\mathrm{s} 2)$	
$\mathrm{E}<=$	$(\mathrm{s} 1) \leq(\mathrm{s} 2)$		$\mathrm{E}<=$	(s1)>(s2)	

Error code

Error code	Content
4084 H	When the content of the specified device by (s1) and (s2) is an irregular number, a non-number, or $\pm \infty$
4085 H	The read address of (s1) and (s2exceeds the device range

Example

(1) $\mathrm{LDE} \square$ instruction:
$\left.9\left[\begin{array}{lllll}{[\mathrm{E}=} & \mathrm{E} 1.23 & \mathrm{D} 0 & \mathrm{Y} 10 \\ {[\mathrm{E}\rangle=} & \mathrm{R} 0 & \mathrm{LCO} & \mathrm{Y} 11\end{array}\right) \right\rvert\,$

When the real number input in DO is equal to $\mathrm{E} 1.23, \mathrm{Y} 10$ is ON , otherwise Y 10 is OFF.
When the real number in RO is greater than or equal to the real number in LCO, Y11 is ON , otherwise it is OFF.
If the input in DO, RO, LCO is not a real number, it will report H4084 error.
(2) ANDE \square instruction:

Only when M0 is ON and D2 real number is not equal to E1.23 and R2 real number is less than real number LC2, Y12 is ON, otherwise all are OFF.
(3) ORE \square instruction:
$38\left|\left[\begin{array}{llll}{[\mathrm{E}<=} & \mathrm{R} 4 & \mathrm{R} 15 &] \\ {[\mathrm{E}=} & \mathrm{R} 6 & \mathrm{R} 20 &]^{2}\end{array}\right]\right|$

When the real number of R4 is less than or equal to the real number of R15, or the real number R6 is equal to the real number R20, Y 13 is ON , otherwise Y 13 is OFF.

String comparison

LDS \square, ANDS \square, ORS \square

Compare the string stored after the device number specified in ($s 1$) with the string stored after the device number specified in (s2).
LDS \square : String comparison instruction
ANDS \square : String serial connection comparison instruction
ORS \square : String parallel connection comparison instruction

Ladder diagram

" =" and "<>" could be entered in " \square "
Content, range and data type

Parameter	Content	Range	Date type	Date type(label)
(S1)	Connection data or the device start number storing the data or the string specified directly	-	String	ANYSTRING_SINGLE
(S1)	Connection data or the device start number storing the data or the string specified directly	-	String	ANYSTRING_SINGLE

Device used

Instruction	Parameter	Devices																			Offset modification	Pulse extension
		X Y	M S	SM	T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS	T C	CD	R	SD L	r	HSCI	KHE	[D]	XXP
LDS=	s1, s2									\bullet	\bullet	\bullet	-	- -	- \bullet	-	\bullet				\bullet	
LDS<>	s1, s2									\bullet	\bullet	\bullet	-	- -	-	-	\bullet				\bullet	
ANDS $=$	s1, s2									\bullet	\bullet	\bullet	-	-	-	-	-				\bullet	
ANDS<>	s1, s2									\bullet	\bullet	-	\bullet	-	\bullet	-	\bullet				\bullet	
ORS=	s1, s2									\bullet	\bullet	\bullet	-	- -	- -	-	\bullet				-	
ORS<>	s1, s2									\bullet	\bullet	-	\bullet	$\bullet \bullet$	$\bullet \bullet$	\bullet	-				\bullet	

Features

- Compare the string stored after the device number specified in ($s 1$) with the string stored after the device number specified in (s2).
- The comparison operation result of each instruction is shown below.

Instruction sign	Condition	Comparison operation result	Instruction sign	Condition	Comparison operation result
=	$(s 1)=(s 2)$	On stat	=	$(\mathrm{s} 1) \neq(\mathrm{s} 2)$	Non-conduction state
<>	$(\mathrm{s} 1) \neq(\mathrm{s} 2)$		<>	$(\mathrm{s} 1)=(\mathrm{s} 2)$	

Error code

Error code	Content
4085 H	The read address of (s1) or ($s 2$) exceeds the device range
408 AH	The length of the read string of (s1) or (s 2) exceeds, and the continuous length of the string exceeds 400 characters.
408 BH	When (s1) or (s2) reading the string, the maximum range of the device is read but 00H is not found as the end.

Example

(1) 1, LDS \square instruction

(2) ANDS \square instruction

(3) ORS \square instruction

7.12 Clock operation instruction

TADD/The addition of clock data

TADD(P)
Add the time data stored after the device number specified in (s1) and the time data stored after the device number specified in (s2), and store the result of the addition operation after the device number specified in (d).
-[TADD (s1) (s2) (d)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	The device start number that stores the added time data	-	Signed BIN 16 bit	(number of elements:
(n)		ANY16_ARRAY		
(s2)	The device start number that stores the addition operation time (time) data	-	Signed BIN 16 bit	ANY16_ARRAY
(number of elements: 3)				
(d)	The device start number that stores the time (time) data of the addition operation result	-	Signed BIN 16 bit	ANY16_ARRAY
(number of elements: 3)				

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		X Y M S SM T(bit)			$C(b i t)$	LC(bit)	HSC(bit)	D.b KnX		KnY KnM		KnS T		T CD		R SDLCHSCKHE				[D]	XXP
	Parameter 1														-	-				\bullet	\bullet
TADD	Parameter 2														-	\bullet				\bullet	\bullet
	Parameter 3													-	-	\bullet				\bullet	\bullet

Features

Add the time data specified in (s1) and the time data specified in (s2), and store the result of the addition in the device number specified in (d) or later.

(s1)	hour	$\begin{aligned} & (0 \sim 23) \\ & (0 \sim 59) \\ & (0 \sim 59) \end{aligned}$	+	$\begin{aligned} & (\mathrm{s} 2) \\ & (\mathrm{s} 2)+1 \\ & (\mathrm{~s} 2)+2 \end{aligned}$	hour	$\begin{aligned} & (0 \sim 23) \\ & (0 \sim 59) \\ & (0 \sim 59) \end{aligned}$	(d) (d) +1 (d) +2		hour	(0~23)
(s1) +1	minute				minute				minute	$(0 \sim 59)$
(s1) +2	second				second				second	$(0 \sim 59)$

Example

When 6:32:40 and 7:48:10 are added together
(s1)
(s1) +1

6
32
40

(s2)

	7
	48
	10

(d)
(d) +1

14
20
50

When the calculation result time exceeds 24 o'clock, the carry flag turns ON, and the value after 24 hours is subtracted becomes the calculation result. For example, when 14:20:30 and 20:20:20 are added, the result is not 34:40:50, but 10:40:50.

	14
$(\mathrm{~s} 1)+1$	20
$(\mathrm{~s} 1)+2$	30

	(s2)
	(s2) +1
$(\mathrm{~s} 2)$	20
	20

When the calculation result is 0 (0 hour, 0 minute, 0 second), the zero flag turns on.
When 23:59:59 and 1 second are added, the result of the calculation is 0:00:00, and the carry flag and zero flag are turned on.
Related device are as follows:

Devices	Name	Content
SM151	Carry	It is ON when the result of the TADD(P) instruction exceeds the maximum clock data value of 23:59:59

(Note
The devices specified in (s1), (s2), (d) occupy 3 points respectively. Be careful not to overlap with the device used for machine control. When using the clock data time (hour, minute, second) of the built-in real-time clock of the CPU module, use the TRD (P) instruction to read the value of the special register and assign the word device to each operand.

Error code

Error code	Content
4085 H	When reading the specified device range exceeds the corresponding device range
4086 H	When writing the specified device range exceeds the corresponding device range
4084 H	When the values specified in (s1) and (s2) are other than 0 to 23 When the values specified in $(\mathrm{s} 1)+1,(\mathrm{~s} 2)+1,(\mathrm{~s} 1)+2$ and (s2)+2 are other than 0 to 59

Example

M0 ${ }^{\text {M0 }} \longmapsto$ TADD \quad D0 \quad D10 \quad D20 $\left.\quad\right] \mid$

Set D0 time to 16:30:00 and D10 time to 4:30:0

D0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	16
D1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	30
D2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D10																	
D11	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	4
D12	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	30

After the coil is turned on, the D20 time is 21:0:0

D20	1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	21
D21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

TSUB/The subtraction of clock data

TSUB(P)

Subtract the time data stored after the device number specified in ($s 1$) and the time data stored after the device number specified in (s2), and store the subtraction result in the device number specified in (d) or later.
-[TSUB (s1) (s2) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	The device start number that stores the subtracted time data	-	Signed BIN 16 bit	ANY16_ARRAY (number of elements: 3)
(s2)	The device start number that stores the subtraction operation time (time) data	-	Signed BIN 16 bit	ANY16_ARRAY
(number of elements: 3)				
(d)	The device start number that stores the time (time) data of the subtraction result	-	Signed BIN 16 bit	ANY16_ARRAY
(number of elements: 3)				

Device used

Features

Subtract the time data specified in ($s 1$) and the time data specified in ($s 2$), and store the subtraction result in the device number specified in (d) or later.

(s1)	hour	$\begin{aligned} & (0 \sim 23) \\ & (0 \sim 59) \\ & (0 \sim 59) \end{aligned}$	-	$\begin{aligned} & (\mathrm{s} 2) \\ & (\mathrm{s} 2)+1 \\ & (\mathrm{~s} 2)+2 \end{aligned}$	hour	$\begin{aligned} & (0 \sim 23) \\ & (0 \sim 59) \\ & (0 \sim 59) \end{aligned}$		(d) (d) +1 (d) +2	hour	$\begin{aligned} & (0 \sim 23) \\ & (0 \sim 59) \\ & (0 \sim 59) \end{aligned}$
(s1) +1	minute				minute				minute	
(s1) +2	second				second				second	

Example

When subtracting 10:40:20 and 3:50:10

	(s1)
	10
	s1) +1
(s1) +2	40
	20

(s2)

3
50
10

(d)
(d) +1
(d) +2

6
50
10

When the calculation result time is a negative number, the borrow flag turns on and the data +24 is the calculation result. For example, in the case of subtracting 4:50:32 and 10:42:12, the result is not $-6: 8: 20$, but 18:8:20

	(s1)
$(\mathrm{s} 1)+1$	4
$(\mathrm{~s} 1)+2$	50

$(s 2)$	10
$(s 2)+1$	42
$(s 2)+2$	12

\square
(d)

18
8
20

When the calculation result is 0 (0 hour, 0 minute, 0 second), the zero flag turns on.
Related device are as follows:

Devices	Name	Content
SM152	Borrow	It is ON when the result of the TSUB(P) instruction is less than 0:00:00
SM153	Zero	It is ON when the result of the TSUB(P) instruction is at the time of 0:00:00:00

(Note

- The devices specified in (s1), (s2), and (d) occupy 3 points respectively. Be careful not to overlap with the device used for machine control.
- When using the clock data time (hour, minute, second) of the built-in real-time clock of the CPU module, use the TRD (P) instruction to read the value of the special register and assign the word device to each operand.

Error code

Error code	Content
4085 H	When reading the specified device range exceeds the corresponding device range
4086 H	When writing the specified device range exceeds the corresponding device range
4084 H	When the values specified in (s1) and (s2) are other than 0 to 23 When the values specified in (s1) $+1,(\mathrm{~s} 2)+1,(\mathrm{~s} 1)+2$ and (s2)+2 are other than 0 to 59

Example

$\mathrm{H}^{\text {M0 }} \because$ [TSUB \quad D0 \quad D10 \quad D20 $]$.

Set D0 time to 16:30:00 and D10 time to 4:30:0

| D0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 16 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 30 |
| D2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| | | | | | | | | | | | | | | | | | |
| D10 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
| D11 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 30 |
| D12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

After the coil is turned on, the D20 time is 12:00:00

| D20 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| D21 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| D22 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

TRD/Clock data reading

TRD(P)
Read the clock data of the built-in real-time clock of the CPU module.
-[TRD (d)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(d)	Read destination and start device number of clock data	-	Signed BIN 16 bit	ANY16_ARRAY
(number of elements: 7)				

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		X Y M S SM T(bit)			C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS		CD	R		LC	HSC	K ${ }^{\text {e }}$	[D]	XXP
TRD	Parameter 1													\bullet -						\bullet	\bullet

Features

Read the clock data (SD100 to SD106) of the real-time clock built into the CPU module into (d) to (d)+6 in the following format.

Parameter	Element	Project	Clock data		Element	Project
Special register	SD105	Year (Gregorian)	2000 to 2099	\rightarrow	(d)	Year (Gregorian)
	SD104	Month	1 to 12	\rightarrow	(d) +1	Month
	SD103	Day	1 to 31	\rightarrow	(d) +2	Day
	SD102	Hour	0 to 23	\rightarrow	(d) +3	Hour
	SD101	Minute	0 to 59	\rightarrow	(d) +4	Minute
	SD100	Seconds	0 to 59	\rightarrow	(d) +5	Seconds
	SD106	Week	0 (Sun) to 6 (Sat)	\rightarrow	(d) +6	Week

- The related devices are shown below. The clock data of these special registers are updated through END processing.

Devices	Content
SD100	The second data of the clock data is stored in BIN code.
SD101	The sub-data of the clock data is stored in BIN code.
SD102	Time data of clock data is stored in BIN code.
SD103	The daily data of the clock data is stored in BIN code.
SD104	The monthly data of the clock data is stored in BIN code.
SD105	The year data of the clock data is stored in a 4-digit BIN code of the Gregorian calendar.
SD106	The week data of the clock data is stored in BIN code. (0: day, 1: one, ..., 6: six) are stored in BIN code.

* Note

- The device specified in (d) occupies 7 points. Be careful not to overlap with the device used for machine control.

Error code

Error code	Content
4086 H	When reading the specified device range exceeds the corresponding device range

Example

After the MO coil is turned on, the current date and time are read as 2020-2-19 13:10:38 Wednesday

Device	+0	+1	+2	+3	+4	+5	+6
DO	2020	2	19	13	10	38	3

TWR/Clock data writing

TWR(P)

Write the clock data of the built-in real-time clock of the CPU module.
-[TWR (s)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	Clock data write source, start device number	-	Signed BIN 16 bit	ANY16_ARRAY (number of elements: 7)

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		XY	M S	SM	T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS	T C	CD		C	HSC	KHE	[D]	XXP
TWR	Parameter 1														- - -					\bullet	\bullet

Features

Write the set clock data (s) to $(s)+6$ to the clock data (SD100 to SD106) of the real-time clock built into the CPU module.

Set data at all times				Special register	
Element	Project	Clock data		Element	Project
(s)	Year (Gregorian)	2000 to 2099 or 0 to 99	\rightarrow	SD105	Year (Gregorian)
(s) +1	Month	1 to 12	\rightarrow	SD104	Month
(s) +2	Day	1 to 31	\rightarrow	SD103	Day
(s) +3	Hour	0 to 23	\rightarrow	SD102	Hour
(s) +4	Minute	0 to 59	\rightarrow	SD101	Minute
(s) +5	Seconds	0 to 59	\rightarrow	SD100	Seconds
(s) +6	Week	0 (Sun) to 6 (Sat)	\rightarrow	SD106	Week

- If the $\operatorname{TWR}(P)$ instruction is executed, the clock data of the real-time clock is changed immediately. Therefore, the clock data after a few minutes should be transferred to the set clock data (s) to $(s)+6$ in advance, and the instruction will be executed when the correct time is reached.
- If the year in (s) is in the range of 0 to 99, it will be automatically treated as 2000 to 2099.
- When a value indicating an impossible time is set, the clock data will not be updated. Set the correct clock data and write again.
- The day of the week (SD100) is automatically corrected.
- The related devices are shown below.

Devices	Content
SD100	The second data of the clock data is stored in BIN code.
SD101	The sub-data of the clock data is stored in BIN code.
SD102	Time data of clock data is stored in BIN code.
SD103	The daily data of the clock data is stored in BIN code.
SD104	The monthly data of the clock data is stored in BIN code.
SD105	The year data of the clock data is stored in a 4-digit BIN code of the Gregorian calendar.
SD106	The week data of the clock data is stored in BIN code. (0: day, 1: one, ..., 6: six) are stored in BIN code.

* Note

The device specified in (s) occupies 7 points. Be careful not to overlap with the device used for machine control.

Error code

Error code	Content
4085 H	When reading the specified device range exceeds the corresponding device range

Example
Set DO date and time to 2020-2-19 12:36:00 in advance

At the moment when the time 12:36:00 arrives, turn on the M0 coil and write the time.

Device	+0	+1	+2	+3	+4	+5	+6
DO	2020	2	19	12	36	0	0

PLC LX5V Series Programming Manual (V2.2)

HTOS/16-bit data conversion of time data (hour, minute, second \rightarrow second)

HTOS(P)
Convert the time data stored after the device number specified in (s) into seconds and store the conversion result as BIN 16-bit data in the device specified in (d).
-[HTOS (s) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The device start number that stores the data of the subtracted time	-	Signed BIN 16 bit	ANY16_ARRAY (number of elements: 3)
(d)	The device start number that stores the converted clock data	-	Signed BIN 16 bit	ANY16

Device used

Instruction	Parameter	Devices																				Offset modification	Pulse extension
		XYMS		SM T(bit)		C(bit)	LC(bit)	HSC(bit)	D.b K	KnX KnY KnM Kns					T CD		RSDLCHSCKHE					[D]	XXP
	Parameter 1									\bullet	-	-	-	-	-	- \bullet	-	\bullet				\bullet	\bullet
	Parameter 2										\bullet	-	-	\bullet	-	-	-	\bullet				\bullet	\bullet

Features

Convert the time data stored after the device number specified in (s) into seconds and store the conversion result in the device specified in (d).

(s)$\begin{aligned} & (\mathrm{s})+1 \\ & (\mathrm{~s})+2 \end{aligned}$	hour	$\begin{aligned} & (0 \sim 9) \\ & (0 \sim 59) \\ & (0 \sim 59) \end{aligned}$	${ }^{\text {(d) }}$
	minute		second
	second		

Example

When 4 hours, 29 minutes and 31 seconds are specified in (s)

Error code

Error code	Content
4085 H	When reading the specified device range exceeds the corresponding device range
4086 H	When writing the specified device range exceeds the corresponding device range
4084 H	When the calculation result is not in the range of 0 to 32767 When the value specified in (s) is not in the range of 0 to 9 When the value specified in (s)+1 and (s)+2 is not in the range of 0 to 59

Example

$0 \mid \mathrm{H}^{\text {M0 }} \longmapsto[\mathrm{HTOS} \quad$ D0 \quad D10 $]$

DO time is set to 5:36:53

D0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
D1	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0
D2	1	0	1	0	1	1	0	0	0	0	0	0	0	0	0	0

The time of D10 after the M0 coil is turned on is as below.

| D10 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 20213 |
| :--- |

PLC LX5V Series Programming Manual (V2.2)
DHTOS/32-bit data conversion of time data (hour, minute, second \rightarrow second)
DHTOS(P)
Convert the time data stored after the device number specified in (s) into seconds and store the conversion result as BIN 32-bit data in the device specified in (d).
-[DHTOS
(s) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The device start number that stores the data of the subtracted time	-	Signed BIN 16 bit	ANY16_ARRAY (number of elements: 3)
(d)	The device start number that stores the converted clock data	-	Signed BIN 32 bit	ANY32

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		XYM M	SM T(bit)		C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY KnM ${ }^{\text {KnS }}$			TCD		DR SD LC HSCKHE					[D]	XXP
DHTOS	Parameter 1								\bullet	\bullet	-	-	-	- \bullet	-	\bullet				\bullet	\bullet
DHTOS	Parameter 2									\bullet	\bullet	-		- \bullet	-	\bullet				\bullet	\bullet

Features

Convert the time data stored after the device number specified in (s) into seconds and store the conversion result in the device specified in (d).

Example

When 35 hours, 10 minutes and 58 seconds are specified in (s)

Error code

Error code	Content
4085 H	When reading the specified device range exceeds the corresponding device range
4086 H	When writing the specified device range exceeds the corresponding device range
4084 H	When the calculation result is not in the range of 0 to 32767 When the value specified in $(\mathrm{s})+1$ and $(\mathrm{s})+2$ is not in the range of 0 to 59

Example

$0 \stackrel{\text { M0 }}{ }$

D0 time is set to 15:33:24

Device	+0	+1	+2
D0	15	33	24

The second of D10 after the M0 coil is turned on is

Device	+0	+1
D0	2162703	24
D8	0	56004

HOUR/Hour measuring 16-bit

HOUR(P)

The time for the input contact to be ON is measured in units of one hour.C
-[HOUR (s) (d1) (d2)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The time when the alarm (d2) is turned ON (set by one hour)	K0 to K32767	Signed BIN 16 bit	ANY16
(d1)	Device that stores the current value of measurement (specified data register for power failure retention)	-	Unsigned BIN 16 bit	ANY16_ARRAY (Number of elements: 2)
(d2)	Device that turns ON when the time limit expires (alarm output)	-	Bit	ANY_BOOL

Device used

Features

The input contact ON time is measured in units of 1 hour. When the cumulative ON time exceeds the time (BIN 16-bit data) specified in (s), the device specified in (d2) is turned on.

- In (s), set the time until the alarm (d2) turns ON in units of 1 hour.
- (d1) stores the current measured value in units of 1 hour.
- If the median value of (d1) exceeds 32767 , it will be modified to 32767 .
- (d1) +1 stores the current measured value (in units of 1 second) that is less than 1 hour.
- (d2) turns on when the current value (d1) exceeds the time specified in (s).
- In order to continue to use the current value data even after the power of the CPU module is turned off, specify the data register for power failure retention to (d1). If you use general-purpose data registers, the current value data will be cleared by powering off the CPU module and STOP \rightarrow RUN operations.
- After the alarm output specified in (d2) turns ON, measurement will continue.
- The measurement stops when the current value reaches the 16 -bit maximum. To continue the measurement, clear the current value of (d1) to (d1)+1.

*Note

- The device specified in (d1) occupies 2 points. Be careful not to overlap with the device used for machine control.
- After the instruction stops running, the measurement stops and the output continues to be maintained.

Error code

Error code	Content
4085 H	When reading the specified device range exceeds the corresponding device range
4086 H	When writing the specified device range exceeds the corresponding device range
4084 H	When the value of (s) is negative

Example

When $\mathrm{MO}=\mathrm{ON}$, the duration of the state is accumulated, the time is recorded in DO , and the seconds less than 1 hour are recorded in D1. When the accumulated time of D0 reaches 98 hours, the YO output state is ON. When the timing conditions are met, after reaching the specified value (K98), the accumulated timing will continue and the reading will continue to increase; the current time value D0 reaches the maximum value of 32767 hours and D1 reaches 3599 seconds, the timing measurement will stop. The current time values D0 and D1 are cleared to 0

DHOUR/Hour measuring 32 bits

DHOUR(P)
The time for the input contact to be ON is measured in units of one hour.
-[DHOUR
(s) (d1)
(d2)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The time when the alarm (d2) is turned ON (set by one hour)	0 to 2147483647	Signed BIN 32 bit	ANY32
(d1)	Device that stores the current value of measurement (specified data register for power failure retention)		Unsigned	ANY32_ARRAY
(d2)	Device that turns ON when the time limit expires (alarm output)		BIN 32 bit	(Number of elements: 2)

Device used

Instruction	Parameter	Devices																			Offset modification	Pulse extension
		X Y M S		S SM	T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX KnY KnM Kns T					T D	R SD		LCHSCKHE			[D]	XXP
	Parameter 1									-	-	\bullet	\bullet	-	-	-	\bullet	\bullet	-	\bullet •	\bullet	\bullet
DHOUR	Parameter 2															-	\bullet				\bullet	\bullet
	Parameter 3	\bullet	- \bullet	\bullet					-												\bullet	-

Features

- The input contact ON time is measured in units of 1 hour. When the cumulative ON time exceeds the time (BIN 32-bit data) specified in (s), the device specified in (d2) is set to ON.
- In (s)+1, (s), set the time until the alarm (d2) turns ON in units of 1 hour.
- (D1) +1 and (d1) store the current value measured in units of 1 hour. ((d1)+1: high bit, (d1): low bit)
- If the median of (d1)+1 and (d1) exceeds 2147483647 , it will be modified to 2147483647 .
- (D1)+2 stores the current value (in units of 1 second) of the measurement that is less than 1 hour.
- (D2) turns on when the current value (d1) +1 , (d1) exceeds the time specified in (s).
- In order to continue to use the current value data even after the power of the CPU module is turned off, specify the data register for power failure retention to (d1). If you use general-purpose data registers, the current value data will be cleared by powering off the CPU module and STOP \rightarrow RUN operations.
- After the alarm output specified in (d2) turns on, the measurement will continue.
- The measurement stops when the current value reaches the 32 -bit maximum. To continue the measurement, clear the current value of (d1) to (d1)+2.

*Note

- The device specified in (d1) occupies 3 points. Be careful not to overlap with the device used for machine control.
- After the instruction stops running, the measurement stops and the output continues to be maintained.

Error code

Error code	Content
4085 H	When reading the specified device range exceeds the corresponding device range
4086 H	When writing the specified device range exceeds the corresponding device range
4084 H	When the value of (s) is negative

Example
M0 [DHOUR K1000 D0 Y0

When $M O=O N$, the duration of this state is accumulated, the time is recorded in D1, DO, and the seconds less than 1 hour are recorded in D2. When the accumulated time of D1, DO reaches 1000 hours, the YO output state is ON. When the timing conditions are met, after reaching the specified value (K1000), the accumulated timing will continue, and the reading will continue to increase; the current time values D1 and D0 reach the maximum value of 2147483647 hours, and when D2 reaches 3599 seconds, the timing measurement will stop and the timing should be restarted. The current time values D0, D1, and D2 must be cleared to 0 .

STOH/16-bit data conversion of time data (second \rightarrow hour, minute, second)

STOH(P)

Convert the second 16 -bit data stored in the device number specified in (s) into hour, minute, and second, and store the conversion result in the device specified in (d) and later.
-[STOH (s) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The device start number that stores the clock data before conversion	0 to 32767	Signed BIN 16 bit	ANY16
(d)	The device start number that stores the converted clock data	-	Signed BIN 16 bit	ANY16_ARRAY
(number of elements: 3)				

Device used

Instruction	Parameter	Devices																	Offset modification	Pulse extension
		X Y M S	SM T(bit)		C(bit)	LC(bit)	HSC(bit)	D.b	KnXK	KnY KnM		KnS T	CD		RSDLCHSCKHE				[D]	XXP
STOH	Parameter 1								-	\bullet	\bullet	-	\bullet -	- -	\bullet				\bullet	\bullet
STOH	Parameter 2									\bullet	\bullet	-		- \cdot	\bullet				\bullet	\bullet

Features

Convert the second data stored after the device number specified in (s) into hour, minute, and second, and store the conversion result in the device specified in (d) and later.

Example

When 29,011 seconds are specified in (s)

Error code

Error code	Content
4085 H	When reading the specified device range exceeds the corresponding device range
4086 H	When writing the specified device range exceeds the corresponding device range
4084 H	When the value of (s) exceeds the range

Example

$\left.\begin{array}{|cccc|}\hline \text { M0 } & \text { STOH } & \text { D0 } & \text { D10 }\end{array}\right\}$

Set DO seconds to 12537
The hour, minute and second of D10 after the M 0 coil is turned on are

D10	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
D11	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	28
D12	1	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	57

DSTOH/32-bit data conversion of time data (second \rightarrow hour, minute, second)

DSTOH(P)

Convert the second 32 -bit data of second stored in the device number specified in (s) into hour, minute, and second, and store the conversion result in the device specified in (d) and later.
$-\left[\begin{array}{lll}{[D S T O H} & (s) & \text { (d)] }\end{array}\right.$

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The device start number that stores the clock data before conversion	0 to 117964799	Signed BIN 32 bit	ANY32
(d)	The device start number that stores the converted clock data	-	Signed BIN 16 bit	ANY16_ARRAY
(number of elements: 3)				

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		XYM S SM T(bit)			C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS			D		LC	HSC	KHE	[D]	XXP
DSTOH	Parameter 1								-	\bullet	-	\bullet	\bullet		- -	\bullet				\bullet	\bullet
	Parameter 2									\bullet	\bullet	-	-		\bullet	\bullet				\bullet	\bullet

Features

Convert the second data stored after the device number specified in (s) into hour, minute, and second, and store the conversion result in the device specified in (d) and later.

Example

When 45,325 seconds is specified in (s)

Error code

Error code	Content
4085 H	When reading the specified device range exceeds the corresponding device range
4086 H	When writing the specified device range exceeds the corresponding device range
4084 H	When the value of (s) exceeds the range

Example

Set DO seconds to 2152537
The hour, minute and second of D10 after the M0 coil is turned on are

| D10 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 597 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| D11 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 55 |
| D12 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 37 |

TCMP/Clock data comparison

TCMP(P)

Compare the comparison time specified in (s1), (s2), ($s 3$) with the time data specified in ($s 4$), and turn the bit device specified in (d) ON/OFF according to their size match.
-[TCMP
(s1) (s2)
(s3) (s4)
(d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
$(s 1)$	Specify the "hour" of the comparison base time.	0 to 23	Signed BIN 16 bit	ANY16
$(s 2)$	Specify the "minute" of the comparison base time.	0 to 59	Signed BIN 16 bit	ANY16
(s3)	Specify the "second" of the comparison base time.	0 to 59	Signed BIN 16 bit	ANY16
(s4)	Specify the "hour" of the time data (hour, minute, second).	-	Signed BIN 16 bit	ANY16_ARRAY
(d)	The bit device is turned ON/OFF according to the comparison result.	-	Bit	ANYBIT_ARRAY

Device used

Instruction	Parameter	Devices																			Pulse extension
		XYM S SM		T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b Kn		KnX KnY KnM ${ }^{\text {KnS }}$ T				TCDRSDLCHSCKHE					[D]		XXP
	Parameter 1								\bullet	\bullet	\bullet	\bullet	-	- •	-		- •		\bullet		\bullet
	Parameter 2								\bullet	\bullet	\bullet	\bullet		- -	$\bullet \bullet$		$\bullet \bullet$		\bullet		\bullet
TCMP	Parameter 3								\bullet	-	\bullet	-		- -	$\bullet \bullet$		- •		-		\bullet
	Parameter 4													- •	- •				\bullet		\bullet
	Parameter 5	- $\bullet \bullet$	\bullet					\bullet											\bullet		\bullet

Features

Compare the time of the reference time (hour, minute, second) [(s1), (s2), (s 3)] with the time data (hour, minute, second) [(s4), (s4) +1 , $(s 4)+2$] Compare the size and turn on/off the 3 points from (d) according to the result of the same size.

(s1)	hour	$\begin{aligned} & (0 \sim 23) \\ & (0 \sim 59) \\ & (0 \sim 59) \end{aligned}$	$\begin{aligned} & (\mathrm{s} 4) \\ & (\mathrm{s} 4)+1 \\ & (\mathrm{~s} 4)+2 \end{aligned}$	hour	$\begin{aligned} & (0 \sim 23) \\ & (0 \sim 59) \\ & (0 \sim 59) \end{aligned}$	$(\mathrm{d})=0 \mathrm{~N}$
(s2)	minute			minute		
(s3)	second			second		
(s1)	hour	($0 \sim 23$)	(s4)	hour	(0~23)	$\underline{-1}(\mathrm{~d})+1=0 \mathrm{~N}$
(s2)	minute	(0~59)	(s4) +1	minute	(0~59)	
(s3)	second	(0~59)	(s4) +2	second	(0~59)	
(s1)	hour	(0~23)	(s4)	hour	(0~23))
(s2)	minute	(0~59)	(s4) +1	minute	(0~59)	
(s3)	second	($0 \sim 59$)	(s4) +2	second	(0~59)	

* Note

The device specified in (s4) and (d) occupies 3 points. Be careful not to overlap with the device used for machine control.
When using the clock data time (hour, minute, second) of the built-in real-time clock of the CPU module, use the TRD (P) instruction to read the value of the special register and assign the word device to each operand.

Error code

Error code	Content
4085 H	When reading the specified device range exceeds the corresponding device range
4086 H	When writing the specified device range exceeds the corresponding device range
4084 H	When the value specified in (s) and $(\mathrm{s} 4)$ is not in the range of 0 to 23 When the value specified in $(\mathrm{s} 2),(\mathrm{s} 3)(\mathrm{s} 4)+1$ and (s4)+2 is not in the range of 0 to 59

Example
$\left.\left\lvert\, \begin{array}{llllll|}\hline \text { TTCMP } & \text { D10 } & \text { D11 } & \text { D12 } & \text { D23 } & \text { M10 }\end{array}\right.\right] \mid$

Set D10 to 1, D11 to 30, D12 to 0
When M0 is turned on, the time that D23 will come is 0:31:27

D23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D24	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	31
D25	1	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	27

M10 is turned ON

M10	1
M11	0
$M 12$	0

TZCP/Clock data bandwidth comparison

TZCP(P)

Compare the comparison time of the high and low points specified in (s1) and (s2) with the time data specified in (s3), and turn the bit device specified in (d) ON/OFF according to its size and bandwidth.
-[TZCP
(s1) (s2)
(s3) (d)

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	Specify the "hour" of the lower limit time (hour, minute, second)	-	Signed BIN 16 bit	ANY16_ARRAY (number of elements: 3)
(s2)	Specify the "hour" of the lower limit time (hour, minute, second)	-	Signed BIN 16 bit	ANY16_ARRAY (number of elements: 3)
(s3)	Specify "hour" of time data (hour, minute, second)	-	Signed BIN 16 bit	ANY16_ARRAY
(number of elements: 3)				
(d)	The bit device is turned ON/OFF according to the comparison result.	-	Bit	ANY16_ARRAY
(number of elements: 3)				

Device used

Instruction	Parameter	Devices																			Offset modification	Pulse extension
		X Y M		S SM	T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY KnM KnS ${ }^{\text {T }}$				TCD	RSDLCHSCKHE					[D]	XXP
	Parameter 1															- -	\bullet				\bullet	\bullet
	Parameter 2														-	-	\bullet				\bullet	\bullet
	Parameter 3														-	- \bullet	\bullet				\bullet	\bullet
	Parameter 4	\bullet	\bullet	$\bullet \bullet$					\bullet												\bullet	\bullet

Features

Compare the comparison time of the high and low points specified in (s1) and (s2) with the time data specified in (s3), and turn the bit device specified in (d) ON/OFF according to its size and bandwidth.

(s1)	hour	$\begin{aligned} & (0 \sim 23) \\ & (0 \sim 59) \end{aligned}>\begin{aligned} & (\mathrm{s} 3) \\ & (\mathrm{s} 3)+1 \end{aligned}$		hour	($0 \sim 23$)				$\square(\mathrm{d})=0 \mathrm{~N}$
(s1) +1	minute			minute	($0 \sim 59$)				
(s1) +2	second	($0 \sim 59$)	(s3) +2	second	($0 \sim 59$)				
$\begin{aligned} & (\mathrm{s} 1) \\ & (\mathrm{s} 1)+1 \\ & (\mathrm{~s} 1)+2 \end{aligned}$	hour	$\begin{aligned} & (0 \sim 23) \\ & (0 \sim 59) \\ & (0 \sim 59) \end{aligned}$	(s3)	hour	$\begin{aligned} & (0 \sim 23) \\ & (0 \sim 59) \\ & (0 \sim 59) \end{aligned}$	$\begin{aligned} & (\mathrm{s} 2) \\ & (\mathrm{s} 2)+1 \end{aligned}$	hour	$\begin{aligned} & (0 \sim 23) \\ & (0 \sim 59) \end{aligned}$	$\square \underbrace{(d)+1=0 N}$
	minute		(s3) +1	minute			minute		
	second		(s3) +2	second		(s2) +2	second	(0~59)	
			(s3)	hour	($0 \sim 23$)	(s2)	hour	($0 \sim 23$)	
			(s3) +1	minute	(0~59)	(s2) +1	minute	(0~59)	
			(s3) +2	second	($0 \sim 59$)	(s2) +2	second	($0 \sim 59$)	

* Note

- The devices specified in (s1), (s2), (s3), (d) occupy 3 points. Be careful not to overlap with the device used for machine control.
- When using the clock data time (hour, minute, second) of the built-in real-time clock of the CPU module, use the TRD (P) instruction to read the value of the special register and assign the word device to each operand.
- When ($s 1$)> ($s 2$), two of (d), (d)+1, (d)+2 are ON/OFF.

Error code

Error code	Content
4085 H	When reading the specified device range exceeds the corresponding device range
4086 H	When writing the specified device range exceeds the corresponding device range
4084 H	When the value specified in (s1), (s2) and (s3) is not in the range of 0 to 23 When the value specified in $(\mathrm{s} 1)+1,(\mathrm{~s} 2)+1,(\mathrm{~s} 3)+1,(\mathrm{~s} 1)+2,(\mathrm{~s} 2)+2$ and (s3)+2 is not in the range of 0 to 59

Example
$\mid \mathrm{M}^{\mathrm{M} 0} \longmapsto[$ TZCP \quad D0 \quad D10 \quad D20 \quad M10 $]$

Set D0 time to 16:30:00 and D10 time to 4:30:0

D0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	16
D1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	30
D2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D10																	
D11	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	4
D12	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	30

After the coil is turned on, the reading time to D20 time is 8:30:00

| D20 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D21 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 30 |
| D22 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

$\mathrm{MO} / \mathrm{M} 12$ is ON

M10	1
$M 11$	0
$M 12$	1

7.13 Data control instructions

BAND/BIN 16-bit data dead zone control

BAND(P)
The input value (BIN 16-bit value) specified in (s3) controls the output value stored in the device specified in (d) according to the upper and lower limits of the dead zone specified in (s1) and (s2).
-[BAND (s1)
(s2)
(S3) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	Lower limit of dead zone (no output zone)	$-32,768$ to +32,767	Signed BIN 16 bit	ANY16_S
(s2)	Upper limit of dead zone (no output zone)	$-32,768$ to +32,767	Signed BIN 16 bit	ANY16_S
(S3)	Input value controlled by dead zone control	-32768 to +32,767	Signed BIN 16 bit	ANY16_S
(D)	The start number of the device that stores the output value controlled by the dead zone control		Signed BIN 16 bit	ANY16_S

Device used

Instruction	Parameter	Devices																			Offset modification	Pulse extension
		XYM S		SM T(bit)		C(bit)	LC(bit)	HSC(bit)	D.b	KnX KnY KnM Kns				T C		C DR		LC HSC		KHE	[D]	XXP
	Parameter 1									-	-	-	-	-	-	-	\bullet			- -	\bullet	\bullet
	Parameter 2									\bullet	\bullet	\bullet	\bullet	-	-	-	\bullet			- -	\bullet	\bullet
	Parameter 3									\bullet	\bullet	\bullet	\bullet	\bullet		-	\bullet				\bullet	\bullet
	Parameter 4										\bullet	\bullet	\bullet	\bullet	-	-	\bullet				\bullet	\bullet

Features

The input value (BIN 16-bit value) specified in ($s 3$) controls the output value stored in the device specified in (d) according to the upper and lower limits of the dead zone specified in (s1) and (s2). The output value is controlled as follows.

Condition	The value stored in the output value
When dead zone low limit (s1)> input value (s3)	Input value (s3)-Dead zone low limit (s1)
When dead zone high limit (s1) <input value (s3)	Input value (s3)- Dead zone high limit (s2)
When dead zone low limit $(\mathrm{s} 1) \leq$ input value $(\mathrm{s} 3) \leq$ dead zone low limit (s2)	0

-When the output value stored in (d) is a signed BIN 16-bit value, and the operation result exceeds the range of -32768 to 32767 , the situation is shown in the following example.

For example, when (s1) is 10 and ($s 3$) is -32768,
the output value $=-32768-10=8000 \mathrm{H}-000 \mathrm{AH}=7 \mathrm{FFFH}=32758$.

Error code

Error code	Content
4085 H	When the specified device range for reading exceeds the range of the corresponding device.
4086 H	When the specified device range for writing exceeds the range of the corresponding device.
4084 H	When the low limit specified in $(\mathrm{s} 1)$ is greater than the high limit specified in (s2).

Example

0 | X0 | KBAND | K-1000 | K1000 | D0 | D1 | $\}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

When X000 is ON, when $\mathrm{D} 0<(-1,000)$, the value of (DO$)-(-1,000)$ is stored in (D1).

- When $-1,000 \leqq \mathrm{D} 0 \leqq 1,000,0$ is stored in D1.
- When $\mathrm{D} 0<1,000$, the value of (D0)-1,000 is stored in D1.

DBAND/BIN 32-bit data dead zone control
DBAND(P)
The input value (BIN 32-bit value) specified in (s3) controls the output value stored in the device specified in (d) according to the upper and lower limits of the dead zone specified in (s1) and (s2).
-[DBAND (s1) (s2) (S3) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	Dead zone low limit (no output zone)	$-2,147,483,648$ to $+2,147,483,647$	Signed BIN 32 bit	ANY32_S
(s2)	Dead zone high limit (no output zone)	$-2,147,483,648 ~ t o ~$ $+2,147,483,647$	Signed BIN 32 bit	ANY32_S
(S3)	Input value controlled by dead zone control	$-2,147,483,648 ~ t o ~$ $+2,147,483,647 ~$	Signed BIN 32 bit	ANY32_S
(d)	The start number of the device that stores the output value controlled by the dead zone control	-	Signed BIN 32 bit	ANY32_S

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		XYM S SM T(bit)			C(bit)	LC(bit)	HSC(bit)	D.b Kn		KnX KnY KnM KnS			T C		DRS	SDLCHSCKHE				[D]	XXP
	Parameter 1								\bullet	\bullet	\bullet	\bullet	-	- -	-	-	-	-	- •	\bullet	\bullet
	Parameter 2								\bullet	\bullet	\bullet	\bullet	\bullet	- \bullet	-	\bullet	\bullet	\bullet	- -	\bullet	\bullet
DBA	Parameter 3								\bullet	\bullet	\bullet	\bullet	-	-	-	-	\bullet	\bullet		\bullet	\bullet
	Parameter 4									\bullet	\bullet	\bullet	\bullet	-	-	\bullet	\bullet	\bullet		\bullet	\bullet

Features

The input value (BIN 32-bit value) specified in (s3) controls the output value stored in the device specified in (d) according to the upper and lower limits of the dead zone specified in (s1) and (s2). The output value is controlled as follows.

Condition	The value stored in the output value
When dead zone low limit ((s1), (s1)+1)> input value ((s3), (s3)+1)	Input value ((s3), (s3)+1)-dead zone low limit ((s1), (s1)+1)
When dead zone high limit ((s1), (s1)+1) <input value ((s3), (s3)+1)	Input value ((s3), (s3)+1)-dead zone high limit ((s2), (s2)+1)
When dead zone low limit $((s 1),(s 1)+1) \leq$ input value ((s3), (s3)+1) \leq dead zone high limit $((s 2),(s 2)+1)$	0

Error code

Error code	Content
4085 H	When the specified device range for reading exceeds the range of the corresponding device.
4086 H	When the specified device range for writing exceeds the range of the corresponding device.
4084 H	When the low limit specified in (s1) is greater than the high limit specified in (s2).

Example

$0 |$| X0 | D1 |
| :---: | :---: | :---: | :---: | :---: |

- When (D1, D0) $<(-10,000)$, the value of (D1, D0) $-(-10,000$) is stored in (D11, D10).
- When $-10,000 \leqq(D 1, D 0) \leqq 10,000,0$ is stored in (D11, D10).
- When $10,000<(D 1, D 0)$, the value of (D1, D0)-10,000 is stored in D1.

BINDA/BIN 16-bit data \rightarrow Decimal ASCII conversion

BINDA(P)

Convert the BIN 16-bit data specified in (s) and the value of each digit in decimal numbers into ASCII codes and store them after the device number specified in (d).
-[BINDA(s)(d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	BIN data for ASCII conversion	-32768 to +32767	Signed BIN 16 bit	ANY16_S
(d)	The start number of the device storing the conversion result	-	String	ANYSTRING_SINGLE

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		XY	M S	SM	T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS	T C	DR	RSD	LC	HSC	KHE	[D]	XXP
BINDA	Parameter 1									-	-	-	\bullet	$\bullet \bullet$	$\bullet \bullet$	\bullet			$\bullet \bullet$	\bullet	-
BINDA	Parameter 2														$\bullet \bullet$	\bullet				\bullet	-

Features

Convert the BIN 16-bit data specified in (s) and the value of each digit in decimal numbers into ASCII codes and store them after the device number specified in (d).

For example, when $-12,345$ is specified in (s) (in the case of specifying signed)

The calculation result stored in (d) will be as below.

- In "Sign", 20H is stored when the BIN data is positive, and 2DH is stored when it is negative.
- In the 0 to the left of the effective digit, 20 H is stored. (Suppress 0.) For example, in the case of "00325", "00" becomes 20 H , and "325" becomes the effective digit.
- When storing data to the device specified in (d)+3, when SM191 (output character number switching signal) is OFF, 0 is stored, and it does not change when it is ON.
Note: The number of occupied points of (d) is 3 when SM191 is ON, and it is 4 when SM191 is OFF.

Error code

Error code	Content
4085 H	The read address of (s) exceeds the device range.
4086 H	The write address of (d) exceeds the device range.

Example

When X000 is ON, convert the value of 16-bit data (BIN) D1000 into decimal ASCII code, and then use PR instruction to output the

PLC LX5V Series Programming Manual (V2.2)
DBINDA/BIN 32-bit data \rightarrow Decimal ASCII conversion

DBINDA(P)

Convert the BIN 32-bit data specified in (s) and the value of each bit in decimal numbers into ASCII codes and store them after the device number specified in (d).
-[DBINDA(s)(d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	BIN data for ASCII conversion	$-2,147483648$ to 2147483647	Signed BIN 32 bit	ANY32_S
(d)	The start number of the device storing the conversion result	-	String	ANYSTRING_SINGLE

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		X Y M S SM T(bit)			C(bit)	LC(bit)	HSC(bit)	D.b	KnX			KnS		C	R	SD	LC	SC	KHE	[D]	XXP
DBINDA	Parameter 1								\bullet	\bullet	\bullet	\bullet	-	\bullet	-	\bullet	\bullet		- •	\bullet	-
DBIN	Parameter 2													\bullet	\bullet	-				\bullet	\bullet

Features

Convert the BIN 32-bit data specified in (s) and the value of each bit when expressed in decimal numbers into ASCII codes, and store them after the device number specified in (d).

For example, when -12345678 is specified in (s). (in the case of specifying signed)

The calculation result stored in (d) will be as below.

- In "Sign", 20H is stored when the BIN data is positive, and 2DH is stored when it is negative.
- 20 H is stored at 0 to the left of the effective number of digits. (Suppress 0 .) For example, in the case of "0012034560", "00" becomes 20H, and "12034560" becomes effective digits.
- For the data stored in the upper 8 bits of the device specified in (d) $+5,0$ will be stored when SM191 (output character switching signal) is OFF, and 20 H will be stored when it is ON.
* Note: (d) Occupies 6 points.

Error code

Error code	Content
4085 H	(s) read address exceeds the device range
4086 H	(d) write address exceeds the device range

Example

When X000 is ON, convert the value of 32-bit data (BIN) D1000 into decimal ASCII code, and then use PR (FNC 77) instruction to output the converted ASCII code character by character to the program in Y040 to Y051 in time and time division.

DABIN/Decimal ASCII \rightarrow BIN conversion

DABIN(P)

Digital ASCII code (30 H to 39 H) is a instruction to convert real data into BIN data.
-[DABIN (s) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The start number of the device that stores the data (ASCII code) to be converted into a BIN value	-	String	ANYSTRING_SINGLE
(d)	The device number for storing conversion result	-	BIN16 bit	ANY16_S

Device used

Instruction	Parameter	Devices																			Offset modification	Pulse extension
		XY/MS		SM T(bit)		C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM KnS		T CD		R SD LC			HSCKHE		[D]	XXP
	Parameter 1															-	-				\bullet	\bullet
DAB	Parameter 2										\bullet	-	\bullet				-				\bullet	\bullet

Features

The decimal ASCII data stored after the device number specified in (s) is converted into BIN 16-bit data and stored in the device specified in (d).

For example, When $-25,108$ is specified in (s)

- The ASCII data specified in (s) to $(s)+2$ is within the range of $-32,768$ to $+32,767$.
- In "Sign", set 20H when the converted data is positive, and set 2DH when it is negative. (When other than 20H or 2DH is set, it will be treated as positive data. (DABIN(P))
- The range of the ASCII code set in each digit is 30 H to 39 H .
- When the ASCII code set in each bit is 20 H or 00 H , it will be treated as 30 H .

Error code

Error code	Content
4084 H	When the Sign data exceeds the range of 30 H to $39 \mathrm{H}, 20 \mathrm{H}, 00 \mathrm{H}, 2 \mathrm{DH} ;$ When the ASCII code of each bit specified in (s) to $(\mathrm{s})+2$ exceeds the range of 30 H to $39 \mathrm{H}, 20 \mathrm{H}, 00 \mathrm{H} ;$ 4085 H
4086 H	The read address of (s) exceeds the device range.
	The write address of (d) exceeds the device range.

Example

When X000 is ON, the Signs set in D20 to D22 and the ASCII code data of 5-digit decimal numbers are converted into BIN values, and then stored in the program of DO.

DDABIN/Decimal ASCII \rightarrow BIN32-bit data conversion

DDABIN(P)

The decimal ASCII data stored after the device number specified in (s) is converted into BIN 32-bit data and stored in the device number specified in (d).
-[DDABIN (s) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The start number of the device that stores data (ASCII code) to be converted into a BIN value	-	String	ANYSTRING_SINGLE
(d)	The device number for storing conversion result	-	Signed BIN 32 bit	ANY32_S

Device used

Instruction	Parameter	Devices																			Offset modification	Pulse extension
		XYMSSM T(bit)				C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM KnS				R SD		LCHSCKHE			[D]	XXP
	Parameter 1															-	\bullet				\bullet	\bullet
	Parameter 2										-	-	-	\bullet	-	\bullet	-	\bullet	\bullet		-	-

Features

The decimal ASCII data stored after the device number specified in (s) is converted into BIN 32-bit data and stored in the device specified in (d).

ASCII S	ASCII code	ASCII S	ASCII code
ASCII 10^{0}	Units of ASCII code	ASCII 10^{5}	Hundred thousands of ASCII code
ASCII 10^{1}	Tens of ASCII code	ASCII 10^{6}	Millions of ASCII code
ASCII 10^{2}	Hundreds of ASCII code	ASCII 10^{7}	Ten millions of ASCII code
ASCII 10^{3}	Thousands of ASCII code	ASCII 10^{8}	Hundred millions of ASCII code
ASCII 10^{4}	Tens thousands of ASCII code	ASCII 10^{9}	billions of ASCII code

When -1234543210 is specified in (s) (When signed is specified)

	b15	...	b8 b7	\ldots	b0		(d) +1	(d)
(s)		31H (1)	!	2DH (-)				
(s) +1		33H (3)	'	32H (2)				
(s) +2		35H (5)	!	34 H (4)				
(s) +3		33H (3)	'	34 H (4)			123	
(s) +4		31H (1)	'	32H (2)				
(s) +5			!	30H (0)				

- The ASCII data specified in (s) to $(s)+5$ is within the range of $-2,147,483,648$ to $+2,147,483,647$. In addition, the data stored in the high byte of (s) +5 will be ignored.
- In the Sign data, set 20H when the converted data is positive, and set 2DH when it is negative. (When other than 20H or 2DH is set, it will be treated as positive data. (DABIN(P))
- The range of ASCII code set in each digit is 30 H to 39 H .
- When the ASCII code set in each bit is 20 H or 00 H , it will be treated as 30 H .

Error code

Error code	Content
4084 H	When the Sign data exceeds the range of 30 H to $39 \mathrm{H}, 20 \mathrm{H}, 00 \mathrm{H}$ and $2 \mathrm{DH} ;$ When the ASCII code of each bit specified in (s) to (s) +5 exceeds the range of 30 H to $39 \mathrm{H}, 20 \mathrm{H}$ and $00 \mathrm{H} ;$ When the ASCII data specified in (s) to (s) +5 exceeds the range of $-2,147,483,648$ to $+2,147,483,647$
4085 H	The read address of (s) exceeds the device range.
4086 H	The write address of (d) exceeds the device range.

Example

When X000 is ON, the Signs set in to D20 to D25 and the ASCII code data of 10-digit decimal numbers are converted into BIN values and then saved to the program in D0 to D1.

LIMIT/ BIN 16-bit data high and low limit control

LIMIT(P)

The input value (BIN 16-bit value) specified in (s3) controls the output value stored in the device specified in (d) according to the upper and lower limit value ranges specified in (s1) and (s2).
-[LIMIT (s1) (s2) (s3) (d)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
s1	Low limit value (minimum output limit value)	$-32,768$ to 32,767	BIN16 bit	ANY16_S
s2	High limit value (maximum output limit value)	$-32,768$ to 32,767	BIN16 bit	ANY16_S
s3	Input value controlled by high and low limit control	$-32,768$ to 32,767	BIN16 bit	ANY16_S
d	The start number of device that stores the output value controlled by high and low limit control	-	BIN16 bit	ANY16_S

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		XYM S SM T(bit)			C(bit)	LC(bit)	HSC(bit)	D.b Kn		KnX KnY KnM		KnS T		C D	R SD		LCHSCKHE			[D]	XXP
	Parameter 1								\bullet	\bullet	\bullet	-		-	- \bullet	\bullet			$\bullet \bullet$	\bullet	\bullet
	Parameter 2								\bullet	\bullet	\bullet	\bullet	-	-		\bullet			- -	\bullet	\bullet
	Parameter 3								\bullet	\bullet	\bullet	\bullet	-	-	\bullet	\bullet				\bullet	\bullet
	Parameter 4									\bullet	\bullet			\bullet -		\bullet				\bullet	\bullet

Features

The input value (BIN 16-bit value) specified in (s3) controls the output value stored in the device specified in (d) according to the high and low limit value ranges specified in (s1) and (s2). The output value is controlled as follows.

Condition	The value stored in the output value
Low limit value (s1)>input value (s3)	Low limit value (s1)
High limit value $(s 1)<$ input value (s3)	High limit value (s2)
Low limit value $(s 1) \leq$ input value $(s 3) \leq$ high limit value (s2)	Input value (s3)

- Only in the case of controlling high limit value, set the minimum value of data range in the low limit value specified in (s1).
- Only in the case of controlling low limit value, set the maximum value of data range in the high limit value specified in (s2).

Error code

Error code	Content
4085 H	The read address exceeds the device range
4086 H	The write address exceeds the device range
4084 H	High limit <low limit

Example

$0 |$| X0 | KLIMIT K500 K5000 | D0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

When XOOO is ON

- When D0 < 500, D1 is 500.
- When $500 \leq \mathrm{D} 0 \leq 5,000, \mathrm{D} 1$ is the value of D0.
- When 5,000 <D0, D1 is 5,000.

DLIMIT/BIN 32-bit data high and low limit control

DLIMIT(P)

The input value (BIN 32-bit value) specified in (s3) controls the output value stored in the device specified in (d) according to the range of high and low limit values specified in (s1) and (s2).
-[DLIMIT (s1) (s2) (s3) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
s1	Low limit value (minimum output limit value)	$-2,147,483,648$ to 2,147,483,647	BIN32 bit	ANY32_S
s2	High limit value (maximum output limit value)	$-2,147,483,648$ to 2,147,483,647	BIN32 bit	ANY32_S
s3	Input value controlled by high and low limit control	$-2,147,483,648$ to 2,147,483,647	BIN32 bit	ANY32_S
d	The start number of the device that stores the output value controlled by high and low limit control		BIN32 bit	ANY32_S

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		X Y M S SM T(bit)			C(bit)	LC(bit)	HSC(bit)	D.b	KnX KnY KnM ${ }^{\text {KnS }}$				T	CD		R SD	LCHSCKHE			[D]	XXP
	Parameter 1								\bullet	\bullet	\bullet	\bullet	-	-	-	-	-	\bullet	$\bullet \bullet$	\bullet	\bullet
D	Parameter 2								\bullet	\bullet	\bullet	\bullet	-	-	-	-	\bullet	-	- \bullet	\bullet	\bullet
DLIMIT	Parameter 3								\bullet	-	\bullet	\bullet	\bullet	-	-	-	\bullet	\bullet		\bullet	\bullet
	Parameter 4									-	\bullet	-	\bullet	-	-	-	-	\bullet		\bullet	\bullet

Features

The input value (BIN 32-bit value) specified in (s3) controls the output value stored in the device specified in (d) according to the range of high and low limit values specified in (s1) and (s2). The output value is controlled as follows.

Condition	The value stored in the output value
Low limit value ((s1), (s1)+1)> input value ((s3), (s3)+1)	Low limit value ((s1), (s1)+1)
High limit value ((s2), (s2)+1) <input value ((s3), (s3)+1)	High limit value ((s2), (s2)+1)
Low limit value ((s1), (s1)+1) \leq input value ((s3), (s3)+1) \leq high limit value ((s2), (s2)+1)	Input value ((s3), (s3) +1$)$

- Only in the case of controlling high limit value, set the minimum value of data range in the low limit value specified in (s1).
- Only in the case of controlling low limit value, set the maximum value of data range in the high limit value specified in (s2).

Error code

Error code	Content
4085 H	The read address exceeds the device range
4086 H	The write address exceeds the device range
4084 H	High limit <low limit

Example

Operation:

- When (D1, D0) <10,000, (D11, D10) is 10,000.
- When $10,000 \leq(D 1, D 0) \leq 1,000,000$, (D11, D10) is the value of (D1, D0).
- When 1,000,000 <(D1, D0), (D11, D10) is 1,000,000.

SCL/BIN 16-bit unit scale (coordinate data of each point)

SCL(P)

The scaling conversion data (16-bit data unit) specified in ($s 2$) is scaled from the input value specified in (s1), and the calculation result is stored in the device specified in (d).
-[SCL (s1) (s2) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	The input value for scaling or the start number of device storing the input value	$-32,768$ to 32,767	Signed BIN 16 bit	ANY16_S
(s2)	The start number of the device storing conversion data for scaling	-	Signed BIN 16 bit	ANY16_S
(d)	The start number of the device that stores the output value controlled by scaling	-	Signed BIN 16 bit	ANY16_S

Device used

Features

For the scale conversion data (16-bit data unit) specified in (s2), scale by the input value specified in (s1), and store the operation result in the device specified in (d). Scale conversion is performed based on the scale conversion data stored after the device specified in (s2).

Setting items (n represents the number of coordinate points specified in (s2))		Device allocation
Coordinate points		(s2)
Point 1	X coordinate	(s2)+1
	Y coordinate	(s2)+2
Point 2	X coordinate	(s2)+3
	Y coordinate	(s2)+4
........		
Point n	X coordinate	(s2) $+2 \mathrm{n}-1$
	Y coordinate	$(\mathrm{s} 2)+2 \mathrm{n}$

- If the operation result is not an integer value, round the first digit below the decimal point.
- The X coordinate data of the conversion data for scaling should be set in ascending order.
- (s1) should be set within the range of conversion data for scaling (device value of (s2)).
- If the same X coordinate is specified for multiple points, the Y coordinate value of the second point will be output.
- Set the number of coordinate points of the conversion data for scaling within the range of 1 to 32,767 .
- Setting example of conversion table for scaling.

In the case of scaling conversion characteristics as shown in the figure below, set it as the following data sheet.

Set items		Sett device and content			Remarks
		When R0 is specified in (s2)		Set content	
Coordinate points		(s2)	RO	K10	
Point 1	X coordinate	(s2)+1	R1	K5	
	Y coordinate	$(s 2)+2$	R2	K20	
Point 2	X coordinate	(s2)+3	R3	K30	
	Y coordinate	(s2)+4	R4	K50	
Point 3	X coordinate	$(s 2)+5$	R5	K100	
	Y coordinate	(s2)+6	R6	K200	
Point 4	X coordinate	$(s 2)+7$	R7	K25	If the coordinates are specified by 3 points, the intermediate value could be the output value. In this example, the output value (median value) is specified by the Y coordinate of point 5. When the X coordinate is the same at 3 points or more, the value of the 2 nd point is also output.
	Y coordinate	$(s 2)+8$	R8	K200	
Point 5	X coordinate	$(\mathrm{s} 2)+9$	R9	K70	
	Y coordinate	(s2)+10	R10	K200	
Point 6	X coordinate	(s2)+11	R11	K250	
	Y coordinate	(s2)+12	R12	K250	
Point 7	X coordinate	(s2) +13	R13	K250	
	Y coordinate	(s2)+14	R14	K90	
Point 8	X coordinate	(s2)+15	R15	K350	If the coordinates are specified by two points, the output value is the value of the Y coordinate of the next point. In this example, the output value is specified by the Y coordinate of point 9.
	Y coordinate	(s2)+16	R16	K90	
Point 9	X coordinate	(s2)+17	R17	K350	
	Y coordinate	(s2)+18	R18	K30	
Point 10	X coordinate	(s2)+19	R19	K400	
	Y coordinate	(s2)+20	R20	K7	

Error code

Error code	Content
4085 H	When the specified device range for reading exceeds the range of the corresponding device.
4086 H	When the specified device range for writing exceeds the range of the corresponding device.

4084 H	When the Xn data of data table is not sorted in ascending order. However, the instruction will be executed until the position where the error occurs; When the input value specified in (s1) exceeds the range of the set scale conversion data; When the number of start coordinate points of device (s2) is less than 0.

Example

When $-100 \leq \mathrm{DO}(\mathrm{X})<0, \mathrm{D} 100(\mathrm{Y})=1 / 2 X-2$
when $\mathrm{D} 0(\mathrm{X})=0, \mathrm{D} 100(\mathrm{Y})=0$;
when $0<\mathrm{DO}(\mathrm{X}) \leq 100, \mathrm{D} 100(\mathrm{Y})=1 / 2 x+2$

DSCL/32-bit unit scale (coordinate data of each point)

DSCL(P)
The conversion data (32-bit data unit) for scaling specified in ($s 2$) is scaled by the input value specified in (s1), and the operation result is stored in the device specified in (d).
-[DSCL (s1) (s2) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	The input value for scaling or the start number of the device storing the input value	$\begin{gathered} -2,147,483,648 \text { to } \\ 2,147,483,647 \end{gathered}$	Signed BIN 32 bit	ANY32_S
(s2)	The start number of the device storing conversion data for scaling	-	Signed BIN 32 bit	ANY32_S
(d)	The start number of the device that stores the output value controlled by scaling	-	Signed BIN 32 bit	ANY32_S

Device used

Features

The conversion data (32-bit data unit) for scaling specified in ($s 2$) is scaled by the input value specified in (s1), and the operation result is stored in the device number specified in (d). The scale conversion is performed based on the scale conversion data stored after the device specified in (s2).

- If the calculation result is not an integer value, round the first digit below the decimal point.
- The X coordinate data of the conversion data for scaling should be set in ascending order.
- For (s1), set within the range of the conversion data for scaling ((s2), (s2) + 1 device value).
- If the same X coordinate is specified for multiple points, the Y coordinate value of the second point will be output.
- Set the number of coordinate points of conversion data for scaling within the range of 1 to $2,147,483,647$.
- Setting example of conversion table for scaling.

In the case of scaling conversion characteristics as shown in the figure below, set it as the following data sheet.

Set items		Set device and content			Remarks
		When RO 0 is specified in (s2)		Set content	
Coordinate points		(s2) $+1,(\mathrm{~s} 2)$	R1, R0	K10	
Point 1	X coordinate	(s2) $+3,(\mathrm{~s} 2)+2$	R3, R2	K5	
	Y coordinate	(s 2$)+5, \mathrm{~s} 2)+4$	R5, R4	K7	
Point 2	X coordinate	$(\mathrm{s} 2)+7,(\mathrm{~s} 2)+6$	R7, R6	K20	
	Y coordinate	(s 2$)+9,(\mathrm{~s} 2)+8$	R9, R8	K30	
Point 3	X coordinate	(s 2$)+11,(\mathrm{~s} 2)+10$	R10, R11	K50	
	Y coordinate	(s 2$)+13,(\mathrm{~s} 2)+12$	R13, R12	K100	
Point 4	X coordinate	$(\mathrm{s} 2)+15,(\mathrm{~s} 2)+14$	R15, R14	K200	if the coordinates are specified by 3 points, the intermediate value could be the output value. In this example, the output value (median value) is specified by the Y coordinate of point 5. When the X coordinate is the same at 3 points or more, the value of the 2 nd point is also output.
	Y coordinate	$(\mathrm{s} 2)+17,(\mathrm{~s} 2)+16$	R17, R16	K25	
Point 5	X coordinate	$(\mathrm{s} 2)+19,(\mathrm{~s} 2)+18$	R19, R18	K200	
	Y coordinate	(s 2$)+21,(\mathrm{~s} 2)+20$	R21, R20	K70	
Point 6	X coordinate	(s 2$)+23,(\mathrm{~s} 2)+22$	R23, R22	K200	
	Y coordinate	(s 2$)+25,(\mathrm{~s} 2)+24$	R25, R24	K250	
Point 7	X coordinate	$(\mathrm{s} 2)+27,(\mathrm{~s} 2)+26$	R27, R26	K250	
	Y coordinate	$(\mathrm{s} 2)+29,(\mathrm{~s} 2)+28$	R29, R28	к90	
Point 8	X coordinate	(s 2$)+31,(\mathrm{~s} 2)+30$	R31, R30	K350	If the coordinates are specified by two points, the output value is the value of the Y coordinate of the next point. In this example, the output value is specified by the Y coordinate of point 9.
	Y coordinate	(s 2$)+33,(\mathrm{~s} 2)+32$	R33, R32	к90	
Point 9	X coordinate	(s 2$)+35,(\mathrm{~s} 2)+34$	R35, R34	K350	
	Y coordinate	(s2)+37, (s2)+36	R37, R36	K30	
Point 10	X coordinate	(s2)+39, (s2)+38	R39, R38	K400	
	Y coordinate	(s2)+41, (s2)+40	R41, R40	K7	

Error code

Error code	Content
4085 H	When the specified device range for reading exceeds the range of the corresponding device.
4086 H	When the specified device range for writing exceeds the range of the corresponding device.
4084 H	When the Xn data of data table is not sorted in ascending order. However, the instruction will be executed until the position where the error occurs; When the input value specified in (s1) exceeds the range of the set scale conversion data; When the number of start coordinate points of device (s2) is less than 0.

Example

SM100					
			\{DMOV	K5	R0
			[DMOV	K-100	R2
			[DMOV	K0	R6
			[DMOV	K0	R10
			[DMOV	K0	R14
			[DMOV	K100	R18
			[DMOV	K-52	R4
			[DMOV	K-2	R8
			[DMOV	K0	R12
			[DMOV	K2	R16
			[DMOV	K52	R20
		[DSCL	D0	R0	D100

When $-100 \leq \mathrm{D}(\mathrm{X})<0, \mathrm{D} 100(\mathrm{Y})=1 / 2 X-2$
When $\mathrm{DO}(\mathrm{X})=0, \mathrm{D} 100(\mathrm{Y})=0$;
When $0<\mathrm{DO}(\mathrm{X}) \leq 100, \mathrm{D} 100(\mathrm{Y})=1 / 2 x+2$

SCL2/BIN 16-bit unit scale (X/Y coordinate data)

SCL2(P)

The conversion data (16-bit data unit) for scaling specified in ($s 2$) is scaled by the input value specified in (s1), and the operation result is stored in the device specified in (d).
-[SCL2 (s1) (s2) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	The input value for scaling or the start number of the device storing the input value	$-32,768$ to 32,767	Signed BIN 16 bit	ANY16_S
(s2)	The start number of the device storing conversion data for scaling	-	Signed BIN 16 bit	ANY16_S
(d)	The start number of the device that stores the output value controlled by scaling	-	Signed BIN 16 bit	ANY16_S

Device used

Instruction	Parameter	Devices																			Offset modification	Pulse extension
		XYM SSM			T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX KnY		KnM KnS			TCD	R SD LCHSCKHE					[D]	XXP
	Parameter 1									\bullet	\bullet	-	\bullet			- -	-			$\bullet \bullet$	\bullet	\bullet
SCL2	Parameter 2															-					\bullet	\bullet
	Parameter 3										\bullet	\bullet	-				-			-	\bullet	\bullet

Features

The conversion data (16-bit data unit) for scaling specified in ($s 2$) is scaled by the input value specified in (s1), and the operation result is stored in the device number specified in (d). The scale conversion is performed based on the scale conversion data stored after the device specified in (s2).

Set items (n represents the number of coordinate points specified in (s2))		Device allocation
Coordinate points		(s 2$)$
X coordinate	Point 1	(s2)+1
	Point 2	(s2)+2

	Point n	(s2)+n
Y coordinate	Point 1	(s2)+n+1
	Point 2	(s2)+n+2

	Point n	$(s 2)+2 n$

- If the operation result is not an integer value, round the first digit below the decimal point.
- The X coordinate data of the conversion data for scaling should be set in ascending order.
- For (s1), set within the range of the conversion data for scaling ((s2), (s2) + 1 device value).
- If the same X coordinate is specified for multiple points, the Y coordinate value of the second point will be output.
- Set the number of coordinate points of conversion data for scaling within the range of 1 to 32,767 .
- Setting example of conversion table for scaling.

In the case of scaling conversion characteristics as shown in the figure below, set it as the following data sheet.

					Point 10(400,7)
Set items		Set device and content			Remarks
		When RO is specified in ($\mathbf{s} 2$)		Set content	
Coordinate points		(s2)	RO	K10	
X coordinate	Point 1	(s2)+1	R1	K5	
	Point 2	(s2)+2	R2	K20	
	Point 3	(s2)+3	R3	K50	
	Point 4	(s2)+4	R4	K200	Refer to 1
	Point 5	(s2)+5	R5	K200	
	Point 6	(s2)+6	R6	K200	
	Point 7	$(\mathrm{s} 2)+7$	R7	K250	
	Point 8	$(\mathrm{s} 2)+8$	R8	K350	Refer to $\otimes 2$
	Point 9	(s2)+9	R9	K350	
	Point 10	$(s 2)+10$	R10	K400	
Y coordinate	Point 1	$(s 2)+11$	R11	K7	
	Point 2	$(\mathrm{s} 2)+12$	R12	K30	
	Point 3	$(s 2)+13$	R13	K100	
	Point 4	$(s 2)+14$	R14	K25	Refer to 1
	Point 5	$(s 2)+15$	R15	K70	
	Point 6	$(s 2)+16$	R16	K250	
	Point 7	$(s 2)+17$	R17	K90	
	Point 8	$(s 2)+18$	R18	K90	Refer to *2
	Point 9	(s2)+19	R19	K30	
	Point 10	$(s 2)+20$	R20	K7	

* 1 Like points 4,5 , and 6 , if the coordinates are specified by 3 points, the intermediate value could be the output value.

In this example, the output value (median value) is specified by the Y coordinate of point 5.
When the X coordinate is the same at 3 or more points, the value of the second point is also output.
22 Like points 8 and 9, if the coordinates are specified by 2 points, the output value is the value of the Y coordinate of next point. In this example, the output value is specified by the Y coordinate of point 9 .

Error code

Error code	Content
4085 H	When the specified device range for reading exceeds the range of the corresponding device.
4086 H	When the specified device range for writing exceeds the range of the corresponding device.
4084 H	When the Xn data of data table is not sorted in ascending order. However, the instruction will be executed until the position where the error occurs; When the input value specified in (s1) exceeds the range of the set scale conversion data; When the number of start coordinate points of device (s2) is less than 0.

Example

When -100 \leq DO $(\mathrm{X})<0$, D100(Y)=
when $\mathrm{DO}(\mathrm{X})=0, \mathrm{D} 100(\mathrm{Y})=0 ; \quad 1 / 2 X-2$
when $0<\mathrm{DO}(\mathrm{X}) \leq 100, \mathrm{D} 100(\mathrm{Y})=1 / 2 X+2$

DSCL2/BIN 32-bit unit scale (X/Y coordinate data)

DSCL2(P)

The conversion data (32-bit data unit) for scaling specified in (s2) is scaled by the input value specified in (s1), and the operation result is stored in the device specified in (d).
-[DSCL2 \quad (s1) (s2) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	The input value for scaling or the start number of the device storing the input value	$-2,147,483,648$ to $+2,147,483,647$	Signed BIN 32 bit	ANY32_S
(s2)	The start number of the device storing conversion data for scaling		Signed BIN 32 bit	ANY32_S
(d)	The start number of the device that stores the output value controlled by scaling	-	Signed BIN 32 bit	ANY32_S

Device used

Features

The conversion data (32-bit data unit) for scaling specified in ($s 2$) is scaled by the input value specified in (s1), and the operation result is stored in the device number specified in (d). The scale conversion is performed based on the scale conversion data stored after the device specified in (s2).

Set items (n represents the number of coordinate points specified in (s2))		Device allocation
Coordinate points		$(\mathrm{s} 2)+1,(\mathrm{~s} 2)$
X coordinate	Point 1	$(s 2)+3,(s 2)+2$
	Point 2	$(s 2)+5,(s 2)+4$

	Point n	$(s 2)+2 n+1,(s 2)+2 n$
Y coordinate	Point 1	(s2) $+2 n+3,(s 2)+2 n+2$
	Point 2	(s2)+2n+5, (s2) $+2 n+4$

	Point n	$(\mathrm{s} 2)+4 \mathrm{n}+1,(\mathrm{~s} 2)+4 \mathrm{n}$

- If the operation result is not an integer value, round the first digit below the decimal point.
- The X coordinate data of the conversion data for scaling should be set in ascending order.
- For (s1), set within the range of the conversion data for scaling ((s2), (s2) +1 device value).
- If the same X coordinate is specified for multiple points, the Y coordinate value of the second point will be output.
- Set the number of coordinate points of conversion data for scaling within the range of 1 to $2,147,483,647$.
- Setting example of conversion table for scaling.

In the case of scaling conversion characteristics as shown in the figure below, set it as the following data sheet.

Set items		Set device and content			Remarks
		When R0 is specified in (s2)		Set content	
Coordinate points		$(\mathrm{s} 2)+1,(\mathrm{~s} 2)$	R1, R0	K10	
X	Point 1	$(s 2)+3,(s 2)+2$	R3, R2	K5	
	Point 2	$(s 2)+5,(s 2)+4$	R5, R4	K20	
	Point 3	$(s 2)+7,(s 2)+6$	R7, R6	K50	
	Point 4	$(s 2)+9,(s 2)+8$	R9, R8	K200	Refer to *1
	Point 5	(s2)+11, (s2)+10	R10, R11	K200	
	Point 6	$(\mathrm{s} 2)+13,(\mathrm{~s} 2)+12$	R13, R12	K200	
	Point 7	(s2)+15, (s2)+14	R15, R14	K250	
	Point 8	$(\mathrm{s} 2)+17,(\mathrm{~s} 2)+16$	R17, R16	K350	Refer to 2
	Point 9	$(s 2)+19,(s 2)+18$	R19, R18	K350	
	Point 10	$(\mathrm{s} 2)+21,(\mathrm{~s} 2)+20$	R21, R20	K400	
Y coordinate	Point 1	$(\mathrm{s} 2)+23,(\mathrm{~s} 2)+22$	R23, R22	K7	
	Point 2	(s2)+25, (s2)+24	R25, R24	K30	
	Point 3	$(s 2)+27,(\mathrm{~s} 2)+26$	R27, R26	K100	
	Point 4	$(\mathrm{s} 2)+29,(\mathrm{~s} 2)+28$	R29, R28	K25	Refer to 1
	Point 5	$(\mathrm{s} 2)+31,(\mathrm{~s} 2)+30$	R31, R30	K70	
	Point 6	$(\mathrm{s} 2)+33,(\mathrm{~s} 2)+32$	R33, R32	K250	

PLC LX5V Series Programming Manual (V2.2)

Point 7	(s2)+35, (s2)+34	R35, R34	K90	
Point 8	(s2) $+37,(\mathrm{~s} 2)+36$	R37, R36	K90	Refer to 2
Point 9	$(s 2)+39,(s 2)+38$	R39, R38	K30	
Point 10	$(\mathrm{s} 2)+41,(\mathrm{~s} 2)+40$	R41, R40	K7	

* 1 Like points 4,5 , and 6 , if the coordinates are specified by 3 points, the intermediate value could be the output value.

In this example, the output value (median value) is specified by the Y coordinate of point 5.
When the X coordinate is the same at 3 or more points, the value of the second point is also output.
22 Like points 8 and 9, if the coordinates are specified by 2 points, the output value is the value of the Y coordinate of the next point.

In this example, the output value is specified by the Y coordinate of point 9.
Error code

Error code	Content
4085H	When the specified device range for reading exceeds the range of the corresponding device.
4086H	When the specified device range for writing exceeds the range of the corresponding device.
4084H	When the Xn data of data table is not sorted in ascending order. However, the instruction will be executed until the position where the error occurs; When the input value specified in (s1) exceeds the range of the set scale conversion data; When the number of start coordinate points of device (s2) is less than 0.

Example
$\left.\begin{array}{lllll|} & \text { [DMOV } & \text { K5 } & \text { R0 } &]\end{array}\right]$

When - $100 \leq \mathrm{DO}(\mathrm{X})<0, \mathrm{D} 100(\mathrm{Y})=1 / 2 X-2$;
when $\mathrm{DO}(\mathrm{X})=0, \mathrm{D} 100(\mathrm{Y})=0$;
when $0<\mathrm{D} 0(\mathrm{X}) \leq 100, \mathrm{D} 100(\mathrm{Y})=1 / 2 X+2$.

ZONE/BIN 16-bit data zone control

ZONE (P)

After adding the offset value specified in (s1) or (s2) to the input value specified in (s3), it is stored in the device number specified in (d).
-[ZONE (s1) (s2) (s3) (d)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
s1	The negative offset value for addition in the input value	$-32,768$ to 32,767	BIN16 bit	ANY16_S
s2	The positive offset value for addition in the input value	$-32,768$ to 32,767	BIN16 bit	ANY16_S
s3	Input value for zone control	$-32,768$ to 32,767	BIN16 bit	ANY16_S
d	The start number of the device storing the output value controlled by zone control	-	BIN16 bit	ANY16_S

Device used

Instruction	Parameter	Devices																			Offset modification	Pulse extension
		XYMS		SM	T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY KnM		KnS	T C		R SD		LC	HSCKHE		[D]	XXP
	Parameter 1									\bullet	\bullet	\bullet	\bullet	-	-	-	-			- -	\bullet	\bullet
	Parameter 2									\bullet	\bullet	\bullet	\bullet	\bullet	- -	-	\bullet			$\bullet \bullet$	-	\bullet
	Parameter 3									-	\bullet	\bullet	-	-	-	-	\bullet				-	\bullet
	Parameter 4										\bullet	\bullet	\bullet	-	-		\bullet				\bullet	\bullet

Features

After adding the offset value specified in (s1) or (s2) to the input value (BIN 16-bit value) specified in (s3), it is stored in the device number specified in (d). The offset value is controlled as follows.

Condition	The value stored in the output value
When input value $(s 3)<0$	Input value $(s 3)+$ negative offset value (s1)
When input value $(s 3)=0$	0
When input value $(s 3)>0$	Input value $(s 3)+$ positive offset value $(s 2)$

- When the output value stored in (d) is a signed BIN 16-bit value, and the operation result exceeds the range of $-32,768$ to 32,767 , the situation is shown in the following example.

For example, when ($s 1$) is -100 and ($s 3$) is $-32,768$,
the output value $=-32768+(-100)=8000 \mathrm{H}-\mathrm{FF9CH}=7 \mathrm{F9CH}=32668$.

Error code

Error code	
4085 H	Content
4086 H	When the specified device range for reading exceeds the range of the corresponding device

Example

$$
0 \quad \begin{array}{lllllll|}
\hline \text { X0 } & \text { KZONE } & \text { K-1000 } & \text { K1000 } & \text { D0 } & \text { D1 } & \}
\end{array}
$$

When XOOO is ON

- When $D 0<0$, the value of (D0)+(-1,000) is stored in D1.
- When $\mathrm{D} 0=0,0$ is stored in D1.
- When $0<D 0$, the value of $(D 0)+(1,000)$ is stored in $D 1$.

DZONE/BIN 32-bit data zone control

DZONE(P)

After adding the offset value specified in (s1) or (s2) to the input value specified in (s3), it is stored in the device number specified in (d).
-[DZONE (s1) (s2) (s3) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	The negative offset value for addition in the input value	-2147483648 to 2147483647	BIN32 bit	ANY32_S
(s2)	The positive offset value for addition in the input value	-2147483648 to 2147483647	BIN32 bit	ANY32_S
(s3)	Input value for zone control	$-2147483648 ~ t o ~$ 2147483647	BIN32 bit	ANY32_S
(d)	The start number of the device storing the output value controlled by zone control	-	BIN32 bit	ANY32_S

Device used

Instruction	Parameter	Devices																	Offset odification	Pulse extension
		XYMSSMT(bit)			C(bit)	LC(bit)	HSC(bit)	D.b Knx		KnX KnY KnM KnS ${ }^{\text {T }}$				TCDRSDLCHSCKHE					[D]	XXP
	Parameter 1								-	\bullet	-	\bullet	\bullet	- ••	- - -	-	- ••		-	\bullet
	Parameter 2								\bullet	-	-	\bullet	-	- ••	- - -	\bullet	$\bullet \bullet \bullet$		\bullet	\bullet
DZONE	Parameter 3								\bullet	\bullet	\bullet	\bullet		$\bullet \bullet \cdot$	- - -	\bullet	\bullet		\bullet	\bullet
	Parameter 4									-	\bullet	\bullet		$\bullet \bullet-$	- - -	-	\bullet		\bullet	\bullet

Features

After adding the offset value specified in ($s 1$) or ($s 2$) to the input value (BIN 32 -bit value) specified in ($s 3$), it is stored in the device number specified in (d). The offset value is controlled as follows.

Condition	The value stored in the output value
When input value $((s 3),(s 3)+1)<0$	Input value $((s 3),(s 3)+1)+$ negative offset value $(s 1),(s 1)+1$
When input value $((s 3),(s 3)+1)=0$	0
When input value $((s 3),(s 3)+1)>0$	Input value $((s 3),(s 3)+1)+$ positive offset value $(s 2),(s 2)+1$

- When the output value stored in (d) and (d)+1 is a signed BIN 32-bit value, and the operation result exceeds the range of $-2,147,483,648$ to $2,147,483,647$, the situation is shown in the following example.

For example, (s1), (s1)+1 is $-1,000,(s 3),(s 3)+1$ is $-2,147,483,648$, then the output value $=-2,147,483,648+(-1000)=80000000 \mathrm{H}+$ FFFFFFC18H $=2,147,482,648$.

Error code

Error code	
4085 H	When the specified device range for reading exceeds the range of the corresponding device
4086 H	When the specified device range for writing exceeds the range of the corresponding device

Example

$0-\mathrm{CO} \longmapsto\{$ DZONE K-10000 K10000 D0 D1 $\}$

- When ($\mathrm{D} 1, \mathrm{D} 0$)<0, the value of ($\mathrm{D} 1, \mathrm{D} 0$)+(-10,000) is stored in (D11, D10).
- When (D1, D0)=0, 0 is stored in (D11, D10).
- When $0<(\mathrm{D} 1, \mathrm{D} 0)$, the value of (D1, D0)+10,000 is stored in (D11, D10).

7.14 Data block instructions

BK+/BIN 16-bit block data addition operation

$B K+(P)$
Add the BIN 16-bit data of point (n) starting from the device specified in (s 1) and the BIN 16-bit data of point (n) starting from the device specified in (s 2), and store the operation result in the device specified in (d).
$-\left[\begin{array}{lllll}B K+ & (s 1) & (s 2) & \text { (d) } & (n)\end{array}\right]$
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
s1	The start device that stores the addition operation data	$-32,768$ to $+32,767$	BIN16 bit	ANY16_S
s2	Addition data or the starting device that stores the addition data	$-32,768$ to +32,767	BIN16 bit	ANY16_S
d	The start device that stores the addition operation result	-	BIN16 bit	ANY16_S
n	The number of addition operation data	0 to 65,535	BIN16 bit	ANY16

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		X Y M S SM T(bit)			C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS	T	CD	DR	SD	LC		KHE	[D]	XXP
	Parameter 1													-	- \bullet	\bullet				\bullet	\bullet
	Parameter 2													-	- -	-			- -	\bullet	\bullet
BK+	Parameter 3													-	- -	-				\bullet	\bullet
	Parameter 4														- \cdot	-			$\bullet \bullet$		\bullet

Features

Add the BIN 16-bit data of point (n) starting from the device specified in (s 1) and the BIN 16-bit data of point (n) starting from the device specified in (s2), and store the result in the device specified in (d).

- Block addition operations are performed in 16-bit units.

When a device is specified in (s 2) (when specified with a sign)

When a constant is specified in ($s 2$) (when specified with a sign)

- When an underflow or overflow occurs in the operation result, the conditions are as follows. In this case, the carry flag does not change to ON

When specifying sign:

K 32767 $(7 \mathrm{FFFH})$	+	K 2 $(0002 \mathrm{H})$	$\mathrm{K}-32767$ $(8001 \mathrm{H})$
$\mathrm{K}-32767$ $(8001 \mathrm{H})$	$\mathrm{K}-2$ (FFFEH)	K 32767 $(7 \mathrm{FFFH})$	

When specifying unsigned:

K 65535
(FFFFH)

Error code

Error code	Content
4084 H	The device range of point (n) starting from (s 1) or ($s 2$) is partially consistent with the device range of point (n) starting from (d). (duplicate)
4085 H	When the specified device range for reading exceeds the range of the corresponding device
4086 H	When the specified device range for writing exceeds the range of the corresponding device

Example

$-\mathrm{X} 0 .[\mathrm{BK}+$	D100	D150	D200	D0

As shown in the above ladder program:
When X0 is ON, add the device data starting from D100 (the number of device points is the value stored in D0), and the number of devices starting from D150(the number of device points is the value stored in D0), and save the result to the program after D200.

DBK+/BIN 32-bit block data addition operation
DBK+(P)
Add the BIN 32-bit data of point (n) starting from the device specified in (s 1) and the BIN 32-bit data of point (n) starting from the device specified in ($s 2$), and store the operation result in the device specified in (d).
-[DBK+ (s1) (s2) (d) (n)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
s1	The start device that stores addition operation data	-2147483648 to +2147483647	BIN32 bit	ANY32_S
s2	Addition data or the starting device that stores addition operation data -2147483648 to +2147483647	BIN32 bit	ANY32_S	
d	The start device that stores the operation data	-	BIN32 bit	ANY32_S
n	The number of addition operation data	0 to 65535	BIN32 bit	ANY32_S

Device used

Instruction	Parameter	Devices																				Offset modification	Pulse extension
		XYM MSM T(bit)				C(bit)	LC(bit)	HSC(bit)	D.b	KnX KnY KnM Kns T					TCD		RSDLCHSCKHE					[D]	XXP
	Parameter 1														-	- -	- -	\bullet	\bullet			\bullet	\bullet
DBK+	Parameter 2														-	-	-	\bullet	\bullet	-	-	\bullet	\bullet
DBK+	Parameter 3														-	-	- \bullet	\bullet	\bullet			\bullet	\bullet
	Parameter 4															- -	- \bullet				-		\bullet

Features

Add the BIN 32-bit data of point (n) starting from the device specified in (s1) and the BIN 32-bit data of point (n) starting from the device specified in (s 2), and store the operation result in the device specified in (d).

- Block addition operations are performed in 32-bit units.

When a device is specified in ($s 2$) (when specified with a sign)

When a constant is specified in (s2) (when specified with a sign)

- When (s1) or (s2) and (d) are specified with the same device (completely consistent), operation could be performed. However, if the device range of point (n) starting from (s 1) or (s 2) partially matches (overlaps) the device range of point (n) starting from (d), an error occurs.

Example
When the first 4 points of the device of (s2) and (d) are completely consistent.

(1) Due to the complete consistence, operation could be executed.

When ($s 2$) and (d) the first 4 points of the device are partially consistent.

(1) Due to partial consistence, an operation error occurs.

- If the value specified in (n) is 0 , it will be no processing.
- When an underflow or overflow occurs in the operation result, the conditions are as follows. In this case, the carry flag does not change to ON.

When a Sign is specified:

K 2147483647 $(7 \mathrm{FFFFFFFH})$			
$\mathrm{K}-2147483647$ $(80000001 \mathrm{H})$	+K 2 $(00000002 \mathrm{H})$	$\mathrm{K}-2$ $($ FFFFFFFEH $)$	$\mathrm{K}-21474$ $(800000$
K214748 $(7 \mathrm{FFFFF}$			

When specifying unsigned:

K4294967295
$($ FFFFFFFFH $)$

Error code

Error code	Content
4084 H	The device range of point (n) starting from (s1) or (s2) is partially consistent with the device range of point (n) starting from (d). (duplicate)
4085 H	When the specified device range for reading exceeds the range of the corresponding device
4086 H	When the specified device range for writing exceeds the range of the corresponding device

Example

As shown in the above ladder program:
When X0 is ON, add the device data starting from D100 (the number of device points is the value stored in D0), and the number of devices starting from D150(the number of device points is the value stored in D0), the result is saved to the program in the device after D200.

BK-/BIN 16-bit block data subtraction operation

BK-(P)

Subtract the BIN 16-bit data of point (n) starting from the device specified in (s 1) and the BIN 16 -bit data of point (n) starting from the device specified in (s2), and store the operation result in the device specified in (d).
-[BK-
(s1) (s2)
(d) (n)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	The start device that stores the subtracted data	-32768 to +32767	BIN16 bit	ANY16_S
(S2)	Subtraction data or the start device that stores the subtraction data	-32768 to +32767	BIN16 bit	ANY16_S
(d)	The start device that stores the operation result		BIN16 bit	ANY16_S
(n)	The number of subtraction operation data	0 to 65,535	BIN16 bit	ANY16

Device used

Instruction	Parameter	Devices																		Offs odific	catio		Pulse tension
		XYM S SM T(bit)			C(bit)	LC(bit)	HSC(bit)	D.b Kn	KnX KnY KnM Kns T					TCDRSDLCHSCKHE						[D]			XXP
BK-	Parameter 1													- \bullet -	- •					\bullet			-
	Parameter 2													- \cdot	- -			- -		-			\bullet
	Parameter 3													- \cdot	- -					\bullet			\bullet
	Parameter 4														- -			$\bullet \bullet$					\bullet

Features

Subtract the BIN 16-bit data of point (n) starting from the device specified in (s1) and the BIN 16 -bit data of point (n) starting from the device specified in (s 2), and store the result in the device specified in (d).

- Block subtraction operations are performed in 16-bit units.

When a device is specified in (s2)

When a constant is specified in ($s 2$)

- When an underflow or overflow occurs in the operation result, the conditions are as follows. In this case, the carry flag does not change to ON .

When a Sign is specified:

$\begin{gathered} \text { K-32767 } \\ (8001 \mathrm{H}) \end{gathered}$	-	$\begin{aligned} & \text { K2 } \\ & (0002 \mathrm{H}) \end{aligned}$		$\begin{aligned} & \text { K32766 } \\ & (7 \mathrm{FFEH}) \end{aligned}$
$\begin{aligned} & \text { K32767 } \\ & \text { (7FFFH) } \end{aligned}$		K-2 (FFFEH)		$\begin{gathered} \mathrm{K}-32767 \\ (8001 \mathrm{H}) \end{gathered}$

When specifying unsigned:
$\underset{(0000 \mathrm{H})}{\mathrm{K0}}-\underset{(0001 \mathrm{H})}{\mathrm{K} 1}$

Error code

Error code	Content
4084 H	The device range of point (n) starting from (s 1) or (s 2) is partially consistent with the device range of point (n) starting from (d). (duplicate)
4085 H	When the specified device range for reading exceeds the range of the corresponding device
4086 H	When the specified device range for writing exceeds the range of the corresponding device

Example

0 [| [BK- D100 K8765 D200

As shown in the ladder program above:
When X 010 is ON , after subtracting the 3 point data from D100 and the constant 8765 , the result is saved to the program in the device after D200.

DBK-/BIN 32-bit block data subtraction operation

DBK-(P)

Subtract the BIN 32-bit data of point (n) starting from the device specified in (s1) and the BIN 32-bit data of point (n) starting from the device specified in (s2), and store the operation result in the device specified in (d).
-[DBK-
(s 1) (s 2)
(d) (n)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	The start device that stores the subtracted data	-2147483648 to 2147483647	BIN32 bit	ANY32_S
(s2)	Subtraction data or the start device that stores the subtraction data	-2147483648 to 2147483647	BIN32 bit	ANY32_S
(d)	The start device that stores the operation result	-	BIN32 bit	ANY32_S
(n)	The number of subtraction operation data	0 to 65,535	BIN32 bit	ANY32_S

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		X Y M SSM T(bit)			C(bit)	LC(bit)	HSC(bit)	D.b	KnX KnY		KnM	KnS T		T CD	R SD		LCHSCKHE			[D]	XXP
	Parameter 1													- \bullet	-	\bullet	\bullet	\bullet		\bullet	\bullet
	Parameter 2												-	- \bullet	-	\bullet	\bullet	\bullet	- \bullet	\bullet	\bullet
DBK-	Parameter 3												-	- \bullet	\bullet	-	\bullet	\bullet		\bullet	\bullet
	Parameter 4														-	\bullet			- -		\bullet

Features

Subtract the BIN 32-bit data of point (n) from the device specified in (s 1) and the BIN 32-bit data of point (n) from the device specified in (s2), and store the result in the device specified in (d).

- Block subtraction operations are performed in 32-bit units.

When a device is specified in (s2) (when specified with a sign)

When a constant is specified in (s2) (when specified with a sign)

- When (s1) or (s 2) and (d) are specified with the same device (completely consistent), operation could be performed. However, if the device range of point $(\mathrm{n}$) starting from (s 1) or (s 2) partially matches (overlaps) the device range of point (n) starting from (d), an error occurs.

Example
When the first 4 points of the device of (s 2) and (d) are completely consistent.

(1)Due to the complete consistency, operation could be executed.

When the first 4 points of the device of (s 2) and (d) are partially consistent.

(1)Due to the partial consistency, an operation error occurs.

- If the value specified in (n) is 0 , it will be no processing.
- When an underflow or overflow occurs in the operation result, the conditions are as follows. In this case, the carry flag does not change to ON.

When specifying Signed:

K 2147483647 $(7 \mathrm{FFFFFFFH})$	-		
$\mathrm{K}-2$ $($ FFFFFFFEH $)$ $(80000001 \mathrm{H})$	-	K 2 $(00000002 \mathrm{H})$	$\mathrm{K}-2147483647$ $(80000001 \mathrm{H})$
K 2147483647 $(7 \mathrm{FFFFFFFH})$			

When specifying unsigned:

$\mathrm{K0} 0$
$(00000000 \mathrm{H})$

Error code

Error code	Content
4084 H	The device range of point (n) starting from (s1) or (s2) is partially consistent with the device range of point (n) starting from (d). (duplicate)
4085 H	When the specified device range for reading exceeds the range of the corresponding device
4086 H	When the specified device range for writing exceeds the range of the corresponding device

Example

As shown in the ladder program above:
When X010 is ON, after subtracting the 3-point data starting from D100 with the constant 987,654,321, save the result to the program in the device after D200.

BKCMP=/BIN 16-bit block data comparison

BKCMP=(P)

Compare the BIN 16 -bit data of point (n) starting from the device specified in ($s 1$) with the BIN 16 -bit data of point (n) starting from the device specified in (s2), and store the operation result in the device specified in (d).
-[BKCMP= (s1) (s2)
(d) (n$)]$

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	Comparative data or the device storing comparative data	-32768 to 32767	BIN16 bit	ANY16_S
(s2)	The device storing the comparison source data	-32768 to 32767	BIN16 bit	ANY16_S
(d)	The start device storing the comparative result	-	Bit	ANY_BOOL
(n)	The number of comparative data	0 to 65535	BIN16 bit	ANY16

Device used

Instruction	Parameter	Devices																					Offset modification [D]	Pulse extension$\|$$X P$
		XY	M	S S	SM	T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM KnS T			TCD	RSD		LCHSCKHE					
	Parameter 1														- -	-	- \bullet	\bullet			\bullet -	\bullet	\bullet	\bullet
BKCMP	Parameter 2														$\bullet \cdot$	-	-	-					\bullet	\bullet
BKC	Parameter 3	\bullet	-	-	-					\bullet													\bullet	\bullet
	Parameter 4																-				\bullet	\bullet		\bullet

Features

Compare the BIN 16 -bit data of point (n) starting from the device specified in (s 1) with the BIN 16 -bit data of point (n) starting from the device specified in (s 2), and store the comparative result in the point (n) starting from the device specified in (d).

- The corresponding device at point (n) starting from the device specified in (d) turns on when the comparison condition is satisfied, and turns off when the comparison condition is not satisfied.

- Comparison operations are performed in 16 -bit units.
- (s1) could specify a direct constant.

- When all the comparison operation results stored in point (n) starting from (d) are ON (1), SM156 (block comparison signal) would turn ON.

Error code

Error code	Content
4085 H	When the specified device range for reading exceeds the range of the corresponding device
4086 H	When the specified device range for writing exceeds the range of the corresponding device

Example

When X 020 is ON , use "BKCMP=" instruction to compare the 4 -point 16-bit data (BIN) starting from D100 and the 4 -point 16 -bit data starting from D200, and save the result to the program in the 4-point of the device starting from M10. In addition, when the comparative results (4 points starting from M 10) are all $\mathrm{ON}(1)$, Y000 turns ON.

DBKCMP=/BIN32-bit block data comparison

DBKCM=(P)

Compare the BIN 32-bit data of point (n) starting from the device specified in (s 1) with the BIN 32-bit data of point (n) starting from the device specified in (s 2), and store the operation result in the device specified in (d).
-[DBKCMP=
(s1)
(s2)
(d) (n)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	Comparative data or the device storing comparative data	-2147483648 to 2147483647	BIN32 bit	ANY32_S
(s2)	The device storing the comparison source data	-2147483648 to 2147483647	BIN32 bit	ANY32_S
(d)	The start device storing the comparative result	-	Bit	ANY_BOOL
(n)	The number of comparative data	0 to 65,535	BIN32 bit	ANY32_S

Device used

Instruction	Parameter	Devices																				Offset modification	Pulse extension
		XY Y M			SM T(bit)		C(bit)	LC(bit)	HSC(bit)	D.b KnX		KnY KnM		KnS T		CDRSDLCHSCKHE						[D]	XXP
	Parameter 1															- -		\bullet	\bullet	-	- •	\bullet	\bullet
DBKCMP $=$	Parameter 2															- -		\bullet	\bullet	\bullet		\bullet	\bullet
	Parameter 3	-	-	\bullet	\bullet					\bullet												\bullet	\bullet
	Parameter 4																-				$\bullet \bullet$		\bullet

Features

Compare the BIN 32-bit data of point (n) starting from the device specified in (s 1) with the BIN 32-bit data of point (n) starting from the device specified in (s2), and store the comparison result in point (n) starting from the device specified in (d).

- The corresponding device at point (n) starting from the device specified in (d) turns on when the comparison condition is satisfied, and turns off when the comparison condition is not satisfied.

- Comparison operations are performed in 32 -bit units.
- (s1) could specify a direct constant.

- (d) is specified outside the device range of point (n) starting from (s 1) and (s 2).
- The comparison operation result of each instruction is shown below.

Instruction sign	Condition	Comparative results
DBKCMP $=$	$(s 1)=(s 2)$	ON

- When all the comparison operation results stored in point (n) starting from (d) are ON (1), SM156 (block comparison signal) would turn ON.

Error code

Error code	Content
4084 H	When (n) is out of range
4085 H	When the specified device range for reading exceeds the range of the corresponding device
4086 H	When the specified device range for writing exceeds the range of the corresponding device

Example

When X020 is ON, use DBKCMP= instruction to compare the 4 points 32-bit data (BIN) starting from D100 and the 4 points 32-bit data starting from D200, and save the result to the program in the 4-point of the device starting from M10.

In addition, when the comparative results (4 points starting from M 10) are all $\mathrm{ON}(1)$, YOOO turns ON.

BKCMP<>/BIN 16-bit block data comparison

BKCMP<>(P)

Compare the BIN 16-bit data of point (n) starting from the device specified in (s 1) with the BIN 16 -bit data of point (n) starting from the device specified in (s2), and store the operation result in the device specified in (d).

Ladder
-[BKCMP<> (s1) (s2) (d) (n)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	Comparative data or the device storing comparative data	-32768 to 32767	BIN16 bit	ANY16_S
(s2)	The device storing the comparison source data	-32768 to 32767	BIN16 bit	ANY16_S
(d)	The start device storing the comparative result	-	Bit	ANY_BOOL
(n)	The number of comparative data	0 to 65535	BIN16 bit	ANY16

Device used

Instruction	Parameter	Devices																				Offset modification	Pulse extension
		X Y ${ }^{\text {N }}$			SM T(bit)		C(bit)	LC(bit)	HSC(bit)	D.b	$\mathrm{Kn} \times$	KnY KnM		Kns $\mathrm{T}^{\text {c }}$ C				$\begin{array}{l\|l\|} \hline \text { R SD } \\ \hline \bullet & \bullet \end{array}$	LCHSCK\|HE			[D]	XXP
BKCMP<>	Parameter 1																				$\bullet \bullet$	\bullet	\bullet
	Parameter 2														- \cdot	- -	- \bullet	\bullet				\bullet	\bullet
	Parameter 3	-	-	-	\bullet					\bullet												-	\bullet
	Parameter 4																- \bullet				- -		\bullet

Features
Compare the BIN 16-bit data of point (n) starting from the device specified in (s1) with the BIN 16-bit data of point (n) starting from the device specified in ($s 2$), and store the comparison result in point (n) starting from the device specified in (d).

- The corresponding device at point (n) starting from the device specified in (d) turns on when the comparison condition is satisfied, and turns off when the comparison condition is not satisfied.

- Comparison operations are performed in 16-bit units.
- (s1) could specify a direct constant.

- When all the comparison operation results stored in point (n) starting from (d) are ON (1), SM156 (block comparison signal) would turn ON.

Error code

Error code	Content
4085 H	When the specified device range for reading exceeds the range of the corresponding device
4086 H	When the specified device range for writing exceeds the range of the corresponding device

Example

When X 020 is ON , use BKCMP <> instruction to compare the 4-point 16-bit data (BIN) starting from D100 and the 4-point 32-bit data starting from D200, and save the result to the program in the 4-point of the device starting from M10. In addition, when the comparative results (4 points starting from M10) are all ON (1), Y000 turns ON.

DBKCMP<>/BIN32-bit block data comparison
DBKCMP<>(P)
Compare the BIN 32-bit data of point (n) starting from the device specified in (s 1) with the BIN 32-bit data of point (n) starting from the device specified in (s2), and store the operation result in the device specified in (d).
-[DBKCMP<>
(s 1) (s 2)
(d) (n$)]$

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	Comparative data or the device storing comparative data	-2147483648 to 2147483647	BIN32 bit	ANY32_S
(s2)	The device storing the comparison source data	-2147483648 to 2147483647	BIN32 bit	ANY32_S
(d)	The start device storing the comparative result	-	Bit	ANY_BOOL
(n)	The number of comparative data	0 to 65535	BIN32 bit	ANY32_S

Device used

Instruction	Parameter	Devices																				Offset modification	Pulse extension
		$\bar{X} Y$ M		S SM T(bit)		C(bit)	LC(bit)	HSC(bit)	D.b KnX KnY KnM Kns						T CDRSDLCHSCKHE							[D]	XXP
	Parameter 1															-	-	-	\bullet	-		\bullet	\bullet
	Parameter 2															$\bullet \cdot$	- -	-	-			\bullet	\bullet
(Parameter 3	-	- -	-					-													\bullet	\bullet
	Parameter 4															-							\bullet

Features

Compare the BIN 32-bit data of point (n) starting from the device specified in (s 1) with the BIN 32-bit data of point (n) starting from the device specified in (s2), and store the comparison result in point (n) starting from the device specified in (d).

- The corresponding device at point (n) starting from the device specified in (d) turns on when the comparison condition is satisfied, and turns off when the comparison condition is not satisfied.

- Comparison operations are performed in 32 -bit units.
- (s1) could specify a direct constant.

- (d) is specified outside the device range of point (n) starting from (s 1) and (s 2).
- The comparative operation result of each instruction is shown below.

Instruction sign	Condition	Comparative results
DBKCMP<>	$(s 1) \neq(\mathrm{s} 2)$	ON

- When all the comparison operation results stored in point (n) starting from (d) are ON (1), SM156 (block comparison signal) would turn ON.

Error code

Error code	Content
4084 H	When (n) is out of range
4085 H	When the specified device range for reading exceeds the range of the corresponding device
4086 H	When the specified device range for writing exceeds the range of the corresponding device

Example

When X 020 is ON , use DBKCMP<> instruction to compare the 4-point 32-bit data (BIN) starting from D100 and the 4-point 32-bit data starting from D200, and save the result to the program in the 4-point of the device starting from M10. In addition, when the comparative results (4 points starting from M 10) are all $\mathrm{ON}(1)$, YO00 turns ON.

BKCMP>/BIN 16-bit block data comparison

BKCMP>(P)

Compare the BIN 16 -bit data of point (n) starting from the device specified in ($s 1$) with the BIN 16 -bit data of point (n) starting from the device specified in ($\mathbf{s} 2$), and store the operation result in the device specified in (d).
-[BKCMP>
(s1) (s2)
(d) (n$)$]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	Comparative data or the device storing comparative data	-32768 to 32767	BIN16 bit	ANY16_S
(s2)	The device storing the comparison source data	-32768 to 32767	BIN16 bit	ANY16_S
(d)	The start device storing the comparative result	-	Bit	ANY_BOOL
(n)	The number of comparative data	0 to 65535	BIN16 bit	ANY16

Device used

Features

Compare the BIN 16 -bit data of point (n) starting from the device specified in ($s 1$) with the BIN 16 -bit data of point (n) starting from the device specified in (s2), and store the comparison result in point (n) starting from the device specified in (d).

- The corresponding device at point (n) starting from the device specified in (d) turns on when the comparison condition is satisfied, and turns off when the comparison condition is not satisfied.

- Comparison operations are performed in 16 -bit units.
- (s1) could specify a direct constant.

Instruction sign	Condition	Comparative results
BKCMP>	$(s 1)>(s 2)$	ON

- When all the comparison operation results stored in point (n) starting from (d) are ON (1), SM156 (block comparison signal) would turn ON.

Error code

Error code	
4085 H	When the specified device range for reading exceeds the range of the corresponding device
4086 H	When the specified device range for writing exceeds the range of the corresponding device

Example

When XO 20 is ON, use BKCMP> instruction to compare the 4-point 16-bit data (BIN) starting from D100 and the 4-point 16-bit data starting from D200, and save the result to the program in the 4-point of the device starting from M10. In addition, when the comparative results (4 points starting from M10) are all ON (1), Y000 turns ON.

DBKCMP>/BIN32-bit block data comparison

DBKCMP>(P)

Compare the BIN 32-bit data of point (n) starting from the device specified in (s1) with the BIN 32-bit data of point (n) starting from the device specified in (s2), and store the operation result in (d) In the specified device.
-[DBKCMP>
(s1) (s2)
(d) (n$)$]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	Comparative data or the device storing comparative data	-2147483648 to 2147483647	BIN32 bit	ANY32_S
(s2)	The device storing the comparison source data	-2147483648 to 2147483647	BIN32 bit	ANY32_S
(d)	The start device storing the comparative result	-	Bit	ANY_BOOL
(n)	The number of comparative data	0 to 65535	BIN32 bit	ANY32_S

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		X Y M S S SM T(bit)			C(bit)	LC(bit)	HSC(bit)	D.b K		KnX KnY KnM		KnS T		TCDRSDLCHSCKHE						[D]	XXP
	Parameter 1													$\bullet \bullet \bullet$	- - -	-	-	- •		\bullet	\bullet
DBKCMP>	Parameter 2													$\bullet \bullet \bullet$	$\bullet \bullet$	\bullet	\bullet			\bullet	\bullet
	Parameter 3	- - -	\bullet					\bullet												\bullet	\bullet

"

Features
Compare the BIN 32-bit data of point (n) starting from the device specified in (s1) with the BIN 32-bit data of point (n) starting from the device specified in ($s 2$), and store the comparison result in point (n) starting from the device specified in (d).

- The corresponding device at point (n) starting from the device specified in (d) turns on when the comparison condition is satisfied, and turns off when the comparison condition is not satisfied.

- Comparison operations are performed in 32-bit units.
- (s1) could specify a direct constant.

- (d) is specified outside the device range of point (n) starting from (s 1) and the device range of point (n) starting from (s 2).
- The comparison operation result of each instruction is shown below.

Instruction sign	Condition	Comparative results
DBKCMP>	$(s 1)>(s 2)$	ON

- When all the comparative operation results stored in point (n) starting from (d) are ON (1), SM156 (block comparison signal) would turn ON.

Error code

Error code	Content
4084 H	When (n) is out of range
4085 H	When the specified device range for reading exceeds the range of the corresponding device
4086 H	When the specified device range for writing exceeds the range of the corresponding device

Example

When X020 is ON, use DBKCMP> instruction to compare the 4-point 32-bit data (BIN) starting from D100 and the 4-point 32-bit data starting from D200, and save the result to the program in the 4-point of the device starting from M10. In addition, when the comparative results (4 points starting from M 10) are all $\mathrm{ON}(1), \mathrm{Y} 000$ turns ON .

BKCMP>=/BIN 16-bit block data comparison

BKCMP>=(P)
Compare the BIN 16-bit data of point (n) starting from the device specified in (s1) with the BIN 16-bit data of point (n) starting from the device specified in ($s 2$), and store the operation result in the device specified in (d).
-[BKCMP>= (s1) (s2) (d) (n)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	Comparative data or the device storing comparative data	-32768 to 32767	BIN16 bit	ANY16_S
(s2)	The device storing the comparison source data	-32768 to 32767	BIN16 bit	ANY16_S
(d)	The start device storing the comparative result	-	Bit	ANY_BOOL
(n)	The number of comparative data	0 to 65,535	BIN16 bit	ANY16

Device used

Instruction	Parameter	Devices																				Offset modification [D]	Pulse extension XXP
		X Y M		S SM		T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY KnM		Kns ${ }^{\text {T }}$		CDR	RSD		LCHSCKHE				
BKCMP>=	Parameter 1															-		\bullet			$\bullet \bullet$	\bullet	\bullet
	Parameter 2														\bullet	- -	-	\bullet				\bullet	\bullet
	Parameter 3	\bullet	-	\bullet	-					-												\bullet	\bullet
	Parameter 4															$\bullet \cdot$					$\bullet \bullet$		\bullet

Features

Compare the BIN 16-bit data of point (n) starting from the device specified in (s 1) with the BIN 16-bit data of point (n) starting from the device specified in (s2), and store the comparative result in point (n) starting from the device specified in (d).

- The corresponding device at point (n) starting from the device specified in (d) turns on when the comparison condition is satisfied, and turns off when the comparison condition is not satisfied.

- Comparison operations are performed in 16-bit units.
- (s1) could specify a direct constant.

Instruction sign	Condition	Comparative results
BKCMP>=	$(s 1)>=(s 2)$	ON

- When all the comparative operation results stored in point (n) starting from (d) are ON (1), SM156 (block comparison signal) would
turn ON.
Error code

Error code	
4085 H	Content
4086 H	When the specified device range for reading exceeds the range of the corresponding device

Example

When X020 is ON, use BKCMP>= instruction to compare the 4-point 16-bit data (BIN) starting from D100 and the 4-point 16-bit data starting from D200, and save the result to the program in the 4-point of the device starting from M10. In addition, when the comparative results (4 points starting from M10) are all ON (1), YOOO turns ON.

DBKCMP>=/BIN32-bit block data comparison

DBKCMP>=(P)
Compare the BIN 32-bit data of point (n) starting from the device specified in (s1) with the BIN 32-bit data of point (n) starting from the device specified in (s2), and store the operation result in the device specified in (d).
-[DBKCMP>=
(s1) (s2)
(d) (n$)]$

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	Comparative data or the device storing comparative data	-2147483648 to 2147483647	BIN32 bit	ANY32_S
$(s 2)$	The device storing the comparison source data	-2147483648 to 2147483647	BIN32 bit	ANY32_S
(d)	The start device storing the comparative result	-	Bit	ANY_BOOL
(n)	The number of comparative data	0 to 65535	BIN32 bit	ANY32_S

Device used

Instruction	Parameter	Devices																				Offset modification	Pulse extension
		$\mathrm{XY/N}$			SM ${ }_{\text {T }}$ (bit)		C(bit)	LC(bit)	HSC(bit)	D.b KnX		KnY KnM KnS			TCD		DRSDLCHSCKHE					[D]	XXP
	Parameter 1														$\bullet \bullet$	-	- \bullet	-	\bullet	\bullet	$\bullet \bullet$	\bullet	\bullet
	Parameter 2														-	-	- -	-	\bullet	\bullet		\bullet	\bullet
D	Parameter 3	-	-	-	\bullet					\bullet												\bullet	\bullet
	Parameter 4																- -				- -		\bullet

Features

Compare the BIN 32-bit data of point (n) starting from the device specified in (s1) with the BIN 32-bit data of point (n) starting from the device specified in (s2), and store the comparative result in point (n) starting from the device specified in (d).

- The corresponding device at point (n) starting from the device specified in (d) turns on when the comparison condition is satisfied, and turns off when the comparison condition is not satisfied.

[^5]- (s1) could specify a direct constant.

- (d) is specified outside the device range of point (n) starting from (s 1) and the device range of point (n) starting from (s 2).
- The comparison operation result of each instruction is shown below

Instruction sign	Condition	Comparative results
DBKCMP>=	$(s 1)>=(s 2)$	ON

- When all the comparison operation results stored in point (n) at the beginning of (d) are ON (1), SM349 (block comparison signal) will turn ON.

Error code

Error code	Content
4084 H	When (n) is out of range
4085 H	When the specified device range for reading exceeds the range of the corresponding device
4086 H	When the specified device range for writing exceeds the range of the corresponding device

Example

When X 020 is ON, use DBKCMP>= instruction to compare the 4-point 32-bit data (BIN) starting from D100 and the 4-point 32-bit data starting from D200, and save the result to the program in the 4-point of the device starting from M10.

In addition, when the comparative results (4 points starting from M10) are all ON (1), Y000 turns ON.

BKCMP</BIN 16-bit block data comparison

BKCMP $<(\mathrm{P})$

Compare the BIN 16-bit data of point (n) starting from the device specified in (s 1) with the BIN 16-bit data of point (n) starting from the device specified in (s2), and store the operation result in the device specified in (d).
$-[B K C M P<\quad(s 1) \quad(s 2) \quad$ (d) $\quad(n)]$

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	Comparative data or the device storing comparative data	-32768 to 32767	BIN16 bit	ANY16_S
(s2)	The device storing the comparison source data	-32768 to 32767	BIN16 bit	ANY16_S
(d)	The start device storing the comparative result	-	Bit	ANY_BOOL
(n)	The number of comparative data	0 to 65535	BIN16 bit	ANY16

Device used

Instruction	Parameter	Devices																				Offset modification [D]	Pulse extension XXP
		XY	SS		SM	T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM KnS		T C		DRSD		LCHSCKHE				
BKCMP<	Parameter 1														-	-	-	\bullet			- -	\bullet -	-
	Parameter 2														-	-	-	\bullet				\bullet	\bullet
	Parameter 3	\bullet	\bullet	\bullet	\bullet					-												\bullet	\bullet
	Parameter 4																-				$\bullet \bullet$		\bullet

Features
Compare the BIN 16-bit data of point (n) starting from the device specified in (s1) with the BIN 16-bit data of point (n) starting from the device specified in (s 2), and store the comparative result in point (n) starting from the device specified in (d).

- The corresponding device at point (n) starting from the device specified in (d) turns on when the comparison condition is satisfied, and turns off when the comparison condition is not satisfied.

- Comparison operations are performed in 16-bit units.
- (s1) could specify a direct constant.

Instruction sign	Condition	Comparative results
$\mathrm{BKCMP}<$	$(\mathrm{s} 1)<(\mathrm{s} 2)$	ON

- When all the comparison operation results stored in point (n) starting from (d) are ON (1), SM156 (block comparison signal) would turn ON.

Error code

Error code	
4085 H	Content
4086 H	When the specified device range for reading exceeds the range of the corresponding device

Example

When X 020 is ON , use BKCMP < instruction to compare the 4-point 16-bit data (BIN) starting from D100 and the 4-point 16-bit data starting from D200, and save the result to the program in the 4-point of the device starting from M10. In addition, when the comparative results (4 points starting from M 10) are all $\mathrm{ON}(1), \mathrm{Y} 000$ turns ON .

DBKCMP</BIN 32-bit block data

DBKCMP $<($ P)

Convert the n characters (bit) in the HEX code data specified in (s) to ASCII codes, and store then after the device number specified in (d).
-[DBKCMP< (P) (s) (d) (n)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	Comparative data or the device storing comparative data	-2147483648 to 2147483647	BIN32 bit	ANY32_S
(s2)	The device storing the comparison source data	-2147483648 to 2147483647	BIN32 bit	ANY32_S
(d)	The start device storing the comparative result	-	Bit	ANY_BOOL
(n)	The number of comparative data	0 to 65535	BIN32 bit	ANY32_S

Device used

Instruction	Parameter	Devices																				Offset odification	Pulse extension
		XYM M S SM T(bit)				C(bit) LC(bit)		HSC(bit)	D.b KnX KnY KnM				KnS ${ }^{\text {T }}$		TCDR	SDLCHSCKHE						[D]	XXP
DBKCMP<	Parameter 1														- \bullet	- \bullet	- •			-		\bullet	\bullet
	Parameter 2														- -	-	$\bullet \bullet$					\bullet	\bullet
	Parameter 3	$\bullet \cdot$	$\bullet \cdot$	\bullet					-													\bullet	\bullet
	Parameter 4														$\bullet \bullet$					$\bullet \bullet$			\bullet

Features

Compare the BIN 32-bit data of point (n) starting from the device specified in (s 1) with the BIN 32 -bit data of point (n) starting from the device specified in (s 2), and store the comparative result in point (n) starting from the device specified in (d).

- The corresponding device at point (n) starting from the device specified in (d) turns on when the comparison condition is satisfied, and turns off when the comparison condition is not satisfied.

- Comparison operations are performed in 32-bit units.
- (s1) could specify a direct constant.

- (d) is specified outside the device range of point (n) starting from (s 1) and the device range of point (n) starting from (s 2).
- The comparison operation result of each instruction is shown below.

Instruction sign	Condition	Comparative results
DBKCMP $<$	$(s 1)>=(s 2)$	ON

- When all the comparison operation results stored in point (n) starting from (d) are ON (1), SM349 (block comparison signal) would turn ON.

Error code

Error code	Content
4084 H	When (n) is out of range
4085 H	When the specified device range for reading exceeds the range of the corresponding device
4086 H	When the specified device range for writing exceeds the range of the corresponding device

Example

When X020 is ON, use DBKCMP< instruction to compare the 4-point 32-bit data (BIN) starting from D100 and the 4-point 32-bit data starting from D200, and save the result to the program in the 4-point of the device starting from M10.

In addition, when the comparative results (4 points starting from M 10) are all $\mathrm{ON}(1)$, YO00 turns ON.

BKCMP<=/BIN16-bit block data comparison

BKCMP<=(P)
Compare the BIN 16-bit data of point (n) starting from the device specified in (s1) with the BIN 16-bit data of point (n) starting from the device specified in (s2), and store the operation result in the device specified in (d).
$-[B K C M P<=(s 1)(s 2)(d)(n)]$

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	Comparative data or the device storing comparative data	-32768 to 32767	BIN16 bit	ANY16_S
(s2)	The device storing the comparison source data	-32768 to 32767	BIN16 bit	ANY16_S
(d)	The start device storing the comparative result	-	Bit	ANY_BOOL
(n)	The number of comparative data	0 to 65535	BIN16 bit	ANY16

Device used

Instruction	Parameter	Devices																				Offset modification	Pulse extension
		X Y	M S		SM	T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS	TCD		RSD		LCHSC		K HE	[D]	$\begin{array}{\|c\|} \hline \text { extension } \\ \hline \mathrm{XXP} \\ \hline \end{array}$
	Parameter 1														-		-	\bullet			- •	\bullet	\bullet
	Parameter 2														-		-	\bullet				\bullet	\bullet
	Parameter 3	\bullet	-	-	-					\bullet												\bullet	\bullet
	Parameter 4															\bullet	-				$\bullet \bullet$		\bullet

Features

Compare the BIN 16-bit data of point (n) starting from the device specified in (s 1) with the BIN 16-bit data of point (n) starting from the device specified in (s 2), and store the comparative result in point (n) starting from the device specified in (d).

- The corresponding device at point (n) starting from the device specified in (d) turns on when the comparison condition is satisfied, and turns off when the comparison condition is not satisfied.

- Comparison operations are performed in 16-bit units.
- (s1) could specify a direct constant.

- When all the comparison operation results stored in point (n) starting from (d) are ON (1), SM156 (block comparison signal) would turn ON.

Instruction sign	Condition	Comparative results
$\mathrm{BKCMP}<=$	$(\mathrm{s} 1)>=(\mathrm{s} 2)$	ON

- When all the comparison operation results stored in point (n) starting from (d) are ON (1), SM156 (block comparison signal) would turn ON.

Error code

Error code	Content
4085 H	When the specified device range for reading exceeds the range of the corresponding device
4086 H	When the specified device range for writing exceeds the range of the corresponding device

Example

When X 020 is ON , use $\mathrm{BKCMP}<=$ instruction to compare the 4-point 16-bit data (BIN) starting from D100 and the 4-point 16-bit data starting from D200, and save the result to the program in the 4-point of the device starting from M10.

In addition, when the comparative results (4 points starting from M 10) are all $\mathrm{ON}(1)$, Y000 turns ON.

DBKCMP<=/BIN32-bit block data comparison

DBKCMP<=(P)
Compare the BIN 32-bit data of point (n) starting from the device specified in (s1) with the BIN 32-bit data of point (n) starting from the device specified in (s2), and store the operation result in the device specified in (d).
-[DBKCMP $<=\quad(\mathrm{s} 1) \quad(\mathrm{s} 2) \quad(\mathrm{d}) \quad(\mathrm{n})]$

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	Comparative data or the device storing comparative data	-2147483648 to 2147483647	BIN32 bit	ANY32_S
(s2)	The device storing the comparison source data	-2147483648 to 2147483647	BIN32 bit	ANY32_S
(d)	The start device storing the comparative result	-	Bit	ANY_BOOL
(n)	The number of comparative data	0 to 65535	BIN32 bit	ANY32_S

Device used

Features

Compare the BIN 32-bit data of point (n) starting from the device specified in (s 1) with the BIN 32-bit data of point (n) starting from the device specified in (s 2), and store the comparative result in point (n) starting from the device specified in (d).

- The corresponding device at point (n) starting from the device specified in (d) turns on when the comparison condition is satisfied, and turns off when the comparison condition is not satisfied.

- Comparison operations are performed in 32-bit units.
- (s1) could specify a direct constant.

- (d) is specified outside the device range of point (n) starting from (s 1) and the device range of point (n) starting from (s 2).
- The comparison operation result of each instruction is shown below.

Instruction sign	Condition	Comparative results
DBKCMP<=	$(s 1)>=(s 2)$	ON

- When all the comparison operation results stored in point (n) starting from (d) are ON (1), SM156 (block comparison signal) would turn ON.

Error code

Error code	Content
4084 H	When (n) is out of range
4085 H	When the specified device range for reading exceeds the range of the corresponding device
4086 H	When the specified device range for writing exceeds the range of the corresponding device

Example

When X 020 is ON, use $\mathrm{DBKCMP}<=$ instruction to compare the 4-point 32-bit data (BIN) starting from D100 and the 4-point 32-bit data starting from D200, and save the result to the program in the 4-point of the device starting from M10. In addition, when the comparative results (4 points starting from M 10) are all $\mathrm{ON}(1), \mathrm{Y} 000$ turns ON .

7.15 Data table operation instructions

SFRD/shift read

SFRD(P)

Data read instructions for first-in, first-out and control.
-[SFRD
(s) (d) (n)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The start word device number storing data (The start is a pointer, and the data starts from (s)+1)	-	Signed BIN 16 bit	ANY16
(d)	The word device number storing the first-out data	-	Signed BIN 16 bit	ANY16
(n)	It should be specified as the value of the number of points +1 of the stored data. +1 is pointer	2 to 512	Signed BIN 16 bit	ANY16

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		XYMS		SM	T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX KnY KnM Kns				TCD		DRSD LCHSCKHE				[D]	XXP
	Parameter 1									\bullet	\bullet	\bullet	\bullet	-	- -	\bullet				\bullet	\bullet
SFRD	Parameter 2										\bullet	\bullet	\bullet	-	- -	-				\bullet	\bullet
	Parameter 3									\bullet	\bullet	\bullet		\bullet	- -	-			$\bullet \bullet$	\bullet	\bullet

Features

Transfer (s)+1 written sequentially to (d) by SFWR instruction, shift up each point (n) -1 by one word from (s) +1 . The number of stored data of (s) subtracts one.

The content of (s)+1 is transferred (read) to (d). At the same time, the content of the pointer (s) decreases, and the data is shifted up by 1 word each. (In the continuous execution instruction SFRD, each operation cycle will shift, so the pulse execution instruction SFRDP should be used for programming).

Related device

Devices	Name	Content
SM153	Zero bit	Data readout usually starts from $(\mathrm{s})+1$, but when the pointer (s) is 0 , the zero bit SM153 will operate.

* Note:

The data after reading would not change the content of $(s)+(n)$ due to reading.
In the case of continuous execution (SFRD) instructions, each scan time (operation cycle) will be read sequentially, but the content of $(s)+(n)$ would not change. When the pointer (s) is 0 , it would become no processing, and the content of (d) would not change.

Error code

Error code	Content
4084 H	When the value set in (n) is other than the following. $2 \leq(\mathrm{n}) \leq 512$
	A negative value is specified in (s).
4085 H	When the device specified in the read application instruction (s) and (n) exceeds the corresponding device range.
4086 H	When the device specified in the write application instruction (s) and (d) exceeds the corresponding device range.

Example

The following examples illustrate the use of shift write (SFWR) and shift read (SFRD) instructions.
(1) Action content

1) While registering the product number, in order to realize the first-in-first-out principle, the following introduces an example of a ladder circuit program that outputs the current product number.
2) The product number is a hexadecimal number with 4 digits or less, and the maximum inventory is below 99 points.
(2) Program
3) Program 1

4) Program 2

First-in-first-out data read instruction

Turn X0 from OFF to ON, and this instruction acts according to the following numbers 1 to 3. (The content of D10 remains unchanged),

1. The content of D2 is read out and sent to D20.

2 D10 to D3 all shift one register to the right.
3) The contents of pointer D1 are reduced by 1 .

POP/Read from the back of the data table

POP(P)
Read the last data written by the shift write instruction(SFWR) for first in first out/first in last out control.
$-\left[\begin{array}{lll}\mathrm{POP} & (\mathrm{s}) & (\mathrm{d}) \quad(\mathrm{n})\end{array}\right]$

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The start device number that stores the first-in data (including pointer data) (the start word device number that stores data)	-	Signed BIN 16 bit	ANY16
(d)	The device number that stores the last-out data	-	Signed BIN 16 bit	ANY16
(n)	The points of stored data	2 to 512	Signed BIN 16 bit	ANY16

Device used

instruction	parameter	Devices																				Offset modification	Pulse extension
		XYMSSM			T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS		CD	R			HSC	KHE		[D]	XXP
	Parameter 1										\bullet	\bullet	-	\bullet	- \bullet	-	-					\bullet	\bullet
POP	Parameter 2										\bullet	\bullet	\bullet	-	- \bullet	-	\bullet					\bullet	-
	Parameter 3									\bullet	\bullet	\bullet	-	\bullet	- \cdot	-	\bullet			$\bullet \bullet$		\bullet	\bullet

Features

For the word device of "(s) to (s)+(n)-1", the device of "(s) + instruction data (s)" will be read to (d) (The last data written by the shift write instruction (SFWR) for first-in first-out control is read to (d)). (N) Specifies 2 to 512.

The value of pointer data (s) is reduced by one.
First-in-last-out control data

	Content
(S)	Pointer data (the number of stored data)
(S) +1	
(S) +2	
(S) +3	
......	
$(\mathrm{S})+(\mathrm{n})-3$	
$(\mathrm{S})+(\mathrm{n})-2$	
$(\mathrm{S})+(\mathrm{n})-1$	

* Note:

Q If the $P O P(P)$ instruction is programmed in continuous execution type, the instruction will be processed per cycle. Therefore, it may not be possible to achieve the desired action. Generally, POP(P) instruction programming should be executed with "pulse execution type" or "pulse specified contact".

When the current value of pointer (s) is 0 , the zero flag SM153 turns on, and the $\mathrm{POP}(\mathrm{P})$ instruction becomes no processing.
(2) When the current value of pointer (s) is 1 , write 0 to (s), and the zero flag SM153 turns on.

Error code

Error code	Content
4084 H	$(\mathrm{s})>(\mathrm{n})-1$
	$(\mathrm{~s})<0$
	Data outside the specified range is entered in (n). $2 \leq(\mathrm{n}) \leq 512$
4085 H	When the device specified in the read application instruction (s) and (n) exceeds the corresponding device range
4086 H	When the device specified in the write application instruction (s) and (d) exceeds the corresponding device range

Example
$\left.\begin{array}{|ccccc|}\hline \text { M11 } & & & & \\ \hline \text { M1 } & \text { SFWR } & \text { D20 } & \text { D100 } & \text { K7 }]\end{array}\right]$

Each time M1 is ON, for the values of D20 input first in D101 to D106, the last saved value would be saved in D10, and then the data saved number (pointer D100) will be reduced by 1.

When the data entered first is the content in the table below.

Pointer	D100	K3
Data	D101	H1234
	D102	H5678
	D103	HABCD
	D104	H0000
	D105	H0000
	D106	H0000

SFWR/Shift write

SFWR(P)
Data writing instructions for first-in-first-out and control.
-[SFWR (s) (d) (n)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The word device number that stores the data you want to enter first	-	Signed BIN 16 bit	ANY16
(d)	The start word device number for storing data and shifting (the start is pointer, and data starts from (d)+1)	-	Signed BIN 16 bit	ANY16
(n)	The value of points +1 of stored data should be specified	2 to 512	Signed BIN 16 bit	ANY16

Device used

Features

Start from (d) +1 , write the contents of (s) to point $(n)-1$, and the stored data of (d) add one. For example, if $(d)=0, w r i t e$ to $(d)+1$, $(d)=1$, write to $(d)+2$.

Through the first execution, the content of (s) is stored to (d) +1 and becomes the value of (s).
If the content of (s) is changed and executed for the second time, the content of (s) is stored to (d) +2 , and the content of (d) +2 becomes (s) (in the continuous execution instruction SFWR, each operation cycle will be stored sequentially, so the pulse execution instruction SFWRP should be used for programming). After that, the data will be filled in sequentially from the right, and the number of data storage points is displayed by the content of the pointer (d).

Related device

Devices	Name	Content
SM151	carry	When the content of pointer (s) exceeds (n$)$-1, it becomes no processing (no writing), and the carry flag SM151 turns ON.

* Note:

In the continuous execution type (SFWR) instruction, you should be noted that each scan time (operation cycle) will be stored
(overwritten) sequentially.
Error code

Error code	Content
4084 H	When the value set in (n) is other than the following. $2 \leq(\mathrm{n}) \leq 512$
	A negative value is specified in (d).
4085 H	When the device specified in the read application instruction (s), (d) and (n) exceeds the corresponding device range.
4086 H	When the device specified in the write application instruction (d) exceeds the corresponding device range.

Example

The following examples illustrate the use of shift write (SFWR) and shift read (SFRD) instructions.
(1) Action content

1) While registering the product number, in order to realize the first-in-first-out principle, the following introduces an example of a ladder circuit program that outputs the current product number.
2) The product number is a hexadecimal number with 4 digits or less, and the maximum inventory is below 99 points.
(2) Program
3) Program 1

4) Program 2

First-in-first-out data read instruction

Pointer

When $\mathrm{XO}=1$, the content of DO is stored in D 2 , and the content of D 1 becomes 1 . When X0 changes from OFF to ON again, the content of D0 is stored in D3, the content of D1 becomes 2, and so on. If the content of D1 exceeds $n-1$, the instruction is not processed, and the carry flag M8022 will be set to 1 .

FINS/Data table data insertion

FINS(P)
Insert the BIN 16-bit data specified in (s) into the number (n) of the data table specified in (d). After the instruction is executed, the data starting with number (n) in the data table will be postponed downward one by one.
-[FINS (s) (d) (n)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The start number of device storing the inserted data	-	Signed BIN 16 bit	ANY16
(d)	The starting number of table	-	word	ANY16
(n)	The position of the inserted table	$1-512$	Signed BIN 16 bit	ANY16

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		XYMSSM		T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS			DR		LC	HSC	K HE	[D]	XXP
	Parameter 1								\bullet	\bullet	\bullet	-	-		- \bullet	-			$\bullet \bullet$	-	\bullet
FINS	Parameter 2												-		-	\bullet				\bullet	\bullet
	Parameter 3								\bullet	\bullet	\bullet	-	-		$\bullet \bullet$	\bullet			\bullet -	\bullet	\bullet

Features

Insert the BIN 16-bit data specified in (s) into the number (n) of the data table specified in (d). After the instruction is executed, the data starting with number (n) in the data table will be postponed downward one by one.

1 N: the number of data storage;
2. $D_{T r}$: data table range;
(3) When $(\mathrm{n})=2$, it will be inserted into (d)+2.

(Note:

* The range of device used in the data table is managed by user.
* The range of the data table is (d) started from device (d) +1) after the number of data (d).

Error code

Error code	Content
4084H	FINS(P) instruction is executed when the value of (d) is 0.
	The storage data of the table of (d) exceeds 512.
	When the data set in (n) is other than the following, $1 \leq(\mathrm{n}) \leq 512$.
	When the FINS(P) instruction is executed, the table position (n) of the inserted data is greater than data storage number.
4085H	When the device specified in the read application instruction (s), (d) and (n) exceeds the corresponding device range.
4086H	When the device specified in the write application instruction (d) exceeds the corresponding device range.

Example

When $\mathrm{X} 10=0 \mathrm{~N}$, insert the data of D100 into No. 3 of the data table of D0 to D4.
However, when the number of saved data exceeds 7 , the FINS (P) instruction is not executed (the device range used in the data table is D0 to D7).

The device range used in data table	Number of f data saved$\begin{gathered} \text { Data } \\ \text { Table } \\ \text { range } \end{gathered}\left\{\begin{array}{l} \text { D1 } \\ \text { D2 } \\ \text { D3 } \\ \text { D4 } \end{array}\right.$	Data table	$\xrightarrow{\substack{\text { O20 }}}$	Data table	Number of data saved Data Table range
		4		5	
		1234		1234	
		4444		4444	
		-123		-3210	
		5000		-123	
		0		5000	
		0		0	
		0		0	
	D100	-3210			

FDEL/Data deletion of data sheet

FDEL(P)
Delete the (n)th data of the data table specified in (d) and store it in the device specified in (s). After the instruction is executed, the data after (n) +1 in the data table will be postponed forward one by one.
-[FDEL (s) (d) (n)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The start number of the device stored deleted data	-	Signed BIN 16 bit	ANY16
(d)	The starting number of the table	-	word	ANY16
(n)	The position of the deleted table	$1-512$	Signed BIN 16 bit	ANY16

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		XYMSS		SM T(bit)		C(bit)	LC(bit)	HSC(bit)	D.b Kn		KnX KnY KnM Kns			TCDR		R SD LCHSCKHE				[D]	XXP
	Parameter 1									\bullet	\bullet	\bullet	\bullet	-	- -	- -				\bullet	\bullet
FDEL	Parameter 2														-	\bullet				\bullet	\bullet
	Parameter 3									-	-	\bullet	\bullet		- -	- -			- -	-	\bullet

Features

Delete the (n)th data of the data table specified in (d) and store it in the device specified in (s). After the instruction is executed, the data after (n) +1 in the data table will be postponed forward one by one.

\& Note:

*The user is responsible for the management of the device range used in the data sheet.
*The range of the data table is (d) after the data storage number (d) of the device ($(\mathrm{d})+1$).

Error code

Code	Content
4084 H	FDEL(P) instruction is executed when the value of (d) is 0.
	The storage data of the table of (d) exceeds 512.
	When the data set in (n) is other than the following, $1 \leq(\mathrm{n}) \leq 512$.
	When the FDEL(P) instruction is executed, the table position (n) of the deleted data is greater than data storage number.
4086 H	When the device specified in the read application instruction (d) and (n) exceeds the corresponding device range.

Example

When X10 is ON, delete the second data in the data table of D100 to D105, and save the deleted data in D0. However, when the number of data saved is 0 , do not execute the FDEL instruction. (The device range used in the data table is D100 to D107.)

The device range used in data table	$\begin{gathered} \begin{array}{c} \text { Number of } \\ \text { data saved } \\ \text { Data } \\ \text { Table } \\ \text { range } \end{array} \end{gathered}\left\{\begin{array}{l} \text { D100 } \\ \\ \\ \\ \\ \\ \text { D101 } \\ \text { D102 } \\ \text { D104 } \\ \text { D105 } \\ \text { D106 } \\ \text { D107 } \end{array}\right.$	Data table	$\stackrel{\mathrm{X010:ON}}{\square}$	Data table	Number of
		5	$\xrightarrow{-}$ D 100	4	data saved
		-123	D101	-123	
		4444	\longrightarrow D102	3210	Data
		3210	\rightarrow D103	1234	Table
		1234	$\rightarrow \mathrm{D} 104$	5432	
		5432	D105	0	
		0	D106	0	
		0	D107	0	
			\rightarrow D0	4444	Deleted data

7.16 IO refresh instruction

REF/IO refresh

REF(P)
Perform a batch reset between the devices specified in (d1) and (d2) of the same type. It is used when interrupting operation, performing initial operation, or resetting control data.

Refresh n points at the beginning of the device specified in (s) to obtain or output external inputs
$-[$ REF (s) (n)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The start number of refreshed device	When using X and Y : The lowest bit number could only be 0; When using HSC: HSCO to HSC7	Bit	ANY_BOOL
(n)	Refresh points	When using X and Y: It can only be the multiples of 8; When using HSC: 1 to 8	Unsigned BIN 16 bit	ANY16_U

Device used

Features

It is a function that only refreshes the corresponding device during a scan, and obtains or outputs external inputs.
Acquisition of input and external output are performed in batches only after the END instruction of the program is executed, so pulse signals could not be output to the outside in one scan. When the I/O refresh instruction is executed, the corresponding input (X) or output (Y) will be forced to refresh during program execution, so pulse signals could be output to the outside in one scan. It can be used between FOR to NEXT and CJ instructions.

It can be used to refresh the input and output in the interrupt subroutine to obtain the latest input information and output the operation result in time.

The actual input port state change delay is determined by the filter time of the input components.
The actual output port status change delay is determined by the response time of the output components (such as relays). The output contact during output refresh will act after the response time of the output relay (transistor).

The response lag time of the relay output type is about 10 ms (maximum 20 ms), the transistor output type high-speed output port is about 10us, and the ordinary point output port is about 0.5 ms .

There will still be a certain delay when X 0 to X 17 filter time is set to 0 .
REF instruction could also refresh the value of high-speed counter HSC device. The value of high-speed counter is updated every 100us in normal use, if you need to get the latest values of high-speed counter immediately, you could use the REF instruction to do a count refresh. After the instruction is executed, the value in HSC device is the latest high-speed counter.

Error code

Error code	Content
4085H	The read address of (s) and (n) exceeds the device range. © Note: if (s) $+(\mathrm{n}$) exceeds the maximum range of the device corresponding (s), an error will be reported
	(s) use numbered device whose low bit is not 0
4084H	When (s) use X and $\mathrm{Y},(\mathrm{n})$ is not the multiples of 8 When (s) use HSC: (n) exceeds the range of K1 to K8

2585H Use REF instruction to refresh high-speed counter value, but there is no OUT HSC instruction to open the high-speed counter of the channel.

Example

(1) REF refreshes the X input or Y output

As in the example above, X 0 to X 7 can quickly update the input signal after M 8 is turned on. After X 0 triggers Y 20 , output Y 20 to Y 27 quickly through the next REF Y20 K8 instruction.
(2) REF refreshes the high-speed counter HSC

As in the example above, turn MO OM, and refresh the current input pulse of high-speed counter, and store the latest high-speed counter value in HSCO, and store the current high-speed counter value in R1000 address.

REFF/Input refresh (with filter setting)

REFF(P)

Temporarily change the filter effect of the digital filter of $\mathrm{X0}$ to X 17 to (n) ms . (n) The range is 0 to 60 ms .
$-[$ REFF $\quad(\mathrm{n})]$
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(n)	Filter value of X 0 to X 17	0 to 60	BIN16 bit	ANY16

Device used

Instruction	Parameter	Devices																			Offset modification	Pulse extension
		$X Y$	MS	SM	T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS	T C	DR	SD	LC	HSC	K	H	[D]	XXP
REFF	Parameter 1	-													\bullet	\bullet			$\bullet \bullet$		\bullet	\bullet

Features

In programmable controller, X0 to X17 use a digital filter. The default filter time constant is set by SD2280 and SD2281, and the filter could be temporarily changed to 0 to 60 ms through the REFF instruction.

When the high-speed counter or X input terminal interrupt function is used, the filter time of the relevant port is automatically the shortest time, and the filter time of the irrelevant port is still the original set value.

MOV instruction could also be used to directly assign to SD2280 and SD2281 to change the filter time, but it would not change the value of SD2280 and SD2281.

* Note:

The X point filtering before this instruction may be out of control (if SD2280 and SD2281 are set to 0 , the X point before the instruction will be completely out of control).

Error code

Error code	Content
4085 H	The (n) read address exceeds the device range
4084 H	(n) is not in the range of 0 to 60

Example

After M0 is turned on , the filter wave of X0 to X17 in the ladder program after the REFF instruction will temporarily be 3 ms , and SD2280 and SD2281 would not change.

7.17 Timing measure instruction

DUTY/Clock pulse generation instruction

DUTY

Set the user's timing clock output destination (SM340 to SM344) specified in (d) to ON according to the number of scans specified in (n 1), and set it OFF according to the number of scans specified in (n 2).
-[DUTY (n1) (n2) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(n1)	The number of scans that set to ON	0 to 32,767	Unsigned BIN16	ANY16
(n2)	The number of scans that set to ON	0 to 32,767	Unsigned BIN16	ANY16
(d)	Special register for timing clock output destination	SM340 to SM344	Bit	ANY_BOOL

Device used

Instruction	Parameter	Devices																			Offset modification	Pulse extension
		XYMSSM T(bit)				C(bit)	LC(bit)	HSC(bit)	D.b	KnX KnY KnM Kns				TCD		D R SD		LCHSCKHE			[D]	XXP
	Parameter 1									\bullet	\bullet	\bullet	\bullet	-	- -		-			$\bullet \bullet$	\bullet	
DUTY	Parameter 2									\bullet	\bullet	\bullet	\bullet	-	- \cdot	\bullet	\bullet			$\bullet \bullet$	\bullet	
	Parameter 3			-																	\bullet	

Features

Set the user's timing clock output destination (SM340 to SM344) specified in (d) to ON according to the number of scans specified in (n 1), and set it OFF according to the number of scans specified in (n 2).

- The output destination special relay of the timing clock specified in (d) should be SM340 to SM344.
- Store the count value of the number of scans in SD340 to SD344 corresponding to the output destination special relay of the timing clock specified in (d).
- The count value of the number of scans, SD340 to SD344, becomes (n1)+(n2) or reset when the instruction input (instruction) is turned ON.

Special relay (d) for timing clock output	Device for counting the number of scans
SM340	SD340
SM341	SD341
SM342	SD342
SM343	SD343
SM344	SD344

- The operation starts at the rising edge of instruction input, and the output destination special relay of the timing clock is turned ON/OFF by the END instruction. Even if the instruction input is disconnected, the operation would not stop. It stops when it is STOP or the power is off.
- The cases where (n1) and (n2) are set to 0 are as follows.

The status of $(\mathrm{n} 1)$ and $(\mathrm{n} 2)$	The ON/OFF status of (d)
$(\mathrm{n} 1)=0,(\mathrm{n} 2) \geq 0$	Fixed as $(\mathrm{d})=$ OFF
$(\mathrm{n} 1)>0,(\mathrm{n} 2)=0$	Fixed as $(\mathrm{d})=$ ON

- The related devices are shown below.

Special relay	Name	Content
SM340	Timing clock output 1	
SM341	Timing clock output 2	Timing clock output of DUTY instruction
SM342	Timing clock output 3	
SM343	Timing clock output 4	
SM344	Timing clock output 5	

Special register	Name	Content
SD340	Timing clock output 1 counts with scan number	DUTY instruction timing clock output 1 scan count count value
SD341	Timing clock output 2 counts with scan number	DUTY instruction timing clock output 2 scan count count value
SD342	Timing clock output 3 counts with scan number	DUTY instruction timing clock output 3 scan count count value
SD343	Timing clock output 4 counts with scan number	DUTY instruction timing clock output 4 scan count count value
SD344	Timing clock output 5 counts with scan number	DUTY instruction timing clock output 5 scan count count value

* Note:

The DUTY instruction could be used up to 5 times (dots). However, the same timing clock output destination could not be used in multiple DUTY instructions.

Error code

Error code	Content
4084 H	The written value of (n1) and (n2) exceed the range
4085 H	The device address of (n1) and (n2) exceed the range
4086 H	(d) is not in SM340 to SM344
408 EH	(d) of multiple DUTY instructions use the same SM device

Example

Use the DUTY instruction to make YO flip once every cycle.

Set M0, SM340 will be ON for one cycle and OFF for one cycle.

7.18 Random number instruction

RND/Random number instruction

RND(P)

A pseudo-random number from 0 to 32767 is generated, and the value is stored as a random number in the device specified in (d).
$-[R N D \quad(P) \quad(d)]$
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(d)	The start number of the device storing random number	---	Signed BIN16	ANY16

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		XY	MS	SM	T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS	T	CD	R SD	LC	HSC	< ${ }^{\text {e }}$	[D]	XXP
RND	Parameter 1										-	\bullet	\bullet	\bullet	-	- -				\bullet	\bullet

Features
A pseudo-random number from 0 to 32767 is generated, and the value is stored as a random number in the device specified in (d).

Error code

Error code	Content
4086 H	The write address of (d) exceeds the device range

Example

Pseudo-random numbers from 0 to 9 would be generated.

Turn on M 0 to generate a pseudo-random number between 0-9.

7.19 Preferred instruction

DEXMN/Preferred instruction

DEXMN(P)
The position of the given value that is closest to the target value in multiple given values is selected through calculation.
-[DEXMN
(s1) (s2)
(s3)
(d1) (d2)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
$(\mathrm{s} 1)$	Input data parameter array start device number		Form type	LIST
$(\mathrm{s} 2)$	Select the maximum number of data and the start device number of the output mode		Form type	LIST
$(\mathrm{s} 3)$	Target value	0 to 16777215	Unsigned BIN32	ANY32_U
$(\mathrm{d} 1)$	Select result array start device number		Form type	LIST
$(d 2)$	Operation result array start device number		Form type	LIST

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		XYM M SM T(bit)				C(bit)	LC(bit)	HSC(bit)	D.b	KnX		KnM		TC		R		CHSC	KHE	[D]	XXP
	Parameter 1														-	\bullet					\bullet
	Parameter 2														-	\bullet					\bullet
DEXMN	Parameter 3														-	\bullet					\bullet
	Parameter 4														-	\bullet					\bullet
	Parameter 5														-	\bullet					\bullet

Feature

(1) Instruction function description

From the data set given by S 1 , Select the data combination whose number is less than or equal to S 2 (select the maximum number of data) and the sum value is closest to S3 (target value). The selected result is stored in array D1 according to the position corresponding to array S1.

The error code of the instruction execution is stored in D2, and the number of the selected is stored in D2+2, and the difference between the selected array and the target value is stored in D2+4.
(2) Detailed parameter description

Input parameter S1				
Unit	Number of bytes	Features	Description	Range
s1	Double word	The number of input data	Specify the number of input data	1 to 32
s1+1				
s1+2	Double word	The first data	Input data	0 to 16777215
s1+3				
s1+4	Double word	The second data		
s1+5				
. \cdot	\ldots	\ldots		
s1+64	Double word	The 32nd data		
s1+65				

PLC LX5V Series Programming Manual (V2.2)

Input parameter S3				
Unit	Number of bytes	Features	Parameter Description	Range
s2	Double word	Specify the maximum number of selected data	Specify the maximum number of selected data	1 to s1. Due to the time limit, please refer the notes.
s2+2			Output mode selection:	
s2+3	Double word	Output mode	0 : the 0 value in the input array is not added to the output combination 1. Add the 0 value in the input array to the output combination	

Input parameter S3					
Unit	Number of bytes	Features	Parameter Description	Range	
s3	Double word	Specify target data	Specify the selected target data	0 to 16777215	
s3+1					

Parameter d1				
Unit	Number of bytes	Features	Parameter Description	Range
d1 d1+1	Double word	Selection result, each bit represents a data	Use bits to indicate the position of data Bit 0 corresponds to $\mathrm{S} 1+2$ Bit 1 corresponds to $\mathrm{S} 1+4$	Read-only
$\frac{\mathrm{d} 1+2}{\mathrm{~d} 1+3}$	Double word	Select the position of the 1st data		
$\frac{\mathrm{d} 1+4}{\mathrm{~d} 1+5}$	Double word	Select the position of the 2nd data	offset of S1+2,	
$\frac{d 1+N^{*} 2+2}{d 1+N^{*} 2+3}$	Double word	Select the position of the Nth data	3 means the data is in $\mathrm{S} 1+8$	Read
d1+64 d1+65	Double word	Select the position of the 32th data		

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Parameter d2} \& \multirow[b]{2}{*}{Remarks} \& \multirow[b]{2}{*}{Remarks}

\hline Unit \& Number of bytes \& Features \& Parameter Description \& \&

\hline d2

d2+1 \& Double word \& Select the execution result OR Error code \& Error code \& ≥ 0 : execute correctly <0: Error code \& | -1 : The number entered is out of range |
| :--- |
| -2 : The number of selected data is out of range |
| -3 : The target data is out of range |
| -4 : The input data is out of range |
| (If there are repeated errors, the top error will be reported first. For example, the number of inputs is 0 and the target data is -30 . At this time, an error of -1 will be reported) |

\hline d2+2 \& Double \& The number \& The number of Actually \& Read-only \&

\hline
\end{tabular}

PLC LX5V Series Programming Manual (V2.2)

d2+3	word	selected	selected data		
d2+4	Double	Minimum	The current result		
d2+5	word	deviation	minus the target value		
d2+6	Double				
d2+7	word				
d2+8	Double		Number of	Read-only	
d2+9	word	Reserved	combinations (where the result is)		
$\begin{gathered} \mathrm{d} 2+10 \\ \text { to } \\ \mathrm{d} 1+73 \end{gathered}$	Double word	Internal use	Cache for internal calculation		

(Note:
In the case of a large number of data, a watchdog timeout may occur. This is because the calculation takes a lot of time.
The current timetable for this instruction is as below. Please use the maximum number of data selected according to the timetable.

The number of arrays	1	2	3	4	5	6	7	8
The number of selected	Time unit (ms)							
1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
3			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
4				<0.1	<0.1	<0.1	<0.1	<0.1
5					<0.1	<0.1	<0.1	<0.1
6						<0.1	<0.2	<0.2
7							<0.2	<0.2
8								<0.2

The number of arrays	9	10	11	12	13	14	15	16
The number of selected	Time unit (ms)							
1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2
4	<0.1	<0.1	<0.2	<0.2	<0.2	<0.4	<0.4	<0.4
5	<0.2	<0.2	<0.3	<0.4	<0.5	<0.6	<0.9	1.1
6	<0.2	<0.3	<0.3	<0.6	<0.9	1.2	1.8	2.5
7	<0.2	<0.4	<0.6	<0.9	1.4	2.2	3.4	5.9
8	<0.3	<0.4	<0.7	1.4	2.0	3.3	5.5	8.9
9	<0.3	<0.5	<0.9	1.5	2.6	4.6	7.9	13.4
10		<0.6	<1.0	1.7	3.2	5.8	10.4	18.4
11			1.1	2.2	3.7	6.9	12.8	23.3
12				2.3	4.4	8.2	15.2	28.8
13					4.9	9.3	17.5	32.8
14						10.5	19.8	37.5
15							23.0	43.0

PLC LX5V Series Programming Manual (V2.2)

16								46.8
The number of arrays	17	18	19	20	211	22	23	24
The number of selected	Time unit (ms)							
1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
4	<0.5	<0.6	<0.7	<0.8	<0.9	1.2	1.3	1.5
5	1.4	1.8	2.3	2.9	3.7	4.6	5.7	6.9
6	3.6	5.0	6.8	9.9	12.2	15.9	20.8	26.8
7	7.7	11.4	16.5	23.5	32.9	45.7	62.5	84.4
8	14.2	22.9	33.4	51.2	75.8	110.6	158.9	225.1
9	22.6	37.2	60.2	95.3	148.6	227.6	342.9	
10	32.2	55.4	93.8	156.9	255.2			
11	42.4	75.3	132.2	222.8				
12	51.8	94.9	171.9					
13	61.4	114.3	221.2					
14	70.7	133.2						
15	80.6	151.9						
16	89.4	170.5						
17	98.6	189.7						
18		207.7						

| The number of arrays
 The number of selected | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 |
| 2 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 |
| 3 | <0.3 | <0.3 | <0.4 | <0.4 | <0.5 | <0.5 | <0.6 | <0.6 |
| 4 | 1.7 | 1.9 | 2.3 | 2.6 | 3.0 | 3.5 | 3.8 | 4.4 |
| 5 | 8.4 | 10.2 | 12.3 | 14.7 | 17.5 | 20.6 | 24.2 | 28.3 |
| 6 | 34.2 | 43.3 | 54.2 | 15.9 | 83.3 | 102.2 | 124.3 | 150.5 |
| 7 | 112.6 | 148.6 | 194.2 | 251.4 | 322.6 | 410.5 | 515.4 | 649.8 |
| 8 | 314.4 | 433.7 | 591.6 | | | | | |
| 9 | | | | | | | | |

2 Note:Red text is the limit of exceeding the default scan cycle.

Error code

Error code	Content
4084 H	Data range error. For details, see the error code of parameter d2
4085 H	The device addresses of (s1), (s2) and (s3) are out of range
4086 H	The device addresses of (d1) and (d2) are out of range

Example

$$
\left.\begin{array}{|ccccccc|}
\hline \text { M8 } & \text { DEXMN } & \text { D200 } & \text { D4 } & \text { D8 } & \text { D300 } & \text { D400 }
\end{array}\right\}
$$

When D200 = 8, D4 = 2, it means to take out two data from 8 groups of data, and the sum of the two data is closest to the data in D8.
Array data of D200 (S1):

D200	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
D201	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D202	0	1	1	0	1	0	0	1	0	0	0	0	0	0	0	0
D203	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D204	1	1	0	0	0	1	1	0	0	0	0	0	0	0	0	0
D205	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D206	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0
D207	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D208	0	0	0	1	0	0	1	1	0	0	0	0	0	0	0	0
D209	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D210	0	1	1	0	1	0	1	0	0	0	0	0	0	0	0	0
D211	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D212	0	0	1	1	0	0	1	0	0	0	0	0	0	0	0	0
D213	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D214	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0
D215	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D216	1	0	0	1	1	0	0	1	0	0	0	0	0	0	0	0
D217	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Select a combination with a sum close to 300 from the data above, and the results selected by D300 (D1) are as below:

Device	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F	
D300	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	10
D301	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1302	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
D303	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1304	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
D305	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D306	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D307	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D308	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D309	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1310	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D311	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D312	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit 1 and Bit 3 of D300 are 1, and the data positions of 1 and 3 are currently selected. The indicated positions are D204 (99) and D208 (200).

D400 (D2) running results are as below:

Device	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F	
D400	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D401	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D402	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
D403	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D404	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-1
D405	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-1
D406	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
D407	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D408	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	255
D409	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D410	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D411	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D412	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D413	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D414	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D415	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D416	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D417	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D418	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D419	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

If D400 is 0 , the execution is correct.
If D402 is 2 , the number of selected is 2 .
If D404 is -1 , the selected data combination sum value minus the target value difference is -1 .
If D406 is 2 , the use time is 2 ms

8 High-speed pulse output

8.1 High-speed pulse output instruction

ZRN/DZRN/Origin return

ZRN/DZRN

This instruction is to use the specified pulse speed and pulse output port to make the actuator move to the origin of action (DOG) when the PLC and the servo drive work together, until the origin signal meets the conditions.
-[ZRN/DZRN
(s1)
(s 2)
(s3)
(d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	The speed when the origin return starts	1 to 32767 1 to 200000	Signed BIN16/Signed BIN32	ANY16_S/ANY32_S
(s2)	Crawl speed	1 to 32767 1 to 200000	Signed BIN16/Signed BIN32	ANY16_S/ANY32_S
(s3)	The device number of the input number of the near-point signal (DOG) to be input.	-	Bit	ANY_BOOL
(d)	The device number (Y) that outputs pulse	-	Bit	ANY_BOOL

Device used

Instruction	Parameter	Devices																			Offset modification	Pulse extension
		X Y	M S		SM	T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX KnY KnM KnS				T C		D R SD LC		HSCKHE		[D]	$\begin{array}{\|c} \text { extension } \\ \hline \text { XXP } \\ \hline \end{array}$
ZRN	Parameter 1										\bullet	\bullet	-	-	-	-	\bullet			$\bullet \bullet$	\bullet	
	Parameter 2										\bullet	\bullet	\bullet	\bullet	$\bullet \bullet$	-	\bullet			- -	\bullet	
	Parameter 3	- \bullet	-																			
	Parameter 4	\bullet																				

Features

This instruction is to use the specified pulse speed and pulse output port to make the actuator move to the origin of action (DOG) when the PLC and the servo drive work together, until the origin signal meets the conditions.

- Specify the speed at the start of origin return in (s1). (It should be in the range of 1 to 200,000)
- Specify the crawling speed in (s2). (It should be in the range of 1 to 200,000)
- Specify the device number of the input number of the near-point signal (DOG) to be input in (s3).
- Specify the device that outputs pulses in (d). Only Y devices with positioning parameters could be specified.
- After the DOG contact signal of this instruction disappears, the pulse stops immediately.
- The pulse frequency could be modified during operation.

Note:

Please do not duplicate soft components used for other controls.
When designing the near-point DOG, please consider that there is enough time to be ON to fully decelerate to the crawl speed.
Please set the near-point DOG between the reverse limit 1 (LSR) and the forward limit 1 (LSF). When near-point DOG, reverse limit 1 (LSR), forward limit 1 (LSF) do not form the relationship shown in the figure below, the action may not be performed.

Please make the crawling speed slow enough. Since it does not decelerate to stop, if the crawling speed is too fast, the stop position will shift due to inertia.

Error code

Error code	Content
4084 H	The data input in the application instruction (s1) and (s2) exceed the specified range
4085 H	The result output in the read application instruction (s1), (s2), (s3) and (d) exceed the device range
4088 H	The same pulse output axis (d) is used and has been started.

Example

Set Y1 as the output axis at a maximum speed of 200 K , a offset speed of 500 , and a acceleration/deceleration time of 100 ms . Origin return is performed at the frequency of 200 Khz , and it runs at a crawling speed after receiving the origin signal XO , and it stops after the XO signal is reset.

DSZR/DDSZR/Origin return

DSZR/DDSZR

The instruction is that when the PLC works with the servo drive, it uses the specified pulse speed and pulse output port and the specified direction axis to move the actuator to the origin of the action (DOG) until the origin signal meets the conditions.
-[DSZR/DDSZR
(s1)
(s2) (s3)
(d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	The speed when the origin return starts	1 to 32767 1 to 200000	Signed BIN16/Signed BIN32	ANY16_S/ANY32_S
(s2)	Crawling speed	1 to 32767 1 to 200000	Signed BIN16/Signed BIN32	ANY16_S/ANY32_S
(s3)	The device number of the input number of the near-point signal (DOG) to be input.	-	Bit	ANY_BOOL
(d1)	The device number (Y) that outputs pulse	-	Bit	ANY_BOOL
(d2)	Operation direction output port or bit variable			A

Device used

Instruction	Parameter	Devices																			Offset modification [D]	Pulse extension $\mathbf{X X P}$
			X Y M S	S SM	T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX KnY KnM KnS				T C D		DR SD LCHSCKHE						
	Parameter 1									\bullet	\bullet	\bullet	\bullet		- \bullet	\bullet				$\bullet \bullet$	\bullet	
	Parameter 2									\bullet	\bullet	\bullet	-	-	-	-				- -	\bullet	
DSZR	Parameter 3	-	-	-																		
	Parameter 4	\bullet	-																			
	Parameter 5	\bullet	- \bullet						\bullet													

Features

The instruction is that when the PLC works with the servo drive, it uses the specified pulse speed and pulse output port and the specified direction axis to move the actuator to the origin of the action (DOG) until the origin signal meets the conditions.

- Specify the speed at the start of origin return in (s1). (It should be in the range of 1 to 200000)
- Specify the crawling speed in (s2). (It should be in the range of 1 to 200000)
- Specify the device number of the input number of the near-point signal (DOG) to be input in (s3).
- Specify the device that outputs pulses in (d1). Only Y devices with positioning parameters could be specified.
- Specify the bit device that specify the pulse output direction signal in (d2). Only the device specified in parameters and universal output could be specified.
- After the DOG contact signal of this instruction disappears, the pulse stops immediately.
- The pulse frequency could be modified during operation.

* Note:

Please do not duplicate soft components used for other controls.
When designing the near-point DOG, please consider that there is enough time to be ON to fully decelerate to the crawl speed.
Please set the near-point DOG between the reverse limit 1 (LSR) and the forward limit 1 (LSF). When near-point DOG, reverse limit 1 (LSR), forward limit 1 (LSF) do not form the relationship shown in the figure below, the action may not be performed.

Please make the crawling speed slow enough. Since it does not decelerate to stop, if the crawling speed is too fast, the stop position will shift due to inertia.

Error code

Error code	Content
4084 H	The data input in the application instruction (s1) and (s2) exceed the specified range
4085 H	The result output in the read application instruction (s1), (s2), (s3), (d1) and (d2) exceed the device range
4088 H	The same pulse output axis (d1) is used and has been started.

Example

Set Y1 as the output axis and Y10 as the direction axis at a maximum speed of 200 K , a offset speed of 500 , and a acceleration/deceleration time of 100 ms . Origin return is performed at the frequency of 200 Khz , and it runs at a crawling speed after receiving the origin signal XO , and it stops after the XO signal is reset

DVIT/DDVIT/16-bit data relative positioning

DVIT/DDVIT

This instruction outputs the specified number of pulses according to the specified port, frequency and running direction. When an interrupt signal is received, it will stop after sending the specified number of pulses.
-[DVIT/DDVIT
(s1) (s2)
(d1) (d2)
(d3)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	Specify the number of output pulses	-32768 to +32767	Signed BIN16/ Signed BIN32	ANY16_S/ANY32_S
(s2)	Specify the frequency of output pulse	1 to 32767 1 to 200000	Signed BIN16/ Signed BIN32	ANY16_S/ANY32_S
(d1)	Specify output pulse port	-	Bit	ANY_BOOL
(d2)	Running direction output port or bit variable	-	Bit	ANY_BOOL
(d3)	Interrupt signal	-	Bit	ANY_BOOL

Device used

Instruction	Parameter	Devices																			Offset modification	Pulse extension
			X Y M	S SM		M T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY KnM KnS			T CD		DRSDLC		HSCKHE		[D]	XXP
	Parameter 1										\bullet	\bullet	\bullet	\bullet	- -	-	\bullet			$\bullet \bullet$	\bullet	
	Parameter 2										\bullet	\bullet	\bullet	\bullet	\bullet	-	\bullet			- -	\bullet	
DVIT	Parameter 3	\bullet	-																			
	Parameter 4	-	- -							\bullet												
	Parameter 5	\bullet	\bullet	-																		

Features

This instruction uses relative drive to perform 1st gear positioning. The specified positioning address adopts incremental mode, and positioning is performed by specifying the moving direction and the moving amount (relative address) from the current position.

- Specify the number of output pulses in (s1). (It should be in the range of $-2,147,483,647$ to $+2,147,483,647$)
- Specify the instruction speed of user units in (s2). (It should be in the range of 1 to 200,000)
- Specify the device that outputs pulses in (d1). Only Y devices with positioning parameters can be specified.
- Specify the bit device of the pulse output direction signal in (d2). Only the devices and general outputs specified in the parameters could be specified.
- Specify the bit device of the interrupt signal in (d3). Only the devices and general outputs specified in the parameters could be specified.

(Note:
Please do not duplicate device used for other controls.
If the positioning address (s1) is 0 when the instruction is started, it will end abnormally and report 4084H error.
Before the interrupt input signal 1 is detected, if the positioning address ($s 1$) is changed to 0 , the positioning operation will continue, and the pulse output will stop after the input interruption, and it will end normally.

After the interrupt input signal 1 is detected, when the positioning address ($s 1$) is changed to 0 , it will decelerate to a stop, reverse the output direction, and continue to operate until the positioning address of the interrupt is input, and end normally.

When the number of pulses is less than the number required for deceleration and stop, it stops immediately when the positioning address is reached.

Error code

Error code	Content
4084 H	The data input in the application instruction (s1) and (s2) exceed the specified range
4085 H	The result output in the read application instruction (s1), (s2), (d1), (d2) and (d3) exceed the device range
4088 H	The same pulse output axis (d1) is used and has been started.

Example

Set $Y 0$ as the output axis and $Y 1$ as the direction axis with the maximum speed of 200 K , the offset speed of 500 , and the acceleration/deceleration time of 100 ms , and run at a frequency of 200,000 , and send 200,000 pulses after receiving the $X 0$ signal.

DRVI/DDRVI/Relative positioning

DRVI/DDRVI

Execute single-speed positioning instructions in relative drive mode. The method of specifying the movement distance from the current position with positive/negative signs is also called incremental (relative) drive mode.
-[DRVI/DDRVI
(s1)
(s2) (d1)
(d2)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	Specify the number of output pulses (relative address)	-32768 to 32767 -2147483648 to +2147483647	Signed BIN16/ Signed BIN32	ANY16_S/
ANY32_S				

Device used

Instruction	Parameter	Devices																		Offset modification [D]		Pulse extension		
		X Y	S SM		T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX KnY		KnM KnS T			CD	R SD		LCHSCK\|HE						
	Parameter 1									-	\bullet	\bullet	-	-	-	\bullet			$\bullet \bullet$				\bullet	
	Parameter 2									\bullet	\bullet	\bullet	\bullet	$\bullet \cdot$	-	\bullet			$\bullet \cdot$		\bullet			
DRVI	Parameter 3	\bullet																						
	Parameter 4	\bullet	- -						\bullet															

Features

This instruction uses incremental mode (specified by position of relative address) to perform single-speed positioning.
With the current stop position as the starting point, specify the movement direction and movement amount (relative address) for positioning.

- Specify the positioning address of the user unit with a relative address in (s1). (It should be in the range of -2147483647 to +2147483647)
- Specify the instruction speed of user unit in (s2). (It should be in the range of 1 to 200,000)
- Specify the device that outputs pulses in (d1). Only Y devices with positioning parameters could be specified.
- Specify the bit device of the output direction signal in (d2). Only the devices and general outputs specified in the parameters could be specified.
- The pulse frequency and pulse position could be modified during the operation of this instruction.

(2) Note:

Please do not duplicate device used for other controls.

Error code

Error code	Content
4084 H	The data input in the application instruction (s1) and (s2) exceed the specified range
4085 H	The result output in the read application instruction (s1), (s2), (d1) and (d2) exceed the device range
4088 H	The same pulse output axis (d1) is used and has been started.

Example

Set $Y 0$ as the output axis, and $Y 1$ as the direction axis with the maximum speed in 200 K , and the offset speed in 500 , and the acceleration/deceleration time in 100ms. Send a high-speed pulse with acceleration and deceleration at a frequency of 200 KHZ , and a pulse number of 200 K .

DRVA/DDRVA/Absolute positioning

DRVA/DDRVA

Execute single-speed positioning instructions in absolute drive mode. The method of specifying the movement distance from the origin (zero) is also called the absolute drive method.
-[DRVA/DDRVA
(s1) (s 2)
(d1) (d2)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	Specify the number of output pulses (absolute address)	-32768 to 32767	Signed BIN16 Signed BIN32	ANY16_S
ANY32_S				
(s2)	Specify the frequency of output pulse	-2147483648 to 2147483647	1 to 32767	Signed BIN16
Signed BIN32	ANY16_S			
ANY32_S				
(d1)	Specify the device number of output pulse	-	Bit	ANY_BOOL
(d2)	Running direction output port or bit variable	-	Bit	ANY_BOOL

Device used

Instruction	Parameter	Devices																			Offset modification	Pulse extension
		X Y M		S SM	T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	$\mathrm{Kn} \times \mathrm{KnY}$		KnM	Kns T		CD	R SD		LCHSCKHE			[D]	XXP
	Parameter 1									\bullet	\bullet	\bullet	\bullet	\bullet	- \bullet	\bullet				$\bullet \bullet$	\bullet	
	Parameter 2									\bullet	\bullet	-	\bullet	-		-				- -	\bullet	
	Parameter 3	\bullet																				
	Parameter 4	\bullet	\bullet						\bullet													

Features

This instruction uses absolute drive to perform single-speed positioning. The specified positioning address adopts the absolute method, and the specified position (absolute address) is used for positioning based on the origin.

- Specify the positioning address of user unit with a absolute address in (s1). (It should be in the range of $-2,147,483,647$

$$
+2,147,483,647)
$$

- Specify the instruction speed of user unit in (s2). (It should be in the range of 1 to 200,000)
- Specify the device that outputs pulses in (d1). Only Y devices with positioning parameters could be specified.
- Specify the bit device of the output direction signal in (d2). Only the devices and general outputs specified in the parameters could be specified.
- The pulse frequency and pulse position could be modified during the operation of this instruction.

* Note:

Please do not duplicate device used for other controls.

Error code

Error code	Content
4084 H	The data input in the application instruction (s1) and (s2) exceed the specified range
4085 H	The result output in the read application instruction (s1), (s2), (d1) and (d2) exceed the device range
4088 H	The same pulse output axis (d1) is used and has been started.

Example

Set $Y 0$ as the output axis, and Y 1 as the direction axis with the maximum speed in 200 K , and the offset speed in 500 , and the acceleration/deceleration time in 100 ms . Send a high-speed pulse with acceleration and deceleration at a frequency of 200 KHZ , starting at the origin position and ending at 200,000

PLC LX5V Series Programming Manual (V2.2)

PLSR/DPLSR/Pulse output with acceleration and deceleration

PLSR/DPLSR

Pulse output instruction with acceleration and deceleration function.
-[PLSR/DPLSR
(s1)
(s2)
(s3)
(d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	Specify the frequency of output pulse	$(1$ to 32767) $(1$ to +200000$)$	Signed BIN16/ Signed BIN32	ANY16_S/ ANY32_S
(s2)	Specify the number of output pulse	$(0$ to 32767) $(0$ to +2147483647$)$	Signed BIN16/ Signed BIN32	ANY16_S/ ANY32_S
(s3)	Save acceleration and deceleration time (ms) data	$(50$ to 32000) (0: No acceleration or deceleration) $)$	Signed BIN16/ Signed BIN32	ANY16_S/ ANY32_S
(d)	The device number of output pulse	-	Bit	ANY_BOOL

Device used

Instruction	Parameter	Devices																			Offset modification	Pulse extension
		X Y M S SM T(bit)				C(bit)	LC(bit)	HSC(bit)	D.b	$\mathrm{KnX} \times \mathrm{KnY}$		KnM	KnS T		C ${ }^{\text {c }}$	R SD		DLCHSCKHE			[D]	XXP
	Parameter 1									-	\bullet	\bullet	\bullet	\bullet	- \bullet	-				$\bullet \bullet$	\bullet	
	Parameter 2									\bullet	\bullet	-	\bullet	-	-	-				- -	\bullet	
	Parameter 3									\bullet	\bullet	\bullet	\bullet	\bullet	-	-				- -	\bullet	
	Parameter 4	\bullet																				

Features

Pulse output instruction with acceleration and deceleration function.

- Specify the output instruction speed in (s1). (It should be in the range of 1 to 200,000)
- Specify the number of output pulses in (s2). (It should be in the range of 0 to $+2,147,483,647$)
- Specify the acceleration/deceleration time (ms) in (s3). (It should be in the range of 50 to 32,000 . If set to 0 , no acceleration or deceleration will be performed)
- Specify the device that outputs pulses in (d). Only output devices (Y) with positioning parameters could be specified.

N Note:

Please do not duplicate device used for other controls.

Error code

Error code	Content
4084 H	The data input in the application instruction (s1) and (s2) exceed the specified range
4085 H	The result output in the read application instruction (s1), (s2), (s3) and (d) exceed the device range
4088 H	The same pulse output axis (d) is used and has been started.

Example

Set $Y O$ as the output axis at a maximum speed of 200 K , and a offset speed of 500 , and a acceleration/deceleration time of 100 ms
Send a high-speed pulse with acceleration and deceleration at a frequency of 200 KHZ , a pulse number of 200K.

PLSR2/Multi-speed positioning

PLSR2
The PLSR2 instruction sets parameters in the form of a table, and generates relative and absolute position pulse instructions according to the specified port, frequency, running direction and acceleration/deceleration time in segments, so that the servo actuator could make a given offset based on the current position.
-[PLSR2 (s) (d1) (d2)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The parameter address is an area with Dn as the starting address	-	Signed BIN16/ Signed BIN32	ANY16_S/
ANY32_S				
(d1)	The device (Y) number of output pulse	-	Bit	ANY_BOOL
$(\mathrm{d} 2)$	Running direction output port or bit variable	-	Bit	ANY_BOOL

Device used

Instruction	Parameter	Devices																			Offset modification	Pulse extension
		XY	M S SM		T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	Kns T	CD		R SD LC			HSCKHE		[D]	XXP
	Parameter 1														\bullet -	-					\bullet	
PLSR2	Parameter 2	-																				
	Parameter 3	-	-						\bullet													

Features

The PLSR2 instruction sets parameters in the form of a table, and generates relative and absolute position pulse instructions according to the specified port, frequency, running direction and acceleration/deceleration time in segments, so that the servo actuator could make a given offset based on the current position.

- Specify the parameter address in (s), which is an area with Dn as the starting address.
- Specify the device that outputs pulses in (d1). Only Y devices with positioning parameters could be specified.
- Specify the bit device of the output direction signal in (d2). Only the devices and general outputs specified in the parameters could be specified.
- During the operation of this instruction, only the pulse frequency and pulse position of the last segment could be modified. If the value exceeds the parameter range, it will stop with an error.
- The number of pulse segments could not be modified while the instruction is running. If the number of segments is modified, the error will stop.
- When the instruction has a waiting condition or the reverse operation need to stop to restart, use the same start frequency and end frequency as the first segment.

Instruction parameter configuration table:

Address offset (s)	Content	Instruction
(S) +0	The number of pulse segments	(1-n)
(S) + 1	Form identification	Reserved
(S) +2	The first segment pulse frequency	1HZ to 200,000HZ
(S) +3		
(S) +4	The number of pulses in the first segment	None
(S) + 5		
(S) +6	The first segment waiting condition	0 : Pulse sending completed 1: Waiting time 2: Waiting signal (ON valid)

		3: Waiting signal (OFF is effective) 4: Trigger signal (rising edge) 5: Trigger signal (falling edge) (Use with [Waiting Condition] and [Waiting Register])
(S) +7	The first segment waiting register type	Correspondence between waiting conditions and waiting register types: Pulse sending completed: none Waiting time: =0: D register; =1: constant; Waiting signal: $=0$: X-bit register; =1: M-bit register; =2: S-bit register; =3: Y-bit register; Trigger signal: $=0$: X -bit register; =1: M-bit register; =2: S-bit register; =3: Y-bit register
(S) +8	The first segment constant value/waiting register number	None
(S) +9		
(S) +10	The first segment operation mode	0 : Relative mode; 1: Absolute mode
(S) +11	Reserved	Reserved
...
(S) $+2+(\mathrm{n}-1)^{*} 10$	The Nth segment pulse frequency	1HZ to 200,000HZ
(S) $+3+(\mathrm{n}-1)^{*} 10$		

Parameter Description

(1) Number of pulse segments:
$(\mathrm{s})+0$ is used to set the number of pulse segments (single word), and the number of segments needs to be greater than 0 segment, Pay attention to whether the table range exceeds the maximum usable device value.

(2) Form ID:

(s) +1 : reserved.

(3) Pulse mode:

$(\mathrm{s})+(\mathrm{n}-1) * 10+10$ (single word) is the pulse mode of the nth segment. When it is set to 0 , it is relative mode, that is, the number of pulses and the current position register are relative positions. When it is set to 1 , it is absolute mode, that is, the pulse number and current position register are absolute positions.

(4) Waiting conditions:

$(s)+(n-1) * 10+6$ (single word) is the waiting condition of the nth segment, $(s)+(n-1) * 10+7$ (single word) is the waiting register type, (s) $+(n-1) * 10+8$ (double word) is the waiting register number or constant value.

Waiting condition $=0$ means no waiting condition, $=1$ means waiting time, $=2$ means waiting signal (high level), $=3$ means waiting signal (low level), $=4$ means trigger signal (rising edge)), $=5$ means trigger signal (falling edge).

The waiting condition is used in conjunction with the waiting register and the waiting register number/constant value.

1) No waiting conditions

When (s) $+(\mathrm{n}-1)^{*} 10+6=0$, it is no waiting condition, that is, after the number of pulses set in this segment is executed, it will immediately jump to the pulse segment specified later.

Example one: Three pulses are needed now. The pulse frequency of the first segment is $2,000 \mathrm{~Hz}$, and the number of pulses is 2,000 ; The pulse frequency of the second segment is $4,000 \mathrm{~Hz}$, and the number of pulses is 4,000 ; The pulse frequency of the third segment is 6,000 with no waiting conditions.

The number of segments	Pulse frequency	The number of pulses	Waiting mode	Condition
1	20,000	20,000	No waiting conditions	K0
2	40,000	40,000	No waiting conditions	K0
3	60,000	60,000	No waiting conditions	K0

The ladder program parameter settings are as follows:

The waveform diagram is as follows:

2) Waiting time

When $(s)+(n-1)^{*} 10+6=1$, it is the waiting time. When $(s)+(n-1) * 10+7=0$, it is waiting D register, when $=1$, it is waiting constant.
After the pulse output of the current segment is completed, start timing. When the timing time is up, it will immediately jump to he specified pulse segment; the timing time could be constant or specified by register D, unit: ms (range: $1-65,535 \mathrm{~ms}$).

Example 2: Three pulses are needed now. The pulse frequency of the first segment is $20,000 \mathrm{~Hz}$, and the number of pulses is 20,000 , and the waiting time is K 100 ms . The pulse frequency of the second segment is $40,000 \mathrm{~Hz}$, and the number of pulses is 40,000 ; and the waiting time is K 100 ms . The pulse frequency of the third segment is 60,000 ,and the number of pulses is 60,000 with no waiting conditions.

The number of segments	Pulse frequency	The number of pulses	Waiting mode	Condition
1	20,000	20,000	waiting time	K100
2	40,000	40,000	waiting time	D100
3	60,000	60,000	No waiting conditions	K0

The ladder program parameter settings are as follows:

The waveform diagram is as follows:

3) Waiting signal

When $(s)+(n-1) * 10+6=2$, it is waiting signal high level (ON status). When $(s)+(n-1) * 10+6=3$, it is waiting signal low level (OFF status). When $(s)+(n-1) * 10+7=0$, it means waiting for X signal, and $=1$ means waiting for M signal, $=2$ means waiting for S signal, $=3$ means waiting for Y signal.

Example 3: Three pulses are needed now. The pulse frequency of the first segment is $20,000 \mathrm{~Hz}$, and the number of pulses is 20,000 , and the waiting signal is M 2 . The pulse frequency of the second segment is $40,000 \mathrm{~Hz}$, and the number of pulses is 40,000 ; and the waiting signal is X 2 . The pulse frequency of the third segment is 60,000 ,and the number of pulses is 60,000 with no waiting conditions.

The number of segments	Pulse frequency	The number of pulses	Waiting mode	Condition
1	20,000	20,000	Waiting signal high level	M2
2	40,000	40,000	Waiting signal low level	X2
3	60,000	60,000	No waiting conditions	K0

The ladder program parameter settings are as follows:

		$-\mathrm{MOV}$	K3	D0
		[DMOV	K20000	D2
		[DMOV	K20000	D4
		[MOV	K2	D6
		[MOV	K1	D7
		[DMOV	K2	D8
		[DMOV	K40000	D12
		[DMOV	K40000	D14
		[MOV	K3	D16
		[MOV	K0	D17
		[DMOV	K2	D18
		[DMOV	K60000	D22
		[DMOV	K60000	D24
		[mov	K0	D26
100	$10 \stackrel{\mathrm{M} 1}{-1}$	D0	YO	Y1

The waveform diagram is as follows:
If the signal is received in advance, it will not decelerate to stop, but directly accelerate/decelerate to the specified speed of the next segment. (X2 low level is received during operation)

4) Trigger signal

When $(s)+(n-1) * 10+6=4$, it is the rising edge of trigger signal. When $(s)+(n-1) * 10+6=5$, it is the falling edge of trigger signal.
$(\mathrm{s})+(\mathrm{n}-1)^{*} 10+7=0$ means waiting for X signal, $=1$ means waiting for M signal, $=2$ means waiting for S signal, $=3$ means waiting for Y signal.

After the current pulse segment starts to send pulses, if the external bit signal triggers operates (ON state) before the current number of pulses are sent, the next pulse is sent immediately. At the end of the pulse transmission of the current segment, if the signal is not triggered (OFF state), the next pulse will continue to be sent (that is, the configured pulse segment will be pulsed in a mode without waiting conditions. But if the current pulse is receiving a trigger signal during the process, it will directly accelerate and decelerate to the next pulse).

Example 4: Three pulses are needed now. The pulse frequency of the first segment is $20,000 \mathrm{~Hz}$, and the number of pulses is 20,000 ,
and the waiting signal is M2. The pulse frequency of the second segment is $40,000 \mathrm{~Hz}$, and the number of pulses is 40,000 ; and the waiting signal is X2. The pulse frequency of the third segment is 60,000 ,and the number of pulses is 60,000 with no waiting conditions.

The number of segments	Pulse frequency	The number of pulses	Waiting mode	Condition
1	20,000	20,000	Trigger signal rising edge	M2
2	40,000	40,000	Trigger signal falling edge	X2
3	60,000	60,000	No waiting conditions	K0

The ladder program parameter settings are as follows:

The pulse waveform diagram is as follows:

If a signal is received in the acceleration section (deceleration section), it will directly accelerate (decelerate) in the current section to the next pulse frequency.

Note: Please do not duplicate device used for other controls.

Error code

Error code	Content
4084 H	The table parameter input data that exceeds the specified range
4085 H	The table parameter with the first address in the read application instruction (s) exceeds the device range, and the output result of the read parameter (s), (d1) and (d2) exceeds the device range
4088 H	The same pulse output axis (d1) is used and has been started.

PLSV/DPLSV/Variable speed operation

PLSV/DPLSV

Output variable speed pulse instruction with rotation direction. This instruction could change the speed with acceleration and deceleration.
-[PLSV
(s) (d1) (d2)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	Specify output pulse frequency	-	Signed BIN16/Signed BIN32	ANY16_S/ANY32_S
(d1)	Specify the number of output pulse	-	Bit	ANY_BOOL
(d2)	The device (Y) number of output pulse	-	Bit	ANY_BOOL

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		X Y	M S	SSM	T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM KnS^{-}		TCD		RSD	LC HSCKHE			[D]	XXP
	Parameter 1									\bullet	\bullet	\bullet	\bullet	$\bullet \cdot$	- -	\bullet			$\bullet \bullet$	\bullet	
PLSV	Parameter 2	\bullet																			
	Parameter 3	\bullet	- -						\bullet												

Features

This instruction is used to output variable speed pulse with rotation direction output.

- Specify the instruction speed of user units in (s). (It should be in the range of -200,000 to 200,000. When it is 0, stop sending pulse)
- Specify the device that outputs pulses in (d1). Only Y devices with positioning parameters could be specified.
- Specify the bit device of the output direction signal in (d2). Only the devices and general outputs specified in the parameters could be specified.
- The pulse frequency could be modified while the instruction is running.

* Note:

Please do not duplicate device used for other controls.
If the acceleration time is 0 , no acceleration action will be performed, and the speed is changed to the instruction speed immediately. If the deceleration time is 0 , no deceleration action will be performed, and it will stop immediately when the drive contact is OFF.

Error code

Error code	Content
4084 H	The data input in the application instruction (s1) exceeds the specified range
4085 H	The result output in the read application instruction (s1), (d1) and (d2) exceed the device range
4088 H	The same pulse output axis (d1) is used and has been started.

Example

Set the highest frequency to $200,000 \mathrm{~K}$, the offset speed to 500 , and the acceleration/deceleration time to 100 ms .

The sending pulse is as follows:

PLSY/DPLSY/Pulse output

PLSY/DPLSY

The pulse specified in the instruction speed (s) is output from the device specified in the output (d) to the pulse specified pulse in the positioning address (n).
-[PLSY/DPLSY
(s) (n) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	Specify output pulse frequency	-	Signed BIN16/Signed BIN32	ANY16_S/ANY32_S
(n)	Specify the number of output pulse	-	Bit	ANY_BOOL
(d)	The device (Y) number of output pulse	-	Bit	ANY_BOOL

Device used

Instruction	Parameter	Devices																			Offset modification	Pulse extension
		X Y M S SM T(bit)				$C(\text { bit })$	LC(bit)	HSC(bit)	D.b	KnX Kn	$\mathrm{n} Y \mathrm{KnM}$		KnS	TC		DR	SD L	LCHSCKHE			[D]	XXP
	Parameter 1									\bullet	\bullet	\bullet	\bullet		-	\bullet				$\bullet \bullet$	\bullet	
PLSY	Parameter 2									\bullet	\bullet	\bullet	-	-	- \bullet	-				- \bullet	\bullet	
	Parameter 3	\bullet																				

Features

- The pulse specified in the instruction speed (s) is output from the device specified in the output (d) to the pulse specified pulse in the positioning address (n).
- Specify the instruction speed of user unit in (s). (It should be in the range of 1 to 200,000)
- Specify the positioning address of user unit with a relative address in (n). (It should be in the range of 0 to $2,147,483,647$)
- Specify the device that outputs pulses in (d). Only Y devices with positioning parameters could be specified.
- The instruction pulse output has no acceleration/deceleration process.

N Note:

Please do not duplicate device used for other controls. Since this instruction has no direction, the direction polarity is invalid, and it always increases with the current address.

When the reverse limit is used, it will act as the forward limit
Error code

Error code	Content
4084 H	The data input in the application instruction (s) and (n) exceed the specified range
4085 H	The result output in the read application instruction (s), (n) and (d) exceed the device range
4088 H	The same pulse output axis (d) is used and has been started.

Example
(1) Unlimited pulse output: positioning address (operand (n)) $=0$

(2) Pulse output: positioning address (operand (n))>0

PWM/BIN 16-bit pulse output

PWM

Output the ON time (16-bit data unit) specified in (s1) and the cycle pulse (16-bit data unit) specified in (s2) to the output destination specified in (d).
-[PWM (s1) (s2) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	The ON time or the device number storing the ON time	0 to 32,767	Signed BIN16	ANY16_S
(s2)	Cycle or the device number storing the cycle	1 to 32,767	Signed BIN16	ANY16_S
(d)	The channel number and device number that pulse outputs	-	Bit	ANY_BOOL

Device used

Instruction	Parameter	Devices																				Offset modification	Pulse extension
		X Y M S SM T(bit)				C(bit)	LC(bit)	HSC(bit)	D.b	$\mathrm{Kn} \times$	KnY	KnM	KnS		CD	DR	SD	LC	HSC		HE	[D]	XXP
	Parameter 1									-	\bullet	\bullet	\bullet	-	-	- -					-	\bullet	
PWM	Parameter 2									\bullet	\bullet	\bullet	\bullet	-	- \bullet	- -					-	\bullet	
	Parameter 3	\bullet																					

Features

Normal mode

- Output the ON time specified in (s1) and the cycle pulse specified in (s2) to the output destination specified in (d).

- Specify the output pulse width in ($s 1$). (The setting range is 0 to 32,767)
- Specify the output pulse period in (s2). (The setting range is 1 to 32,767)
- Specify the device that outputs pulses in (d). Only Y devices with positioning parameters can be specified.
- The pulse width and pulse period can be modified during pulse sending.

N Note:

(1) Please do not duplicate device used for other controls.
(2) Set pulse width and cycle time. Please set the value of pulse width (s1) and period (s2) as (s1) \leq ($s 2$).
(3) About pulse output: This instruction is executed in interrupt mode. When the instruction power flow is OFF, the output stops, and (s1) and (s2) could be modified when the PWM instruction is executed. If it is modified to an incorrect parameter, the sending of PWM pulse will be stopped.

Related device

Output shaft	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
Percentage mode sign	SM897	SM957	SM1017	SM1077	SM1137	SM1197	SM1257	SM1317

Output shaft	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
PWM unit selection	SM902	SM962	SM1022	SM1082	SM1142	SM1202	SM1262	SM1322

Take Y0 as an example: When SM902 is OFF, the YO PWM output cycle and pulse width are in "ms"; When SM902 is ON, the Y0 PWM output cycle and pulse width are in "us".

Error code

Error code	Content
4084 H	The data input in the application instruction (s1) and (s2) exceed the specified range or (s1)>(s2)
4085 H	The result output in the read application instruction (s1), (s2) and (d) exceed the device range
4088 H	The same pulse output axis (d) is used and has been started.

Example
The waveform diagram is shown as below..

PWM/PWM permil mode

PWM

The period parameter (s2), the average equal division is 1000 equal divisions, ($s 1$) is the pulse duty ratio, and the setting of the permil mode is used to output to the output target specified in (d).
-[PWM (s1) (s2) (d)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	Set output pulse duty cycle	0 to 1000	Signed BIN16	ANY16_S
(s2)	Set pulse output cycle	1 to 32767	Signed BIN16	ANY16_S
(d)	Pulse output channel number, device number	-	Bit	ANY_BOOL

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		XY	M S SM		T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b K	KnX KnY KnM			KnS T		CD	R SD LCHSCKHE				[D]	XXP
	Parameter 1									-	-	-	-	-	-	-			- •	\bullet	
PWM	Parameter 2									\bullet	\bullet	\bullet		-	-	-			- -	\bullet	
	Parameter 3	\bullet																			

Features

The period parameter (s2), the average equal division is 1000 equal divisions, ($s 1$) is the pulse duty ratio, and the setting of the permil mode is used to output to the output target specified in (d).

It is necessary to turn on the permil mode of the PWM instruction, and the corresponding related device:

Output shaft	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
Permil mode sign	SM897	SM957	SM1017	SM1077	SM1137	SM1197	SM1257	SM1317

Specify the output pulse duty ratio in (s1). (The setting range is 0 to 1000)
Specify the output pulse period in (s2). (The setting range is 1 to 32,767)
Specify the device that outputs the pulse in (d). Only Y devices with positioning parameters can be specified.
The calculation formula is: $\mathrm{t}(\mathrm{ms})=\mathrm{TO}(\mathrm{ms}) * \mathrm{~K} / 1000$
High level time (ms) = set cycle time (ms) x duty cycle / 1000
Low level time (ms) = period (ms) - high level time (ms)
That is, the period is set to 100 ms , if the duty cycle is set to 500 , the output is high for 50 ms and low for 50 ms ; if the duty cycle is set to 100 , the output is high for 10 ms and low for 90 ms ; If it is set to 900 , the output will be high for 90 ms and low for 10 ms . The fractional part of the calculated pulse output time is output by rounding.

The period and duty cycle can be modified during pulse sending.

N Note:

(1) Please be careful not to overlap with other control devices.
(2) About pulse output: This instruction is executed in interrupt mode. When the instruction power flow is OFF, the output stops.
(s1) and (s2) can be changed when the PWM instruction is executed. If it is modified to an incorrect parameter, the sending of PWM pulse will be stopped.

Related device

- Permil mode flag

Output shaft	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
Permil mode sign	SM897	SM957	SM1017	SM1077	SM1137	SM1197	SM1257	SM1317

Output shaft	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
PWM unit selection	SM902	SM962	SM1022	SM1082	SM1142	SM1202	SM1262	SM1322

Take YO as an example: When SM902 is OFF, the YO PWM output cycle and pulse width are in "ms"; When SM902 is ON, the YO PWM output cycle and pulse width are in "us".

Error code

Error code	Content
4084 H	The data input in the application instruction (s1) and (s2) exceed the specified range
4085 H	The result output in the read application instruction (s1), (s2) and (d) exceed the device range
4088 H	The same pulse output axis (d) is used and has been started.

Example

The period is set to 100 ms , if the duty cycle is set to 500 , the output is high for 50 ms and low for 50 ms ; if the duty cycle is set to 100 , the output is high for 10 ms and low for 90 ms ; duty cycle If it is set to 900 , then the output is high for 90 ms and low for 10 ms ;

The waveform diagram is as follows, the period is 300 ms , the duty cycle is 100 , and the output is 30 ms high level and 270 ms low level:

G90G01 Absolute position line interpolation instruction

G90G01

Execute 2 axis/3 axis line interpolation instruction in absolute drive mode. The method of specifying the movement distance from the origin point(zero point) is also called absolute drive mode.
-[G90G01
(s1) (s2)
(d1) (d2)]

Content, range and data type

Parameters	Content	Range	Data type	Data type tag
(s1)	Specify the target position (absolute address)	-2147483648 to +2147483647	Signed BIN32	ANY32_S
(s2)	Specify the synthetic output frequency	1 to 141421	Signed BIN32	ANY32_S
(d1)	Device (Y) number of output pulse	Y0/Y2	Bit	ANY_BOOL
(d2)	Running direction output port or bit variable	-	Bit	ANY_BOOL

Device used

Instruction	Parameters	Device																			Offset modification	Pulse extension
		X Y M S SM			T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX KnY		KnM KnS TCD				R SDLCHSCKHE					[D]	XXP
	Parameter 1														\bullet	\bullet						
G90G01	Parameter 2														-	-				- -		
	Parameter 3	\bullet																				
	Parameter 4	\bullet	\bullet																			

Features

This instruction outputs pulses according to the specified port, frequency and running direction, and performs 2-axis/3-axis line interpolation, and servo actuator runs to the target position according to the line interpolation.

- (s1) is the starting address, and occupies 6 consecutive addresses. $s 1$ is the target position (absolute positioning) of X axis , s1+2 is the target position (absolute positioning) of Y axis, and $s 1+4$ is the target position (absolute positioning) of Z axis. The range is -2147483648 to +2147483647 .
- Specify the synthetic output frequency in (s2) . The range is 1 to 141421.
- Specify the device of output pulse in (s2) ,only Y0/Y2 could be specified, and consecutive addresses (Y0, Y1, Y2, Y3) are occupied .

SM345: Set the mode of switching line interpolation. When SM345=0, it is two-axis line interpolation mode. When SM345=1, it is three-axis line interpolation mode.
If d1 specifies Y 0 and $\mathrm{SM} 345=0, \mathrm{Y} 0$ and Y 1 are occupied. If $\mathrm{SM} 345=1, \mathrm{Y} 0, \mathrm{Y} 1$ and Y 2 are occupied;
If d1 specifies Y 2 and $\mathrm{SM} 345=0, \mathrm{Y} 2$ and Y 3 are occupied. If $\mathrm{SM} 345=1$, the software reports an error.

- Specify the bit device of output direction signal in d 2 and occupy 3 consecutive addresses, which indicate the directions of the X, Y, and Z axes in turn.
* Note:
(1) Please do not duplicate devices that used for other controls.
(2) When using interpolation instructions, the parameter settings (such as acceleration/deceleration time and other parameters) are subject to the starting axis specified by d 1 .
(3) Only trapezoidal acceleration and deceleration are supported.
(4) The actual synthetic frequency S (the minimum frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows:

$$
V \min =\sqrt{\frac{\text { Maximum running frequency }}{2 \times \text { acceleration time } \div 1000}} \quad V \min =\sqrt{\frac{\text { Maximum running frequency }}{2 \times \text { deceleration time } \div 1000}}
$$

Error Codes

Error Codes	Contents
4084 H	The data input in the application instruction (s1) and (s2) exceed the specified range
4085 H	The result output in the read application instruction (s1), (s2), (d1) and (d2) exceed the device range
4088 H	The same pulse output axis (d1) is used and has been started.

Example

Set YO as the interpolation starting axis, Y 5 as the direction starting axis, and the maximum speed is 2000 , the offset speed is 500 , and the acceleration/deceleration time is 500 ms . Send a absolute position line interpolation output based on the original position which is with acceleration and deceleration, and the end position is $X(Y 0)$ axis $100, Y(Y 1)$ axis 100 , and the pulse synthesis frequency is 1000 .

G91G01 Relative position line interpolation instruction

G91G01
Execute 2 axis/3 axis line interpolation instruction in relative drive mode. The method of specifying the movement distance from the current position is also called incremental(relative) drive mode.
-[G91G01
(s 1) (s 2)
(d1) (d2)]

Content, range and data type

Parameters	Content	Range	Data type	Data type tag
$(\mathrm{s} 1)$	Specify the target position (relative address)	-2147483648 to 2147483647	Signed BIN32	ANY32_S
(s2)	Specify the synthetic output frequency	1 to 141421	Signed BIN32	ANY32_S
(d1)	Device (Y) number of output pulse	Y0/Y2	Bit	ANY_BOOL
(d2)	Running direction output port or bit variable	-	Bit	ANY_BOOL

Device used

Instruction	Parameters	Device																			Offset ification	Pulse extension
		XY	M S	SM T(bit)		C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM KnS T C D				R SD	LCHSCK\|HE				[D]	XXP
	Parameter 1														-	\bullet						
G91G01	Parameter 2														-	\bullet			- -			
G91G01	Parameter 3	\bullet																				
	Parameter 4	\bullet	\bullet																			

Features

This instruction outputs pulses according to the specified port, frequency and running direction, and performs 2-axis line interpolation, and servo actuator performs 2-axis line interpolation with a given offset based on the current position.

- (s1) is the starting address, and occupies 6 consecutive addresses. $s 1$ is the target position (relative positioning) of X axis , s1+2 is the target position (relative positioning) of Y axis, and $s 1+4$ is the target position (relative positioning) of Z axis. The range is -2147483648 to +2147483647 .
- Specify the synthetic output frequency in (s2) . The range is 1 to 141421.
- Specify the device of output pulse in (s 2), only $\mathrm{YO} / \mathrm{Y} 2$ could be specified, and consecutive addresses (Y0, Y1, Y2, Y3) are occupied .

SM345: Set the mode of switching line interpolation. When SM345=0, it is two-axis line interpolation mode. When SM345=1, it is three-axis line interpolation mode.
If d1 specifies Y 0 and $\mathrm{SM} 345=0, \mathrm{Y} 0$ and Y 1 are occupied. If $\mathrm{SM} 345=1, \mathrm{Y} 0, \mathrm{Y} 1$ and Y 2 are occupied;
If d1 specifies Y 2 and $S M 345=0, \mathrm{Y} 2$ and Y 3 are occupied. If $\mathrm{SM} 345=1$, the software reports an error.

- Specify the bit device of output direction signal in d 2 and occupy 3 consecutive addresses, which indicate the directions of the X, Y, and Z axes in turn.
* Note:
(1) Please do not duplicate device that used for other controls.

2) When using interpolation instructions, the parameter settings (such as acceleration/deceleration time and other parameters) are subject to the starting axis specified by d 1 .
(3) Only trapezoidal acceleration and deceleration are supported.
(4) The actual synthetic frequency S (the minimum frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows:

$$
V \min =\sqrt{\frac{\text { Maximum running frequency }}{2 \times \text { acceleration time } \div 1000}} \quad V \min =\sqrt{\frac{\text { Maximum running frequency }}{2 \times \text { deceleration time } \div 1000}}
$$

Error Codes

Error Codes	
4084 H	The data input in the application instruction (s1) and (s2) exceed the specified range
4085 H	The result output in the read application instruction (s1), (s2), (d1) and (d2) exceed the device range
4088 H	The same pulse output axis (d1) is used and has been started.

Example

Set YO as the interpolation starting axis, Y5 as the direction starting axis, and the maximum speed is 2000, and the offset speed is 500 , and the acceleration/deceleration time is 500 ms . Send a relative position line interpolation output based on the relative position which is with acceleration and deceleration, and the incremental position is $\mathrm{X}(\mathrm{YO})$ axis $100, \mathrm{Y}(\mathrm{Y} 1)$ axis 100 , and the pulse synthesis frequency is 1000.

G90G02 Absolute position clockwise circular interpolation instruction

G90G02
Execute 2 axis clockwise circular interpolation instruction in absolute drive mode. The method of specifying the movement distance from the origin point(zero point) is also called absolute drive mode.
-[G90G02
(s1) (s2)
(s3)
(d1)
(d2)]

Content, range and data type

Parameters	Content	Range	Data type	Data type tag
$(\mathrm{s} 1)$	Specify the target position (absolute address)	-2147483648 to 2147483647	Signed BIN32	ANY32_S
$(\mathrm{s} 2)$	Radius/Center mode	-	Signed BIN32	ANY32_S
$(\mathrm{s} 3)$	Specify the synthetic output frequency	1 to 100000	Signed BIN32	ANY32_S
$(\mathrm{d} 1)$	Device(Y) number for output pulse	Y0	Bit	ANY_BOOL
$(d 2)$	Running direction output port or bit variable	-	Bit	ANY_BOOL

Soft components

Instruction	Parameters	Device																			Offset modification	Pulse extension
		X Y M S SM T(bit)				C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS		D	R S			HSC	KHE	[D]	XXP
	Parameter 1														- \bullet	-						
	Parameter 2														- -	-						
G90G02	Parameter 3														- -	-				- -		
	Parameter 4	-																				
	Parameter 5	-	\bullet																			

Features

This instruction outputs pulses according to the specified port, frequency and running direction, and performs 2-axis clockwise circular interpolation, and servo actuator performs clockwise circular interpolation to run to the target position point.

- (s1) is the starting address, and occupies 6 consecutive addresses. $s 1$ is the target position (absolute positioning) of X axis , s1+2 is the target position (absolute positioning) of Y axis, and $s 1+4$ is the target position (absolute positioning) of Z axis. The range is -2147483648 to +2147483647 .
- Specify radius or center mode in (s2), and occupy 4 consecutive addresses. The center coordinate of $s 2+0$ is in the difference value of the number of pulse output of X axis relative to the current position, or the number of the pulse of radius R. The center coordinate of $s 2+2$ is in the difference value of the number of pulse output of Y axis relative to the current position. When using radius, the value must be 0X7FFF FFFF. The range is 1 to 141421.
- Specify the synthetic output frequency in (s3) . The range is 1 to 100000.
- Specify the device of output pulse in (d1), only Y0 could be specified, and consecutive addresses (Y0, Y1) are occupied .
- Specify the bit device of output direction signal in (d2), and occupy 2 consecutive addresses, which indicate the directions of the X and Y axes in turn.

* Note

(1) Please do not duplicate device that used for other controls.
2) When using interpolation instruction, the parameter settings (such as acceleration/deceleration time and other parameters) are subject to the starting axis specified by d 1 .
(3) The maximum radius supported by circular interpolation is plus or minus 800,000 pulses, and the radius cannot be zero.
(4) There are two modes for setting $s 2$: IJ mode (circle center coordinate mode) and R mode (radius mode). When the value of s2+2 is set to 0x7FFF FFFF, it is R mode (radius mode), otherwise it is IJ mode (circle center coordinate mode).
(5) IJ mode: Regardless of absolute position interpolation or relative position interpolation, $\mathbf{s} 2$ is only expressed as the difference of the pulse output number between the coordinates of the center of the circle on the XY axis (Y0/Y1) relative to the current position, and both are in the offset value.
(6) R mode (radius mode): When the value of R is greater than 0 , it indicates that it is an arc less than or equal to 180 degrees. When the value of R is less than 0 , it indicates that it is an arc greater than or equal to 180 degrees. A full circle cannot be generated In R mode because there are infinite solutions.
(7) When s1 indicates the relative position of the target position, a reasonable target position needs to be set to ensure that the target arc path can be generated correctly. When $s 1+0=0$ and $s 1+2=0$, it means that a full circle is generated.
(8) When using the interpolation instruction, parameter settings (such as celebration/deceleration time and so on) are subject to the X axis (YO);
(9) The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows:

$$
V \min =\sqrt{\frac{\text { Maximum running frequency }}{2 \times \text { acceleration time } \div 1000}} \quad V \mathrm{~min}=\sqrt{\frac{\text { Maximum running frequency }}{2 \times \text { deceleration time } \div 1000}}
$$

Error Codes

Error Codes	Contents
4084 H	The data input in the application instruction (s1) and (s2) exceed the specified range
4085 H	The result output in the read application instruction (s1), (s2), (d1) and (d2) exceed the device range
4088 H	The same pulse output axis (d1) is used and has been started.
$4 \mathrm{F90H}$	In radius mode, the radius is not in the range.
$4 \mathrm{F92H}$	In center/radius mode, the error of quadrant calculation is caused by the large deviation between the set coordinate of the end point and the theoretical end point of circle.
4 F 93 H 95 In radius mode, the chord length is greater than the diameter.	
4 F 96 H	In center mode, the distance between the circle center and the starting point, and the distance between the circle center and the end point are not in the range of -10 to 10.
4 m 97 m	In radius mode, when the absolute/relative mode calculates that the starting point is the same as the target or negative 800000 pulse.

Example

Set Y 0 as the interpolation starting axis, Y 5 as the direction starting axis, and the maximum speed is 2000 , and the offset speed is 500 , and the acceleration/deceleration time is 500 ms . Send a absolute position clockwise circular interpolation output based on the absolute position with acceleration and deceleration, and the target position is $\mathrm{X}(\mathrm{YO})$ axis $100, \mathrm{Y}(\mathrm{Y} 1)$ axis 100 , and the the radius is 1000 pulse in radius mode, and the pulse synthesis frequency is 1000.

PLC LX5V Series Programming Manual (V2.2)

G91G02 Relative position clockwise circular interpolation instruction

G91G02
Execute 2 axis clockwise circular interpolation instruction in relative drive mode. The method of specifying the movement distance from the current position is also called incremental(relative) drive mode.
-[G91G02
(s1) (s2)
(s3)
(d1)
(d2)]

Content, range and data type

Parameters	Content	Range	Data type	Data type tag
$(\mathrm{s} 1)$	Specify the target position (relative address)	-2147483648 to 2147483647	Signed BIN32	ANY32_S
$(\mathrm{s} 2)$	Radius/center mode	-	Signed BIN32	ANY32_S
$(\mathrm{s} 3)$	Specify the synthetic output frequency	1 to 100000	Signed BIN32	ANY32_S
$(\mathrm{d} 1)$	Device (Y) number for output pulse	Y0	Bit	ANY_BOOL
$(\mathrm{d} 2)$	Running direction output port or bit variable	-	Bit	ANY_BOOL

Device used

Features

This instruction outputs pulses according to the specified port, frequency and running direction, performs 2-axis clockwise circular interpolation, and servo actuator performs 2-axis clockwise circular interpolation with a given offset based in current position.

- s1 is the starting address, and occupies 4 consecutive addresses. $s 1$ is the target position of X axis (relative positioning), s1+2 is the target position of Y axis (relative positioning). The range is -2147483648 to +2147483647 .
- Specify radius or center mode in (s2), and occupy 4 consecutive addresses. The center coordinate of s2+0 is in the difference value of the number of pulse output of X axis relative to the current position, or the number of the pulse of radius R. The center coordinate of $s 2+2$ is in the difference value of the number of pulse output of Y axis relative to the current position. When using radius, the value must be 0X7FFF FFFF. The range is 1 to 141421.
- Specify the synthetic output frequency in (s3). The range is 1 to 100000.
- Specify the device of output pulse in (d1), only YO could be specified, and consecutive addresses (Y0, Y1) are occupied .
- Specify the bit device of output direction signal in (d2), and occupy 2 consecutive addresses, which indicate the directions of the X and Y axes in turn.

(Note:

(1) Please do not duplicate device that used for other controls.
(2) When using interpolation instruction, the parameter settings (such as acceleration/deceleration time and other parameters) are subject to the starting axis specified by d1.
(3) The maximum radius supported by circular interpolation is plus or minus 800,000 pulses, and the radius cannot be zero.
(4) There are two modes for setting s2: IJ mode (circle center coordinate mode) and R mode (radius mode). When the value of $s 2+2$ is set to $0 \times 7 F F F$ FFFF, it is R mode (radius mode), otherwise it is IJ mode (circle center coordinate mode).
(5) IJ mode: Regardless of absolute position interpolation or relative position interpolation, $\mathbf{s} 2$ is only expressed as the difference of the pulse output number between the coordinates of the center of the circle on the XY axis (Y0/Y1) relative to the current position, and both are in the offset value.
(6) R mode (radius mode): When the value of R is greater than 0 , it indicates that it is an arc less than or equal to 180 degrees. When the value of R is less than 0 , it indicates that it is an arc greater than or equal to 180 degrees. A full circle cannot be generated In R mode because there are infinite solutions.
(7) When s1 indicates the relative position of target position, a reasonable target position needs to be set to ensure that the target arc path can be generated correctly. When $s 1+0=0$ and $s 1+2=0$, it means that a full circle is generated.
(8) When using the interpolation instruction, parameter settings (such as celebration/deceleration time and so on) are subject to the X axis (YO);
(9) The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows:

$$
V \min =\sqrt{\frac{\text { Maximum running frequency }}{2 \times \text { acceleration time } \div 1000}} \quad V \min =\sqrt{\frac{\text { Maximum running frequency }}{2 \times \text { deceleration time } \div 1000}}
$$

Error Codes

Error Codes	Contents
4084 H	The data input in the application instruction (s1) and (s2) exceed the specified range
4085 H	The result output in the read application instruction (s1), (s2), (d1) and (d2) exceed the device range
4088 H	The same pulse output axis (d1) is used and has been started.
$4 \mathrm{F90H}$	In radius mode, the radius is not in the range.
$4 \mathrm{F92H}$	In center/radius mode, the error of quadrant calculation is caused by the large deviation between the set coordinate of the end point and the theoretical end point of circle.
4 F 93 H 95 In radius mode, the chord length is greater than the diameter.	
$4 \mathrm{F96H}$	In center mode, the distance between the circle center and the starting point, and the distance between the circle center and the end point are not in the range of [-10-10]. 4 m 97 H
In radius mode, when the absolute/relative mode calculates that the starting point is the same as the target minus 800,000 pulses.	

Example

Set YO as the interpolation starting axis, Y5 as the direction starting axis, and the maximum speed is 2000, and the offset speed is 500 , and the acceleration/deceleration time is 500 ms . Send a relative position clockwise circular interpolation output based on relative position with acceleration and deceleration, and the incremental position is $\mathrm{X}(\mathrm{YO})$ axis $100, \mathrm{Y}(\mathrm{Y} 1)$ axis 100 , and the the radius is 1000 pulse in radius mode, and the pulse synthesis frequency is 1000 .

G90G03 Absolute position counterclockwise circular interpolation instruction

G90G03
Execute 2 axis counterclockwise circular interpolation instruction in absolute drive mode. The method of specifying the movement distance from the origin (zero point) is also called absolute drive method.
-[G90G03
(s 1) (s 2)
(s3) (d1)
(d2)]

Content, range and data type

Parameters	Content	Range	Data type	Data type tag
$(\mathrm{s} 1)$	Specify the target position (absolute address)	-2147483648 to 2147483647	Signed BIN32	ANY32_S
$(\mathrm{S} 2)$	Radius/center mode	-	Signed BIN32	ANY32_S
$(\mathrm{s} 3)$	Specify the synthetic output frequency	1 to 100000	Signed BIN32	ANY32_S
$(\mathrm{d} 1)$	Device (Y) number for output pulse	Y0	Bit	ANY_BOOL
$(\mathrm{d} 2)$	Running direction output port or bit variable	-	Bit	ANY_BOOL

Device used

Instruction	Parameters	Device																				Offset modification	Pulse extension
		X Y	MS	SM	T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	Kn X	KnY	KnM	KnS T C D			R SD		LC	HSCKHE		[D]		XXP
G90G03	Parameter 1															\bullet							
	Parameter 2															-							
	Parameter 3														- -	-				$\bullet \bullet$			
	Parameter 4	\bullet	-																				
	Parameter 5	\bullet	-																				

Features

This instruction outputs pulses according to the specified port, frequency and running direction, performs 2-axis counterclockwise circular interpolation, and the servo actuator performs counterclockwise circular interpolation to run to the target position point.

- $s 1$ is the starting address, and occupies 4 consecutive addresses. $s 1$ is the target position of X axis (absolute positioning), $s 1+2$ is the target position of Y axis (absolute positioning). The range is -2147483648 to +2147483647 .
- Specify radius or center mode in (s2), and occupy 4 consecutive addresses. The center coordinate of $s 2+0$ is in the difference value of the number of pulse output of X axis relative to the current position, or the number of the pulse of radius R. The center coordinate of $s 2+2$ is in the difference value of the number of pulse output of Y axis relative to the current position. When using radius, the value must be OX7FFF FFFF. The range is 1 to 141421.
- Specify the synthetic output frequency in (s3) . The range is 1 to 100000.
- Specify the device of output pulse in (d1), only Y0 could be specified, and consecutive addresses (Y0, Y1) are occupied .
- Specify the bit device of output direction signal in (d2), and occupy 2 consecutive addresses, which indicate the directions of the X and Y axes in turn.

* Note:

(1) Please do not duplicate device that used for other controls.
(2) When using interpolation instruction, the parameter settings (such as acceleration/deceleration time and other parameters) are subject to the starting axis specified by d1.
(3) The maximum radius supported by circular interpolation is plus or minus 800,000 pulses, and the radius cannot be zero.
(4) There are two modes for setting s 2 : IJ mode (circle center coordinate mode) and R mode (radius mode). When the value of s2+2 is set to 0×7 FFF FFFF, it is R mode (radius mode), otherwise it is IJ mode (circle center coordinate mode).
(5) IJ mode: Regardless of absolute position interpolation or relative position interpolation, $s 2$ is only as the difference of the pulse output number between the coordinates of the center of the circle on the XY axis (YO/Y1) relative to the current position, and both are in the offset value.
(6) R mode (radius mode): When the value of R is greater than 0 , it indicates that it is an arc less than or equal to 180 degrees. When the value of R is less than 0 , it indicates that it is an arc greater than or equal to 180 degrees. A full circle cannot be generated In R mode because there are infinite solutions.
(7) When s1 indicates the relative position of target position, a reasonable target position needs to be set to ensure that the target arc path can be generated correctly. When $s 1+0=0$ and $s 1+2=0$, it means that a full circle is generated.
(8) When using the interpolation instruction, parameter settings (such as celebration/deceleration time and so on) are subject to the X axis (YO);
(9) The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows:

$$
V \min =\sqrt{\frac{\text { Maximum running frequency }}{2 \times \text { acceleration time } \div 1000}} \quad V \mathrm{~min}=\sqrt{\frac{\text { Maximum running frequency }}{2 \times \text { deceleration time } \div 1000}}
$$

Error Codes

Error Codes	Contents
4084 H	The data input in the application instruction (s1) and (s2) exceed the specified range
4085 H	The result output in the read application instruction (s1), (s2), (d1) and (d2) exceed the device range
4088 H	The same pulse output axis (d1) is used and has been started.
$4 \mathrm{F90H}$	In radius mode, the radius is not in the range.
$4 \mathrm{F92H}$	In center/radius mode, the error of quadrant calculation is caused by the large deviation between the set coordinate of the end point and the theoretical end point of circle.
4 F 93 H 95 In radius mode, the chord length is greater than the diameter.	
$4 \mathrm{F96H}$	In center mode, the distance between the circle center and the starting point, and the distance between the circle center and the end point are not in the range of [-10-10]. 4 Im 97 H
In radius mode, when the absolute/relative mode calculates that the starting point is the same as the target minus 800,000 pulses.	

Example

Set YO as the interpolation starting axis, Y 5 as the direction starting axis, the maximum speed is 2000 , the offset speed is 500 , and the acceleration/deceleration time is 500 ms . Send a absolute position counterclockwise circular interpolation output based on relative position with acceleration and deceleration, and the target position is $\mathrm{X}(\mathrm{Y} 0)$ axis $100, \mathrm{Y}(\mathrm{Y} 1)$ axis 100, and the the radius is 1000 pulse in radius mode, and the pulse synthesis frequency is 1000.

G91G03 Relative position counterclockwise circular interpolation instruction

G91G03
Execute 2 axis reverse circular interpolation instruction in relative drive mode. The method of specifying the movement distance from the current position is also called relative (incremental)drive method.
-[G91G03
(s1) (s2)
(s3) (d1)
(d2)]

Content, range and data type

Parameters	Content	Range	Data type	Data type
$(\mathrm{s} 1)$	Specify the target position (relative address)	-2147483648 to 2147483647	Signed BIN32	ANY32_S
$(\mathrm{s} 2)$	Radius/center mode	-	Signed BIN32	ANY32_S
$(\mathrm{s} 3)$	Specify the synthetic output frequency	1 to 100000	Signed BIN32	ANY32_S
$(\mathrm{d} 1)$	Soft component (Y) number for output pulse	Y0	Bit	ANY_BOOL
$(d 2)$	Running direction output port or bit variable	-	Bit	ANY_BOOL

Device used

Instruction	Parameters	Device																				Offset modification	Pulse extension
		XY	M S	SM T(bit)		C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnST C D			RSD		LCHSCKHE				[D]	XXP
	Parameter 1															-							
	Parameter 2														- 0	-							
G91G03	Parameter 3														- 0	-				$\bullet \bullet$			
	Parameter 4	\bullet																					
	Parameter 5	\bullet	\bullet																				

Features

This instruction outputs pulses according to the specified port, frequency and running direction, performs 2-axis counterclockwise circular interpolation, and servo actuator performs a 2-axis counterclockwise circular interpolation with a given offset based in current position.

- $s 1$ is the starting address, and occupies 4 consecutive addresses. $s 1$ is the target position of X axis (absolute positioning), $s 1+2$ is the target position of Y axis (absolute positioning). The range is -2147483648 to +2147483647 .
- Specify radius or center mode in (s2), and occupy 4 consecutive addresses. The center coordinate of s2+0 is in the difference value of the number of pulse output of X axis relative to the current position, or the number of the pulse of radius R. The center coordinate of $s 2+2$ is in the difference value of the number of pulse output of Y axis relative to the current position. When using radius, the value must be 0X7FFF FFFF. The range is 1 to 141421.
- Specify the synthetic output frequency in (s3) . The range is 1 to 100000.
- Specify the device of output pulse in (d1), only YO could be specified, and consecutive addresses (Y0, Y1) are occupied .
- Specify the bit device of output direction signal in (d2), and occupy 2 consecutive addresses, which indicate the directions of the X and Y axes in turn

(Note:

(1) Please do not duplicate device that used for other controls.
(2) When using interpolation instruction, the parameter settings (such as acceleration/deceleration time and other parameters) are subject to the starting axis specified by d1.
(3) The maximum radius supported by circular interpolation is plus or minus 800,000 pulses, and the radius cannot be zero.
(4) There are two modes for setting s2: IJ mode (circle center coordinate mode) and R mode (radius mode). When the value of $s 2+2$ is set to $0 \times 7 F F F$ FFFF, it is R mode (radius mode), otherwise it is IJ mode (circle center coordinate mode).
(5) IJ mode: Regardless of absolute position interpolation or relative position interpolation, s2 is only as the difference of the pulse output number between the coordinates of the center of the circle on the XY axis (Y0/Y1) relative to the current position, and both are in the offset value.
(6) R mode (radius mode): When the value of R is greater than 0 , it indicates that it is an arc less than or equal to 180 degrees. When the value of R is less than 0 , it indicates that it is an arc greater than or equal to 180 degrees. A full circle cannot be generated In R mode because there are infinite solutions.
(7) When s1 indicates the relative position of target position, a reasonable target position needs to be set to ensure that the target arc path can be generated correctly. When $s 1+0=0$ and $s 1+2=0$, it means that a full circle is generated.
(8) When using the interpolation instruction, parameter settings (such as celebration/deceleration time and so on) are subject to the X axis (YO);
(9) The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows:

$$
V \min =\sqrt{\frac{\text { Maximum running frequency }}{2 \times \text { acceleration time } \div 1000}} \quad V \min =\sqrt{\frac{\text { Maximum running frequency }}{2 \times \text { deceleration time } \div 1000}}
$$

Error Codes

Error Codes	
4084 H	The data input in the application instruction (s1) and (s2) exceed the specified range
4085 H	The result output in the read application instruction (s1), (s2), (d1) and (d2) exceed the device range
4088 H	The same pulse output axis (d1) is used and has been started.
$4 \mathrm{F90H}$	In radius mode, the radius is not in the range.
$4 \mathrm{F92H}$	In center/radius mode, the error of quadrant calculation is caused by the large deviation between the set coordinate of the end point and the theoretical end point of circle.
$4 \mathrm{4F93H}$	In radius mode, the chord length is greater than the diameter.
$4 \mathrm{HF96H}$	In center mode, the distance between the circle center and the starting point, and the distance between the circle center and the end point are not in the range of [-10-10]. target position, a full circle cannot be generated.
4 IF97H	In center mode, the calculated radius distance is greater than the maximum radius range, which is plus or minus 800,000 pulses.

Example

Set YO as the interpolation starting axis, Y 5 as the direction starting axis, the maximum speed is 2000 , the offset speed is 500 , and the acceleration/deceleration time is 500 ms . Send a relative position reverse circular interpolation output based on relative position with acceleration and deceleration, and the incremental position is $\mathrm{X}(\mathrm{YO})$ axis $100, \mathrm{Y}(\mathrm{Y} 1)$ axis 100 , and the the radius is 1000 pulse in radius mode, and the pulse synthesis frequency is 1000 .

G90G02H Absolute position clockwise circular helical interpolation instruction
G90G02H
Execute 3 axis clockwise circular interpolation instruction in absolute drive mode. The method of specifying the movement distance from the origin point(zero point) is also called absolute drive mode.
-[G90G02H
(s1) (s2)
(s3)
(d1)
(d2)]

Content, range and data type

Parameters	Content	Range	Data type	Data type
$(\mathrm{s} 1)$	Specify the target position (absolute address)	-2147483648 to +2147483647	Signed BIN32	ANY32_S
$(\mathrm{s} 2)$	Radius/Center mode	-	Signed BIN32	ANY32_S
$(\mathrm{s} 3)$	Specify synthetic output frequency	1 to 100000	Signed BIN32	ANY32_S
$(\mathrm{d} 1)$	Device(Y) number for output pulse	Y0	Bit	ANY_BOOL
$(\mathrm{d} 2)$	Running direction output port or bit variable	-	Bit	ANY_BOOL

Device used

Features

This instruction outputs pulses according to the specified port, frequency and running direction, and performs 3 -axis clockwise circular helical interpolation, and servo actuator performs clockwise helical interpolation to run to the target position point.

- (s1) is the starting address, and occupies 8 consecutive addresses. $s 1$ is the target position (absolute positioning) of X axis , s1+2 is the target position (absolute positioning) of Y axis, and $\mathrm{s} 1+4$ is the target position (absolute positioning) of Z axis, and $s 1+6$ is the lead range of Z axis. The lead range is $0<K \leq 4 \sqrt{2}|R|$.(The range is -2147483648 to +2147483647 .)
- Specify radius or center mode in ($s 2$), and occupy 4 consecutive addresses. The coordinate of circle center of $s 2+0$ is in the difference value of the number of pulse output of X axis relative to the current position, or the number of the pulse of radius R. The coordinate of circle center of $s 2+2$ is in the difference value of the number of pulse output of Y axis relative to the current position. When using radius, the value must be OX7FFF FFFF. The range is 1 to 141421.
- Specify the synthetic output frequency in (s3) . The range is 1 to 100000 . Helical interpolation can switch the synthetic frequency
by setting SM901. 0 means default, and the synthetic frequency is the frequency of the linear velocity of helix. 1 means that the synthetic frequency is the frequency of the linear velocity of the arc of arc plane, that is, the actual synthetic frequency is greater than the setting synthetic frequency.
- Specify the device of output pulse in (d1), only Y0 could be specified, and consecutive addresses (Y0, Y1,Y2) are occupied .
- Specify the bit device of output direction signal in (d2), and occupy 3 consecutive addresses, which indicates the directions of the X, Y and Z axes in turn. It is recommended to specify direction signal in (YOO-Y07).

* Note:

(1) Please do not duplicate device that used for other controls.
(2) When using interpolation instruction, parameter settings (such as acceleration/deceleration time and other parameters) are subject to the starting axis specified by d 1 .
(3) The maximum radius supported by helical interpolation is plus or minus 800,000 pulses, and the radius cannot be zero.
(4) There are two modes for setting s 2 : IJ mode (circle center coordinate mode) and R mode (radius mode). When the value of $s 2+2$ is set to 0×7 FFF FFFF, it is R mode (radius mode), otherwise it is IJ mode (circle center coordinate mode).
(5) IJ mode: Regardless of absolute position interpolation or relative position interpolation, $\mathbf{s} 2$ is only expressed as the difference of the pulse output number between the coordinates of circle center on the XY axis (YO/Y1) relative to the current position, and both are in the offset value.
(6) In helical interpolation R mode (radius mode): When the value of R is greater than 0 , it indicates that from the starting point coordinate to the set end point coordinate in the circular plane of $X Y$ is an arc less than or equal to 180 degrees. When the value of R is less than 0 , it indicates that from the starting point coordinate to the set end point coordinate in the circular plane of $X Y$ is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K . (If $\mathrm{Ze}=75$, lead $\mathrm{K}=50$, and the actual radian $\theta=\frac{Z e}{K} * 2 \pi$)
(7) When using the interpolation instruction, parameter settings (such as acceleration/deceleration time and so on) are subject to the X axis (YO);
(8) The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows:

$$
V \min =\sqrt{\frac{\text { Maximum running frequency }}{2 \times \text { accelerationtime } \div 1000}} \quad V \min =\sqrt{\frac{\text { Maximum running frequency }}{2 \times \text { deceleration time } \div 1000}}
$$

(9) Exact match pitch of screws (lead) K and Ze .

The starting point coordinate of helical interpolation is $(0,0,0)$, set the end point coordinate to $(X e, Y e, Z e)$, the number of turns of helical interpolation n is determined by formula (1), and recalculate the end point coordinates of X axis and Y axis according to the number of turns of interpolation.
The final interpolation result is: make sure that lead is equal to K, and the end point of Z axis is equal to $Z e$. The actual end point position of X and Y axes $\left(X e^{\prime}, Y e^{\prime}\right)$ may not be equal to the set $(X e, Y e)$, but it must pass through the set point $(X e, Y e)$ in the whole circle.

$$
\begin{equation*}
n=\frac{|Z e-Z s|}{K} \tag{1}
\end{equation*}
$$

(10) In helical interpolation radius mode, the center distribution table of whole circle is as below. (For example: the starting point coordinate $(0,0,0)$, the end point coordinate $(0,0, Z e))$.

Helical interpolation					
direction	Radius value R	Coordinate of circle center	Helical interpolation direction	Radius value R	Coordinate of circle
center					

Error Codes

Error Codes	Contents
4084H	The data input in the application instruction (s1) and (s2) exceed the specified range
4085H	The result output in the read application instruction (s1), (s2), (d1) and (d2) exceed the device range
4088H	The same pulse output axis (d1) is used and has been started.
4F90H	In radius mode, the radius is not in the range.
4F92H	In center/radius mode, the error of quadrant calculation is caused by the large deviation between the set coordinate of the end point and the theoretical end point of circle.
4F93H	In radius mode, the chord length is greater than the diameter.
4F95H	In center mode, the distance between the circle center and the starting point, and the distance between the circle center and the end point are not in the range of [-10-10].
4F97H	In center mode, the calculated radius distance is greater than the maximum radius range, which is positive or negative 800,000 pulse.
4F98H	Helical interpolation error, Z axis is the main axis.(The coordinate of Z axis is greater than the number of of virtual main axis of circular plane)
4F99H	Helical interpolation error, Z axis is 0 .
4F9BH	Lead setting exceeds the range.(Lead $K \leq 0$)

Example

Set YO as the interpolation starting axis, Y 4 as the direction starting axis, and the maximum speed is 2000, and the offset speed is 500 , and the acceleration/deceleration time is 500 ms . Send a absolute position clockwise circular helical interpolation output based on the absolute position with acceleration and deceleration, and the target position is $\mathrm{X}(\mathrm{YO})$ axis $0, \mathrm{Y}(\mathrm{Y} 1)$ axis 0 and $\mathrm{Z}(\mathrm{Y} 2)$ axis 5000 , and the lead is 5000, and the radius is 5000 pulse in radius mode, and the synthesis frequency is 1000.

G91G02H Relative position clockwise circular helical interpolation instruction

G91G02H
Execute 3 axis clockwise circular interpolation instruction in relative drive mode. The method of specifying the movement distance from current point is also called incremental (relative) drive mode.
-[G91G02H
(s1) (s2)
(s3)
(d1)
(d2)]

Content, range and data type

Parameters	Content	Range	Data type	Data type
$(\mathrm{s} 1)$	Specify the target position (relative address)	-2147483648 to 2147483647	Signed BIN32	ANY32_S
$(\mathrm{s} 2)$	Radius/Center mode	-	Signed BIN32	ANY32_S
$(\mathrm{s} 3)$	Specify synthetic output frequency	1 to 100000	Signed BIN32	ANY32_S
$(\mathrm{d} 1)$	Device(Y) number for output pulse	Y0	Bit	ANY_BOOL
$(d 2)$	Running direction output port or bit variable	-	Bit	ANY_BOOL

Device used

Instruction	Parameters	Device																	Offset modification	Pulse extension
		X Y M	M SSM T(bit)			C(bit)	LC(bit)	HSC(bit)	D.b KnXK		KnY KnM		KnS T C Dr			R SD LCHSCKHE			[D]	XXP
	Parameter 1														\bullet					
	Parameter 2														-					
G91G02H	Parameter 3														\bullet			$\bullet \cdot$		
	Parameter 4	\bullet																		
	Parameter 5		-																	

Features

This instruction outputs pulses according to the specified port, frequency and running direction, and performs 3-axis clockwise circular helical interpolation, and servo actuator performs clockwise helical interpolation to run to the target position point.

- ($s 1$) is the starting address, and occupies 8 consecutive addresses. $s 1$ is the target position (relative positioning) of X axis , $s 1+2$ is the target position (relative positioning) of Y axis, and s1+4 is the target position (relative positioning) of Z axis, and s1+6 is the lead range of Z axis. The lead range is $0<K \leq 4 \sqrt{2}|R|$.(The range is -2147483648 to +2147483647 .)
- Specify radius or center mode in ($s 2$), and occupy 4 consecutive addresses. The coordinate of circle center of $s 2+0$ is in the difference value of the number of pulse output of X axis relative to the current position, or the number of the pulse of radius R. The coordinate of circle center of $s 2+2$ is in the difference value of the number of pulse output of Y axis relative to the current position. When using radius, the value must be 0X7FFF FFFF. The range is 1 to 141421.
- Specify the synthetic output frequency in (s3). The range is 1 to 100000 . Helical interpolation can switch the synthetic frequency
by setting SM901. 0 means default, and the synthetic frequency is the frequency of the linear velocity of helix. 1 means that the synthetic frequency is the frequency of the linear velocity of the arc of arc plane, that is, the actual synthetic frequency is greater than the setting synthetic frequency.
- Specify the device of output pulse in (d1), only Y0 could be specified, and consecutive addresses (Y0, Y1, Y2) are occupied .
- Specify the bit device of output direction signal in (d2), and occupy 3 consecutive addresses, which indicates the directions of the X, Y and Z axes in turn. It is recommended to specify direction signal in (YOO-Y07).

* Note:

(1) Please do not duplicate device that used for other controls.
(2) When using interpolation instruction, parameter settings (such as acceleration/deceleration time and other parameters) are subject to the starting axis specified by d 1 .
(3) The maximum radius supported by helical interpolation is plus or minus 800,000 pulses, and the radius cannot be zero.
(4) There are two modes for setting s 2 : IJ mode (circle center coordinate mode) and R mode (radius mode). When the value of $s 2+2$ is set to 0×7 FFF FFFF, it is R mode (radius mode), otherwise it is IJ mode (circle center coordinate mode).
(5) IJ mode: Regardless of absolute position interpolation or relative position interpolation, $\mathbf{s} 2$ is only expressed as the difference of the pulse output number between the coordinates of the circle center on the XY axis ($\mathrm{YO} / \mathrm{Y} 1$) relative to the current position, and both are in the offset value.
(6) In helical interpolation R mode (radius mode) : When the value of R is greater than 0 , it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of $X Y$ is an arc less than or equal to 180 degrees. When the value of R is less than 0 , it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of $X Y$ is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K. (If $\mathrm{Ze}=75$, lead $\mathrm{K}=50$, and the actual radian $\theta=\frac{Z e}{K} * 2 \pi$)
(7) When using interpolation instruction, parameter settings (such as acceleration/deceleration time and so on) are subject to the X axis (YO);
(8) The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows:

$$
V \min =\sqrt{\frac{\text { Maximum running frequency }}{2 \times \text { accelerationtime } \div 1000}} \quad V \min =\sqrt{\frac{\text { Maximum running frequency }}{2 \times \text { deceleration time } \div 1000}}
$$

(9) Exact match pitch of screws (lead) K and Ze .

The starting point coordinate of helical interpolation is $(0,0,0)$, set the end point coordinate to $(X e, Y e, Z e)$, the number of turns of helical interpolation n is determined by formula (1), and recalculate the end point coordinates of X axis and Y axis according to the number of turns of interpolation.
The final interpolation result is: make sure that lead is equal to K, and the end point of Z axis is equal to $Z e$. The actual end point position of X and Y axes $\left(X e^{\prime}, Y e^{\prime}\right)$ may not be equal to the set $(X e, Y e)$, but it must pass through the set point $(X e, Y e)$ in the whole circle.

$$
\begin{equation*}
n=\frac{|Z e-Z s|}{K} \tag{1}
\end{equation*}
$$

(10) In helical interpolation radius mode, the center distribution table of whole circle is as below. (For example: the starting point coordinate $(0,0,0)$, the end point coordinate $(0,0, Z e))$.

Helical interpolation direction	Radius value R	Coordinate of circle center	Helical interpolation direction	Radius value R	Coordinate of circle center
Clockwise circular	$R>0$	$(0, R)$	Counterclockwise	$R>0$	$(0,-R)$
	$-R<0$	$(0,-R)$		$-R<0$	$(0, R)$

Error Codes

Error Codes	Contents
4084H	The data input in the application instruction (s1) and (s2) exceed the specified range
4085H	The result output in the read application instruction (s1), (s2), (d1) and (d2) exceed the device range
4088H	The same pulse output axis (d1) is used and has been started.
4F90H	In radius mode, the radius is not in the range.
4F92H	In center/radius mode, the error of quadrant calculation is caused by the large deviation between the set coordinate of the end point and the theoretical end point of circle.
4F93H	In radius mode, the chord length is greater than the diameter.
4F95H	In center mode, the distance between the circle center and the starting point, and the distance between the circle center and the end point are not in the range of [-10-10].
4F97H	In center mode, the calculated radius distance is greater than the maximum radius range, which is positive or negative 800,000 pulse.
4F98H	Helical interpolation error, Z axis is the main axis.(The coordinate of Z axis is greater than the number of of virtual main axis of circular plane)
4F99H	Helical interpolation error, Z axis is 0 .
4F9BH	Lead setting exceeds the range.(Lead $K \leq 0$)

Example

Set $Y 0$ as the interpolation starting axis, Y 4 as the direction start axis, and the maximum speed is 2000 , and the offset speed is 500 , and the acceleration/deceleration time is 500 ms . Send a relative position clockwise circular helical interpolation output based on the relative position with acceleration and deceleration, and the target position is $\mathrm{X}(\mathrm{YO})$ axis $0, \mathrm{Y}(\mathrm{Y} 1)$ axis 0 and $\mathrm{Z}(\mathrm{Y} 2)$ axis 5000 , and the lead is 5000 , and the radius is 5000 pulse in radius mode, and the synthesis frequency is 1000 .

G90G03H Absolute position counterclockwise circular helical interpolation instruction

G90G03H
Execute 3 axis counterclockwise circular interpolation instruction in absolute drive mode. The method of specifying the movement distance from the origin point(zero point) is also called absolute drive mode.
-[G90G03H
(s1) (s2)
(s3)
(d1)
(d2)]

Content, range and data type

Parameters	Content	Range	Data type	Data type
$(s 1)$	Specify the target position (absolute address)	-2147483648 to 2147483647	Signed BIN32	ANY32_S
$(\mathrm{s} 2)$	Radius/Center mode	-	Signed BIN32	ANY32_S
$(\mathrm{s} 3)$	Specify synthetic output frequency	1 to 100000	Signed BIN32	ANY32_S
(d1)	Device(Y) number for output pulse	Yo	Bit	ANY_BOOL
(d2)	Running direction output port or bit variable	-	Bit	ANY_BOOL

Device used

Instruction	Parameters	Device																		Offset modification [D]			Pulse extension XXP
		XYM S		SM T(bit)		C(bit)	LC(bit)	HSC(bit)	D.b Kr		$\mathrm{Kn} \times \mathrm{KnY}$	KnM	Kns TCD			R SD	LCHSCKHE						
	Parameter 1														$\bullet \bullet$								
	Parameter 2														- -								
G90G03H	Parameter 3														$\bullet \bullet$				- \bullet				
	Parameter 4	-																					
	Parameter 5		\bullet																				

Features

This instruction outputs pulses according to the specified port, frequency and running direction, and performs 3-axis counterclockwise circular helical interpolation, and servo actuator performs counterclockwise helical interpolation to run to the target position point.

- ($s 1$) is the starting address, and occupies 8 consecutive addresses. $s 1$ is the target position (absolute positioning) of X axis , s1+2 is the target position (absolute positioning) of Y axis, and $s 1+4$ is the target position (absolute positioning) of Z axis, and s1+6 is the lead range of Z axis. The lead range is $0<K \leq 4 \sqrt{2}|R|$.(The range is -2147483648 to +2147483647 .)
- Specify radius or center mode in ($s 2$), and occupy 4 consecutive addresses. The coordinate of circle center of s2+0 is in the difference value of the number of pulse output of X axis relative to the current position, or the number of the pulse of radius R. The coordinate of circle center of $s 2+2$ is in the difference value of the number of pulse output of Y axis relative to the current position. When using radius, the value must be OX7FFF FFFF. The range is 1 to 141421 .
- Specify the synthetic output frequency in (s3). The range is 1 to 100000 . Helical interpolation can switch the synthetic frequency
by setting SM901. 0 means default, and the synthetic frequency is the frequency of the linear velocity of helix. 1 means that the synthetic frequency is the frequency of the linear velocity of the arc of arc plane, that is, the actual synthetic frequency is greater than the setting synthetic frequency.
- Specify the device of output pulse in (d1), only Y0 could be specified, and consecutive addresses (Y0, Y1, Y2) are occupied .
- Specify the bit device of output direction signal in (d2), and occupy 3 consecutive addresses, which indicates the directions of the X, Y and Z axes in turn. It is recommended to specify direction signal in (YOO-Y07).

* Note:

(1) Please do not duplicate device that used for other controls.
(2) When using interpolation instruction, parameter settings (such as acceleration/deceleration time and other parameters) are subject to the starting axis specified by d 1 .
(3) The maximum radius supported by helical interpolation is plus or minus 800,000 pulses, and the radius cannot be zero.
(4) There are two modes for setting s 2 : IJ mode (circle center coordinate mode) and R mode (radius mode). When the value of $s 2+2$ is set to 0×7 FFF FFFF, it is R mode (radius mode), otherwise it is IJ mode (circle center coordinate mode).
(5) IJ mode: Regardless of absolute position interpolation or relative position interpolation, $\mathbf{s} 2$ is only expressed as the difference of the pulse output number between the coordinates of the center of the circle on the XY axis (Y0/Y1) relative to the current position, and both are in the offset value.
(6) In helical interpolation R mode (radius mode): When the value of R is greater than 0 , it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of $X Y$ is an arc less than or equal to 180 degrees. When the value of R is less than 0 , it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of $X Y$ is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K. (If $\mathrm{Ze}=75$, lead $\mathrm{K}=50$, and the actual radian $\theta=\frac{Z e}{K} * 2 \pi$)
(7) When using the interpolation instruction, parameter settings (such as acceleration/deceleration time and so on) are subject to the X axis (YO);
(8) The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows:

$$
V \min =\sqrt{\frac{\text { Maximum running frequency }}{2 \times \text { accelerationtime } \div 1000}} \quad V \min =\sqrt{\frac{\text { Maximum running frequency }}{2 \times \text { deceleration time } \div 1000}}
$$

(9) Exact match pitch of screws (lead) K and Ze .

The starting point coordinate of helical interpolation is $(0,0,0)$, set the end point coordinate to $(X e, Y e, Z e)$, the number of turns of helical interpolation n is determined by formula (1), and recalculate the end point coordinates of X axis and Y axis according to the number of turns of interpolation.
The final interpolation result is: make sure that lead is equal to K, and the end point of Z axis is equal to $Z e$. The actual end point position of X and Y axes $\left(X e^{\prime}, Y e^{\prime}\right)$ may not be equal to the set $(X e, Y e)$, but it must pass through the set point $(X e, Y e)$ in the whole circle.

$$
\begin{equation*}
n=\frac{|Z e-Z s|}{K} \tag{1}
\end{equation*}
$$

(10) In helical interpolation radius mode, the center distribution table of whole circle is as below. (For example: the starting point coordinate $(0,0,0)$, the end point coordinate $(0,0, Z e))$.

Helical interpolation	Radius	Coordinate of	Helical interpolation	Radius	Coordinate of circle
direction	value R	circle center	direction	value R	center
Clockwise circular	$R>0$	$(0, R)$	Counterclockwise	$R>0$	$(0,-R)$
	$-R<0$	$(0,-R)$		$-R<0$	$(0, R)$

Error Codes

Error Codes	Contents
4084H	(S1) (s2) input data that exceeds the specified range in application instruction.
4085H	The output result of (s1)(s2)(d1)(d2) in the read application instruction exceeds the device range.
4088H	The same pulse output axis (d1) is used and has been started.
4F90H	In radius mode, the radius is not in the range.
4F92H	In center/radius mode, the error of quadrant calculation is caused by the large deviation between the set coordinate of the end point and the theoretical end point of circle.
4F93H	In radius mode, the chord length is greater than the diameter.
4F95H	In center mode, the distance between the circle center and the starting point, and the distance between the circle center and the end point are not in the range of [-10-10].
4F97H	In center mode, the calculated radius distance is greater than the maximum radius range, which is positive or negative 800,000 pulse.
4F98H	Helical interpolation error, Z axis is the main axis.(The coordinate of Z axis is greater than the number of of virtual main axis of circular plane)
4F99H	Helical interpolation error, Z axis is 0 .
4F9BH	Lead setting exceeds the range. (Lead $K \leq 0$)

Example

Set Y 0 as the interpolation starting axis, Y 4 as the direction starting axis, and the maximum speed is 2000 , and the offset speed is 500 , and the acceleration/deceleration time is 500 ms . Send a absolute position counterclockwise circular helical interpolation output based on the absolute position with acceleration and deceleration, and the target position is $X(Y 0)$ axis $0, Y(Y 1)$ axis 0 and $Z(Y 2)$ axis 5000, and the lead is 5000, and the radius is 5000 pulse in radius mode, and the synthesis frequency is 1000 .

G91G03H Relative position counterclockwise circular helical interpolation instruction

G91G03H

Execute 3 axis counterclockwise circular interpolation instruction in relative drive mode. The method of specifying the movement distance from current point is also called incremental (relative) drive mode.
-[G91G03H
(s1) (s2)
(s3)
(d1)
(d2)]

Content, range and data type

Parameters	Content	Range	Data type	Data type
$(\mathrm{s} 1)$	Specify the target position (relative address)	-2147483648 to 2147483647	Signed BIN32	ANY32_S
$(\mathrm{s} 2)$	Radius/Center mode	-	Signed BIN32	ANY32_S
$(\mathrm{s} 3)$	Specify synthetic output frequency	1 to 100000	Signed BIN32	ANY32_S
$(\mathrm{d} 1)$	Device(Y) number for output pulse	Y0	Bit	ANY_BOOL
$(\mathrm{d} 2)$	Running direction output port or bit variable	-	Bit	ANY_BOOL

Device used

Features

This instruction outputs pulses according to the specified port, frequency and running direction, and performs 3 -axis counterclockwise circular helical interpolation, and servo actuator performs counterclockwise helical interpolation to run to the target position point.

- (s1) is the starting address, and occupies 8 consecutive addresses. $s 1$ is the target position (relative positioning) of X axis, s1+2 is the target position (relative positioning) of Y axis, and s1+4 is the target position (relative positioning) of Z axis, and $s 1+6$ is the lead range of Z axis. The lead range is $0<K \leq 4 \sqrt{2}|R|$.(The range is -2147483648 to +2147483647 .)
- Specify radius or center mode in ($s 2$), and occupy 4 consecutive addresses. The coordinate of circle center of $s 2+0$ is in the difference value of the number of pulse output of X axis relative to the current position, or the number of the pulse of radius R. The coordinate of circle center of $s 2+2$ is in the difference value of the number of pulse output of Y axis relative to the current position. When using radius, the value must be 0X7FFF FFFF. The range is 1 to 141421.
- Specify the synthetic output frequency in (s3). The range is 1 to 100000 . Helical interpolation can switch the synthetic frequency
by setting SM901. 0 means default, and the synthetic frequency is the frequency of the linear velocity of helix. 1 means that the synthetic frequency is the frequency of the linear velocity of the arc of arc plane, that is, the actual synthetic frequency is greater than the setting synthetic frequency.
- Specify the device of output pulse in (d1), only Y0 could be specified, and consecutive addresses (Y0, Y1, Y2) are occupied .
- Specify the bit device of output direction signal in (d2), and occupy 3 consecutive addresses, which indicates the directions of the X, Y and Z axes in turn. It is recommended to specify direction signal in (Y00-Y07).

* Note:

(1) Please do not duplicate device that used for other controls.
(2) When using interpolation instruction, parameter settings (such as acceleration/deceleration time and other parameters) are subject to the starting axis specified by d 1 .
(3) The maximum radius supported by helical interpolation is plus or minus 800,000 pulses, and the radius cannot be zero.
(4) There are two modes for setting s 2 : IJ mode (circle center coordinate mode) and R mode (radius mode). When the value of $s 2+2$ is set to 0×7 FFF FFFF, it is R mode (radius mode), otherwise it is IJ mode (circle center coordinate mode).
(5) IJ mode: Regardless of absolute position interpolation or relative position interpolation, $\mathbf{s} 2$ is only expressed as the difference of the pulse output number between the coordinates of the circle center on the XY axis ($\mathrm{YO} / \mathrm{Y} 1$) relative to the current position, and both are in the offset value.
(6) In helical interpolation R mode (radius mode) : When the value of R is greater than 0 , it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of $X Y$ is an arc less than or equal to 180 degrees. When the value of R is less than 0 , it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of $X Y$ is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K. (If $\mathrm{Ze}=75$, lead $\mathrm{K}=50$, and the actual radian $\theta=\frac{Z e}{K} * 2 \pi$)
(7) When using interpolation instruction, parameter settings (such as acceleration/deceleration time and so on) are subject to the X axis (YO);
(8) The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows:

$$
V \min =\sqrt{\frac{\text { Maximum running frequency }}{2 \times \text { accelerationtime } \div 1000}} \quad V \min =\sqrt{\frac{\text { Maximum running frequency }}{2 \times \text { deceleration time } \div 1000}}
$$

(9) Exact match pitch of screws (lead) K and Ze .

The start point coordinate of helical interpolation is $(0,0,0)$, set the end point coordinate to $(X e, Y e, Z e)$, the number of turns of helical interpolation n is determined by formula (1), and recalculate the end point coordinates of X axis and Y axis according to the number of turns of interpolation.

The final interpolation result is: make sure that lead is equal to K, and the end point of Z axis is equal to $Z e$. The actual end point position of X and Y axes $\left(X e^{\prime}, Y e^{\prime}\right)$ may not be equal to the set $(X e, Y e)$, but it must pass through the set point $(X e, Y e)$ in the whole circle.

$$
\begin{equation*}
n=\frac{|Z e-Z s|}{K} \tag{1}
\end{equation*}
$$

(10) In helical interpolation radius mode, the center distribution table of whole circle is as below. (For example: the start point coordinate $(0,0,0)$, the end point coordinate $(0,0, Z e))$.

Helical interpolation	Radius	Coordinate of	Helical interpolation	Radius	Coordinate of circle
direction	value R	circle center	direction	value R	center
Clockwise circular	$R>0$	$(0, R)$	Counterclockwise	$R>0$	$(0,-R)$
	$-R<0$	$(0,-R)$		$-R<0$	$(0, R)$

Error Codes

Error Codes	Contents
4084H	(S1) (s2) input data that exceeds the specified range in application instruction.
4085H	The output result of (s1)(s2)(d1)(d2) in the read application instruction exceeds the device range.
4088H	The same pulse output axis (d1) is used and has been started.
4F90H	In radius mode, the radius is not in the range.
4F92H	In center/radius mode, the error of quadrant calculation is caused by the large deviation between the set coordinate of the end point and the theoretical end point of circle.
4F93H	In radius mode, the chord length is greater than the diameter.
4F95H	In center mode, the distance between the circle center and the starting point, and the distance between the circle center and the end point are not in the range of [-10-10].
4F97H	In center mode, the calculated radius distance is greater than the maximum radius range, which is positive or negative 800,000 pulse.
4F98H	Helical interpolation error, Z axis is the main axis.(The coordinate of Z axis is greater than the number of of virtual main axis of circular plane)
4F99H	Helical interpolation error, Z axis is 0 .
4F9BH	Lead setting exceeds the range.(Lead $K \leq 0$)

Example

Set $Y 0$ as the interpolation starting axis, $Y 4$ as the direction starting axis, and the maximum speed is 2000, and the offset speed is 500 , and the acceleration/deceleration time is 500 ms . Send a relative position counterclockwise circular helical interpolation output based on the relative position with acceleration and deceleration, and the target position is $\mathrm{X}(\mathrm{YO})$ axis $0, \mathrm{Y}(\mathrm{Y} 1)$ axis 0 and $\mathrm{Z}(\mathrm{Y} 2)$ axis 5000 , and the lead is 5000 , and the radius is 5000 pulse in radius mode, and the synthesis frequency is 1000 .

8.2 General matters of high-speed pulse output instruction

Related bit devices

(1) Pulse sending flag bit

When high-speed pulse are being sending, the flag bit is ON. When pulse is not sent or after pulse is sent, the flag bit is OFF.
Special device:

Output axis	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
Pulse sending	SM880	SM940	SM1000	SM1060	SM1120	SM1180	SM1240	SM1300

(2) Pulse sending completion flag bit

When high-speed pulse is sent, the flag bit is ON.
Special device:

Output axis	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
Pulse sending	SM882	SM942	SM1002	SM1062	SM1122	SM1182	SM1242	SM1302

During process of pulse sending, if the forward rotation limit, the reverse rotation limit, and the output stop (SM34) signal are encountered, the flag bit will be ON after stopping the pulse.

If the contact is closed directly, this flag bit will not be set after deceleration stop.(Except for PLSV)

(3) Forward limit and reverse limit

When using a servo motor, you can set the forward rotation limit or reverse rotation limit on the servo amplifier.

When positioning instruction action, such as the limit switch of forward limit or reverse limit, acts, please set and connect forward limit 1 (LSF) and reverse limit 1(LSR) on the CPU module if you want to use CPU for retreat, and these two limits should act before the forward limit 2 or the reverse limit 2 of the servo amplifier.

Special device:

Output axis	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
Forward limit	SM883	SM943	SM1003	SM1063	SM1123	SM1183	SM1243	SM1303
Reverse limit	SM884	SM944	SM1004	SM1064	SM1124	SM1184	SM1244	SM1304

If forward limit $1($ LSF) and reverse limit $1(\mathrm{LSR})$ are not set, servo motor will stop automatically even if the forward limit 2 or the reverse limit 2 is in action. But the positioning instruction in action can't identify this situation, it will output pulses until the instruction ends.

When forward limit or reverse limit acts, it will stop according the set stop method (deceleration stop, immediate stop). If the instruction has no direction, then both the forward limit and the reverse limit are valid for the instruction.

(4) Direction polarity

When [0: increase current address by forward pulse output] is selected, the current address increases when the forward pulse is output, and decreases when the reverse pulse is output.

When [1: Increase current address by reverse pulse output] is selected, the current address is increased during reverse pulse output and decreased during forward pulse output.

The default is 0 : increase the current address through forward pulse output 。

Special device:

Output axis	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
Direction polarity	SM885	SM945	SM1005	SM1065	SM1125	SM1185	SM1245	SM1305

(5) Origin return correlation (ZRN)

Origin return enable [default is 1 : enable the origin return function]
Select [0: turn off origin return function], that is, the origin return instruction is disabled and cannot be used.
Select [1: turn on origin return function], that is, the origin return instruction is enabled and can be used normally.
Origin return direction [default is 0 : the direction of origin return is negative]
Select [0: the direction of origin return is negative], that is, the pulse output count is negative.
Select [1: the direction of origin return is positive], that is, the pulse output count is positive.

Special device:

Output axis	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
Origin return enable	SM886	SM946	SM1006	SM1066	SM1126	SM1186	SM1246	SM1306
Origin return direction	SM887	SM947	SM1007	SM1067	SM1127	SM1187	SM1247	SM1307

(6) External signal correlation

External signal start [default is 0: turn off the external signal start function]
Select [0: turn off external signal start function], that is, the external signal start function is not used.
Select [1: turn on external signal start function], that is, when an external signal is received, the pulse will be sent.
External signal logic [default is 0: OFF signal]
Select [0:OFF signal], that is, when the signal is OFF, it means the signal is received.
Select [1: ON signal], that is, when the signal is ON, it means the signal is received.
For the specific external signal, refer to the external signal of the word Devices. The external signal is affected by the scan cycle and is judged in the instruction. If the X signal is used as an external signal, the signal is affected by the X point filtering.

Special device:

Output axis	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
External signal start	SM892	SM952	SM1012	SM1072	SM1132	SM1192	SM1252	SM1312
External signal logic	SM893	SM953	SM1013	SM1073	SM1133	SM1193	SM1253	SM1313

(7) Interrupt signal correlation (DVIT)

Interrupt positioning enable [default is 1 : enable interrupt positioning function]:
Select [0: Disable interrupt positioning function]: interrupt positioning instruction is disabled and cannot be used.
Select [1: enable interrupt positioning function]: interrupt positioning instruction is enabled and can be used normally. [The default is on]
Interrupt signal logic [default is 0 : ON signal]:
Select [$0:$ ON signal], that is, when the signal is ON, it means the signal is received.
Select [1: OFF signal], that is, when the signal is OFF, it means the signal is received.
Special device:

Output axis	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
Interrupt signal enable	SM894	SM954	SM1014	SM1074	SM1134	SM1194	SM1254	SM1314
Interrupt signal logic	SM895	SM955	SM1015	SM1075	SM1135	SM1195	SM1255	SM1315

(8) Stop immediately flag bit

Special device:

Output axis	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
Pulse stops immediately	SM898	SM958	SM1018	SM1078	SM1138	SM1198	SM1258	SM1318

When the flag bit is [1: pulse sending stop immediately], that is, pulse sending stops immediately without acceleration or deceleration. This flag is not affected by the scan cycle.

(9) Not scanned

When the flag bit is [0 : continue to send pulse], if the instruction is not scanned in the current scan cycle (such as called in the event interrupt subroutine), then continue to send pulse. At this time, it should be noted that if the instruction is scanned after the pulse sending is stopped, the pulse sending will continue.
When the flag bit is [1: stop sending pulse], if the instruction is not scanned in the current scan cycle (such as called in the event interrupt subroutine), then it will decelerate and stop.

Output axis	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
Not scanned	SM899	SM959	SM1019	SM1079	SM1139	SM1199	SM1259	SM1319

(10) The description of start speed

Start speed=(Maximum speed - bias speed)/acceleration time
But the starting speed will be the following value according to the relationship between the instruction speed and the base speed.

- Bias speed < start speed < instruction speed: start speed = start speed. (It will be the value of above calculation)
- Bias speed <= instruction speed < start speed: start speed = instruction speed.
- Start speed < bias speed, or instruction speed < bias speed: start speed = bias speed.
- Maximum speed < bias speed: start speed = maximum speed.

Related word devices

(1) Location address

Store the current address operated positioning instruction. Store the absolute address in the current address and increase decrease according to the pulse direction.This parameter is saved when power off.

Special device:

Output axis	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
Location address	[SD881,	[SD941,	[SD1001,	[SD1061,	[SD1121,	[SD1181,	[SD1241,	[SD1301,
	SD880]	SD940]	SD1000]	SD1060]	SD1120]	SD1180]	SD1240]	SD1300]

(2) Current frequency

Store the real-time running frequency operated by the positioning instruction.
Special device:

Output axis	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
Current frequency	[SD885,	[SD945,	[SD1005,	[SD1065,	[SD1125,	[SD1185,	[SD1245,	[SD1305,
	SD884]	SD944]	SD1004]	SD1064]	SD1124]	SD1184]	SD1244]	SD1304]

(3) Maximum speed

Set the upper limit (maximum speed) of instruction speed, origin return speed, and crawl speed. The range is: (1 to 200K), and calculate according to the boundary value if it exceeds the range.

Even if it is within the setting range, please set the relationship of bias speed <= instruction speed <= maximum speed.
If bias speed > maximum speed, then use the lower frequency to send, that is, the highest frequency.
Special device:

Output axis	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
Maximum speed	[SD899,	[SD959,	[SD1019,	[SD1079,	[SD1139,	[SD1199,	[SD1259,	[SD1319,
	SD898]	SD958]	SD1018]	SD1078]	SD1138]	SD1198]	SD1258]	SD1318]

(4) Bias speed

Set the lower limit value (offset speed) of the instruction speed, home return speed, and crawl speed.
The setting range is: (1 to 200K), and the over range is calculated according to the boundary value.
Even if it is within the setting range, please set the relationship of bias speed $<=$ instruction speed $<=$ maximum speed.
If the bias speed>maximum speed, then use the lower frequency to send, that is, the highest frequency.

Special device:

Output axis	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
Bias speed	[SD901,	$[S D 961$,	$[S D 1021$,	$[S D 1081$,	$[S D 1141$,	$[S D 1201$,	$[S D 1261$,	$[S D 1321$,
	SD900]	SD960]	SD1020]	SD1080]	SD1140]	SD1200]	SD1260]	SD1320]

(5) Acceleration time

Set the acceleration time from the bias speed to the maximum speed.
The acceleration time can be set in the range of 15 to 32767 ms . If it exceeds the range, it will be modified to the value closest to the range.
Special device:

Output axis	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
Accelerated Time	SD902	SD962	SD1022	SD1082	SD1142	SD1202	SD1262	SD1322

Note: When the acceleration time is set to 0 , there is no acceleration process.

(6) Deceleration time

Set the deceleration time from the maximum speed to the bias speed.
The deceleration time can be set in the range of 15 to 32767 ms . If it exceeds the range, it will be modified to the value closest to the
range.

Special device:

Output axis	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
Deceleration time	SD903	SD963	SD1023	SD1083	SD1143	SD1203	SD1263	SD1323

* Note: When the acceleration time is set to 0 , there is no deceleration process.

(7) Stop method

Set the stop mode of high-speed pulse: turn off the instruction halfway or the instruction encounters a limit situation [default is 0 : decelerate to stop].

Set [0: Decelerate to stop]: When the pulse stops halfway, the pulse decelerates and stops.
Set [1: Stop immediately]: when the pulse stops halfway, the pulse stops immediately without deceleration.

Output axis	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
Stop method	SD904	SD964	SD1024	SD1084	SD1144	SD1204	SD1264	SD1324

[0: Decelerate to stop]: Decelerate to stop after receiving the stop signal.

[1: Stop immediately]: Stop immediately after receiving the stop signal without decelerating movement.

(8) Direction delay

Set the delay time between the direction and the pulse, which is only applicable to instructions with direction, and the range is $0-32767 \mathrm{~ms}$.
(Note: The error of direction delay is within one scan period.

Output shaft	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
Direction delay	SD905	SD965	SD1025	SD1085	SD1145	SD1205	SD1265	SD1325

(9) External start signal

Set the device number (X device) of external start signal. If it is set to XO , the value is 0 . It is necessary to set the existing external input point, otherwise the function will not take effect.

The external signal is affected by the scan cycle and is judged when executing instruction.
Special device:

Output axis	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
External start signal	SD906	SD966	SD1026	SD1086	SD1146	SD1206	SD1266	SD1326

(10) The description of start speed

Start speed $=($ maximum speed - bias speed $) /$ acceleration time
But the starting speed will be the following value according to the relationship between the instruction speed and the base speed.

- Bias speed < start speed < instruction speed: start speed = start speed.(It will be the value of above calculation)
- Bias speed <= instruction speed < start speed: start speed = instruction speed
- Start speed < bias speed, or instruction speed < bias speed: start speed = bias speed
- Maximum speed < bias speed: start speed = maximum speed
(11) Pulse number and frequency modification

1) Modify frequency
(1) Reachable frequency

2) Unreachable frequency

3) Modify the number of pulses:
(1) Modify to the number of reachable pulses

2. Modify to the number of unreachable pulses (only support instructions with direction. If there is no direction, stop pulse sending)

(12) The number of sent pulses is out of range

When the number of pulses to be sent exceeds the range represented by the number of pulses (32 bits) (-2147483648 to +2147483647), it will run to the target position in the opposite direction to the expected. For example:

The current position is 1 , when you want to run to the target position -2147483648 , you should send 2147483647 pulses in the forward direction instead of sending 2147483649 pulses in the reverse direction;

The current position is -1 , when you want to run to the target position 2147483647 , you should send 2147483648 pulses inthe reverse direction instead of sending 2147483648 pulses in the forward direction.
(13) Acceleration and deceleration mode

Output axis	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
Acceleration and deceleration mode	SD907	SD967	SD1027	SD1087	SD1147	SD1207	SD1267	SD1327

When the parameter is 0 , post acceleration and deceleration mode is adopted.
When the parameter is 1 , forward acceleration and deceleration mode is adopted.(Accelerate to the next segment in advance) For example, three pulses are needed. The pulse frequency of the 1 st segment is 2000 Hz , the number of pulse is 2000 ; the pulse frequency of the 2 nd segment is 4000 Hz , the number of pulse is 4000 ; the pulse frequency of the 3 rd segment is 6000 Hz , the number of pulse is 6000 ;

Forward acceleration and deceleration mode oscillogram

Post acceleration and deceleration mode oscillogram

(14) High-speed pulse acceleration and deceleration mode selection

Acceleration and deceleration mode selection

Output axis	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
Acceleration and deceleration mode	SD911	SD971	SD1031	SD1091	SD1151	SD1211	SD1271	SD1331

When the parameter is 0 , Ladder acceleration and deceleration(calculate the pulse frequency one by one) mode is adopted.
When the parameter is 1 , Time-minute ladder acceleration and deceleration is adopted.
When the parameter is 2 , Time-minute s-type acceleration and deceleration is adopted.
(15) Time-minute acceleration and deceleration parameter

Output axis	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
Time-minute intervals	SD912	SD972	SD1032	SD1092	SD1152	SD1212	SD1272	SD1332

Time-minute intervals:
This parameter is time interval of time-minute acceleration and deceleration. The unit is 100 us. The value range is 10 to $1000 . W h e n$ the value is less than 10, the value is 10 . When the value is greater than 1000, the value is 1000.

Time-minute ladder acceleration and deceleration

[^6]

The following figure shows the changes of each parameter

Note: When the frequency is modified during the operation, acceleration would accelerate again from zero. There will be discontinuous acceleration.
(16) Oringin return mode

Output axis	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
Origin return mode	SD914	SD974	SD1034	SD1094	SD1154	SD1214	SD1274	SD1334
Origin return distance	[SD919,	[SD979,	[SD1039,	[SD1099,	[SD1159,	[SD1219,	[SD1279,	[SD1339,
	SD918]	SD978]	SD1038]	SD1098]	SD1158]	SD1218]	SD1278]	SD1338]

Origin return mode 0 :

Origin return mode 1: When the signal is received, go backward to the specified origin return distance and then search for the origin at crawling speed.

Origin return mode 2: When the signal is received, go to the specified origin return distance and then search for the origin 0 at crawling speed.

Origin return mode 2: Start running toward zero based on the current position, and search for the origin at crawling speed after reaching zero.

9 Electronic cam

9.1 Electronic CAM (ECAM) instruction

DEGEAR/Electronic gear/32 bit hand wheel instruction

DEGEAR

Electronic gear function refers to the function of multiplying the speed of the driving shaft by the set gear ratio and outputting to the driven shaft at this speed to control the mechanical operation.
-[DEGEAR
(s1)
(s2)
(s3)
(d1)
(d2)]

Content, range and data type

Parameter	Content	Range	Data type (label)	
(s1)	Specify the high-speed counter or ordinary double-word counter that receives the master axis pulse	-2147483648 to 2147483647	Signed BIN 32 bit	ANY32
(s2)	Specify the data buffer of the electronic gear command		Form type	LIST
(s3)	Response time, that is, how often the gear calculation is performed	$0 \sim 500$	Signed BIN	ANY32
(d)	Specify pulse output axis	YO~Y7	Bit	ANY_BOOL
(d)	Specify direction output shaft	$\mathrm{Y} / \mathrm{M} / \mathrm{S} / \mathrm{D.b}$	Bit	ANY_BOOL

Device used

Instruction	Parameters	Device																		Offset modification	Pulse extension
		X Y	M S SM		T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX KnY		KnM	Kns ${ }^{\text {T }}$	TCD		R SD LCHSCKHE				[D]	XXP
	Parameter 1																-	\bullet			
	Parameter 2														$\bullet \cdot$	\bullet					
DECAM	Parameter 3														$\bullet \bullet$	-			- -		
	Parameter 4	\bullet	-																		
	Parameter 5	-	- -						\bullet												

Features

- When the instruction is turned on, the PLC obtains the number of pulses of the master axis (s 1) according to the set response time $(s 2)$, calculates the average frequency within the response time, and calculates the output of the driven axis according to the set gear ratio Frequency and output pulse number, and output pulse (d1) and direction (d2). When the frequency of the driven shaft is greater than the set maximum frequency, it will output according to the set maximum frequency.
- When the master axis (s1) uses the high-speed counter (HSC), the PLC internally obtains the number of external input pulses. Modifying the value of the HSC counter does not affect the judgment of the input pulse.
- When the master axis (s1) uses an ordinary double-word counter (LC), the PLC directly obtains the number of pulses from the LC register, and modifying the value of the register directly affects the judgment of the input pulse
- Electronic gear data buffer (s2) table:

Electronic gear instruction parameter description table				
Offset	Content	Instruction	Range	Read and write permission
0	Electronic gear ratio (numerator)	Number of outputs =Number of inputs in response time*numerator/denominator	0 to 32767	Read/write
1	Electronic gear ratio (denominator)		1 to 32767	
2	Maximum output frequency (low word)	Max frequency	1 to 200000	Read/write
3	Maximum output frequency (high word)	Max frequency		Read/write
4	Average spindle frequency (low word)	Hand crank input frequency		Read-only
5	Average spindle frequency (high word)	Hand crank input frequency		Read-only
6	Accumulative electronic gear input pulse number (low word)	Cumulative number of electronic gear input pulses	-	Read-only
7	Cumulative number of electronic gear input pulses(High word)			
8	Sign	After the electronic gear is initialized, the flag is equal to 1	Reserved	Reserved
9	interval	Confirmation value	-	Read-only
10	Electronic gear ratio (numerator)	Confirmation value	-	Read-only
11	Electronic gear ratio (denominator)	Confirmation value	-	Read-only
12	Maximum output frequency (low word)	Confirmation value	1 to 200000	Read-only
13	Maximum output frequency (high word)			Read-only
14	Dynamically switch gear ratio	1: Switch to the newly set gear ratio immediately. And set the address back to 0 . 2: The cycle is completed and the gear ratio is switched, and the value is set back to 0 after the switching is completed. (The value of the spindle count reaching the denominator is regarded as a cycle)	0 to 2	Read/write
15	16-bit gear ratio and 32-bit gear ratio switch	0 : Use 16-bit gear ratio 1: Use 32-bit gear ratio * Note: After changing this bit, it will only take effect after the DEGEAR command is re-enabled or the dynamic gear ratio function is used.	0 to 1	Read/write
16	32-bit electronic gear ratio numerator (low word)	Number of outputs = Spindle input number within response time*numerator/denominator	$\begin{gathered} 0 \text { to } \\ 214748647 \end{gathered}$	Read/write
17	32-bit electronic gear ratio numerator (high word)			
18	32-bit electronic gear ratio denominator (low word)		$\begin{gathered} 1 \text { to } \\ 214748647 \end{gathered}$	Read/write
19	32-bit electronic gear ratio denominator			

	(high word)			
20	32 -bit electronic gear ratio numerator (low word)		-	
21	32 -bit electronic gear ratio numerator (high word)		Read-only	
22	32 -bit electronic gear ratio denominator (low word)		Confirmation value	Read-only
23	32 -bit electronic gear ratio denominator (high word)			

*Note:

- When the output pulse axis (d1) is used by this instruction, other high-speed pulse instructions can no longer use the output axis. Otherwise, an operation error will occur and pulse output will not be performed.
- The cycle of calculating the electronic gear inside the PLC is 100 us once. If multiple electronic gear/electronic cam commands are used at the same time, The computing interval is unchanged, that is, the 8 -axis electronic gear instruction is executed at the same time, and the computing interval is also 100 us.
- The electronic gear commands can only be enabled at most $8(Y O \sim Y 7)$ at the same time.
- The electronic gear command is used, and the data buffer (s2) will occupy 24 consecutive devices. Note that the address cannot exceed the range of the device and reuse.

Error code

Error code	Content
4085 H	The read address of (s1), (s2) and (s3) exceeds the device range
4084 H	The data exceeds the settable range
4 ECOH	Electronic gear ratio setting error
4088 H	High-speed pulse instructions use the same output shaft (d1)

Example

(1) Realize the 1:1 follow function of YO output pulse to Y3 output pulse.

1) Configure the high-speed counter, enable HSCO, and configure it as one-way output and count-up mode.

Configuration options	HSCO	HSC1	HSC2	HSC3	HSC4	HSC5	HSC6	HSC7
Use or not	Use	Unused						
Pulse input mode	Single phase...							
Counting direction	Up counti... -	Up counting ...						
Frequency multiplication	1 times freq...							
Input frequency measu...	1000	1000	1000	1000	1000	1000	1000	1000
Filter time(0.01us)	1	1	1	1	1	1	1	1
Max frequency(HZ)	150K							
Occupy X points	ingle phase: XI 4B phase: X0, X	ingle phase: X IB phase: X2, X	ingle phase: X IB phase: X4, X	ingle phase: X : IB phase: X6, X	ingle phase: X 3 phase: X10, X	ingle phase: X 3 phase: X12, X	ingle phase: X_{1} 3 phase: X14, X	ingle phase: X 3 phase: X16, X
			Input (X) description		Check	Reset	OK	Cancel

2) Ladder

Connect the Y3 output of the PLC to the XO input.
Turn on M1, start M2, and Y3 for output. At this time, Y0 will follow Y3 1:1 (SD880 = SD1060).

(2) Use of 32-bit gear ratio.

Set the 32-bit gear ratio: 18518517: 12345678, set the 15 address of the data buffer to 1, and enable the 32-bit gear ratio function. M1 turns ON to turn on the electronic gear command, M2 turns ON, LCO will increase by 1 every 100ms, at this time SD880:LC0 always $=18518517: 12345678$.
(3) Use of gear ratio switching function

Set the gear ratio to 1:1.
M1 turns ON to turn on the electronic gear instruction, M2 turns ON, LCO will increase by 1 every 100ms, at this time SD880:LC0 always $=1: 1$. When $M 3$ is turned on, change the gear ratio to $2: 1$ and enable the switch gear ratio function. After that, the increment of SD880 and the increment of LC0 are always 2:1.

DECAM/32-bit electronic cam instruction

DECAM

The electronic cam function uses the preset cam curve to determine the slave axis movement amount according to the spindle movement (phase information) and the cam curve, and output. The cam curve refers to each phase (rotation angle (Degree) and CAM curve refers master axis rotation 1 cycle as the movement benchmark. The displacement of the slave axis can be set by the ECAMTBX instruction.
-[DECAM
(s1) (s2)
(s3) (d1)
(d2)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	Specify to receive the input pulse of the master axis	-2147483648 to 2147483647	Signed BIN 32 bit	ANY32
(s2)	Specify the data buffer of the electronic cam instruction		Form type	LIST
(s3)	The external start signal of the electronic cam needs to be enabled in the data buffer area to be effective.	X/M/S/D.b	Signed BIN 32 bit	ANY32
(d1)	Specify pulse output axis	Y0~Y7	Bit	ANY_BOOL
(d2)	Specify direction output shaft	Y/M/S/D.b	Bit	ANY_BOOL

Device used

Instruction	Parameter	Devices																				Offset modification	Pulse extension
		X Y M		S SM T(bit)			C(bit)	LC(bit)	HSC(bit)	D.b	KnX KnY		KnM KnS T		TCDR		R SD LCHSCKHE					[D]	XXP
	Parameter 1																	\bullet	\bullet	\bullet			
	Parameter 2															- -	\bullet						
DECAM	Parameter 3 -	-	-	\bullet						\bullet													
	Parameter 4	-																					
	Parameter 5																						

Features

When the instruction is turned on, the PLC obtains the number of pulses of the master axis (s 1), calculates the number of pulses that the slave axis needs to output for this calculation according to the set cam curve, and performs the pulse (d1) and direction (d2) Output. When the frequency of the driven shaft is greater than the set maximum frequency, it will output according to the set maximum frequency.

- When the master axis (s1) uses the high-speed counter (HSC), the PLC internally obtains the number of external input pulses. Modifying the value of the HSC counter does not affect the judgment of the input pulse.
- When the master axis (s1) uses an ordinary double-word counter (LC), the PLC directly obtains the number of pulses from the LC register, and modifying the value of the register directly affects the judgment of the input pulse.
- When the master axis $(\mathrm{s} 1)$ uses the constant K / H, the number of input pulses is the time axis. If it is K 1 , the number of input pulses will increase by 1 every 100 us.
- Electronic cam data buffer (s2) table:

Offset address	Name	Instruction	Initial value	Range
0	Form version number		5200	
		Bit0-Initialization complete flag After the electronic cam permission signal is activated, calculate the related Data, automatically set to ON after initialization, users need to clear this flag state by themselves	0	-
		Bit1-Cycle complete flag Electronic cam completion flag. When the periodic electronic cam is executed After completion, this flag will be automatically set to ON; if you want to restart the periodic electronic cam, the user needs to clear this flag state first.	0	-
1	Flag register	Bit2-Pulse transmission delayed flag bit Bit3-Error electronic cam stop running flag bit Bit4-Parameter error error, electronic cam stop running flag bit Bit5-Table error, electronic cam stop running flag Bit6-Periodic electronic cam flag Bit7-Aperiodic electronic cam flag Bit9-Stop flag for current cycle completion Bit10-synchronization zone flag Bit11-Time axis flag Bit12-New form loading complete flag Bit13-Periodic delay electronic cam flag Bit14-Delayed start function, delayed waiting flag bit	0	-
2	Error register	Operation error condition (check Bit3 of address 1): Display Error code. Parameter error condition (check Bit4 of address 1): Display the offset address of the error parameter register. Table error condition (check Bit5 of address 1): display Incorrect table segment number.	0	-
3	Function register (Confirm before using electronic cam)	Bit0-Delayed start enable Bit1-Start at specified position Bit2-Spindle zoom Bit3-zoom from axis Bit5-Use external start signal Bit6-Start from current position *Bit1 and Bit6 cannot both be 1.	0	-
4	Function register (can be changed while the electronic cam is running)	Bit0-Sync signal enable Bit1-Stop the electronic cam after the current cycle is completed Bit2-Switch the table after the cycle is completed, the bit will automatically change back to 0 after the switch is completed	0	-

N Note:

When the output pulse axis (d1) is used by this instruction, other high-speed pulse instructions can no longer use the output axis. Otherwise, an operation error will occur and pulse output will not be performed.

The cycle of calculating the electronic gear inside the PLC is 100 us once. If multiple electronic gear/electronic cam commands are
used at the same time, the time will increase accordingly. If the 8 -axis electronic gear command is executed at the same time, the calculation cycle will become 800us.

The electronic gear commands can only be enabled at most 8 (YO ~ Y7) at the same time.
The electronic gear command is used, and the data buffer ($s 2$) will occupy 24 consecutive devices. Note that the address cannot exceed the range of the device and reuse.

Error code

Error code	Content
4 E 80 H	E-cam table loading error
4 E 81 H	The currently numbered form has a cam in use
4 E 82 H	E -cam table address error
4 E 83 H	The electronic cam table exceeds the device range

Example

For details, please refer to " 9.2 Instruction manual of Electronic CAM (ECAM)".

ECAMCUT/Electronic cam table switching instruction

ECAMCUT

This instruction needs to be used in conjunction with the electronic cam instruction (DECAM) to specify the newly defined table address to realize the function of switching the electronic cam table periodically during the operation of the electronic cam.
-[ECAMCUT (s1) (s2)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	Specify the table number, currently only supports one table	1 to 2 (LX5VT: 1 to 16)	Signed BIN 16 bit	ANY16
(s2)	Specify the first address of the data buffer area of the electronic cam table	-	Form type	LIST

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		XYMSSM		T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS			R			HSC	KHE	[D]	XXP
	Parameter 1													\bullet	\bullet				- •		
	Parameter 2													\bullet	\bullet						

Features

Table format definition:

Offset	Instruction
0	Number of table segments
1	Table version
2 to 3	Spindle section 0 (double word)
4 to 5	Section 0 slave axis (double word)
6 to 7	Spindle section 1
8 to 9	Section 1 slave axis
\quad	

Instruction function description

(1) In the (s1) parameter, only K1 or K2 can be used to specify the location of the table. The format of the table must be as above.

K1 means Form 1
K2 means Form 2
Form 0 is the original form of the cam (optional)
(2) When the instruction is running, check the table data in the start address specified by (s2) and verify the correctness of the data. After the operation is successful, the table with the specified table number should point to the starting address of (s2). In the process of command pointing, if the corresponding numbered table is in the current cam operation, an operation error will be reported.
Before using the table, you need to run this command to configure the address where the table is located. After the table address is specified, it will not be saved after power off.
(3) Related registers and flags

- Electronic cam buffer offset 1 (flag bit register)
bit12 --- table switching completed flag
-Electronic cam buffer offset 4 (function register)
After bit2-cycle is completed, switch to the specified table operation
- Electronic cam buffer offset 31

Number of the table to be run in the next cycle ($0 \sim 2$)
-Electronic cam buffer offset 32
The table number of current cycle operation ($0 \sim 2$)

* Note:

Table 0 is the self-contained table of the electronic cam, that is, the continuous address starting at offset 38 of the electronic cam data buffer. Therefore, the electronic cam can specify up to 3 tables at the same time, which can be switched freely during operation. If the curve generated by the electronic cam table generation command ECAMTBX is used, the data buffer of the ECAMTBX generated table should be offset by 38 addresses and then specified.

Error code

Error code	Content
4 E 80 H	E-cam table loading error
4 E 81 H	The currently numbered form has a cam in use
4084 H	Data exceeding 1 to 2 is specified in (s1)
4085 H	The $(\mathrm{s} 2)$ table exceeds the device range

Example

Realize the mutual switching between electronic cam form 1 and form 2

* Note:

(1) According to the above Circuit program, first set M2, configure table 1 data, and use ECAMCUT to designate table 1 as electronic cam operation table 1.
2) Set M200 to configure the cam running command DECAM.

3 Set M201 to enable electronic cam operation. And automatically prepare table 2 data, and assign table 2 data as electronic cam operation table 2.
4. Set the second position of D2004 to 1 to turn on the electronic cam switching table function. At this time, table 1 is run in the current cycle, and table 2 is run in the next cycle.

5 Use manual addition (M 110) to change the master axis (LCO), and the slave axis pulse number SD880 will also change, and the ratio is the ratio of Table 1 (1:2)
6) When $L C 0=100$, the program automatically switches to Table 2 to run, LCO increment: SD880 increment $=2000: 120500$. And currently running table 2 and next cycle running table 1 . When $L C O=2100$, switch back to Table 1 to run.

ECAMTBX/Electronic cam table generation instruction

ECAMTBX

This instruction is used to generate the table data of the electronic cam.
-[ECAMTBX
(SO)
(S1) (DO)
(D1)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(S0)	Specify the first address of the electronic cam table parameter	-	Form type	LIST
(S1)	Specify the curve type of the electronic cam	-	Signed BIN 16 bit	ANY16
(D0)	Specify the first address of the data buffer area of the E-cam table	-	Form type	LIST
(D1)	Table generation results	-	Signed BIN 16 bit	ANY16

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		X Y/M SSM T(bit)			C(bit)	LC(bit)	HSC(bit)	D.b			KnM	KnS	TCD	D			LC	HSC	KHE	[D]	XXP
	Parameter 1													-	-						
ECAMTBX	Parameter 2													-	-				- -		
ECAMTBX	Parameter 3													\bullet	-						
	Parameter 4													-	-						

Features

SO--parameter address, allowable Devices: D, R.
Description: Indicate the parameters to be set to generate the curve.
S1--curve type, allowable Devicess: D, R, H, K.
Description: Indicates the type of curve to be generated.
K1: Generate S type acceleration/deceleration curve with a spindle of 1 ms
K2: Customize the designated key point to generate a table
K100: Generate flying shear curve
K101: Generate chase curve
D0--The first address of cam parameters, allowable devices: D, R
Description: The generated table data is stored at the beginning of [D0 + 40], and the number of table segments is stored in [D0
$+38]$.
D1-table generation result, allowable Devices: D, R
D1 <0 generates a table error;
D1> 0 The table is successfully generated. D1 represents the total number of segments in the current table.

Error code

ECAMTBX instruction generates curve Error code:

Error code	Content
-1	Condition parameter error
-2	The spindle pulse number is too few, not enough for synchronization area
-3	Unknown cam curve type
-4	Resolution range error
-5	Too many pulses of the slave axis calculated
-6	The calculated number of pulses from the slave axis is too small
-7	The calculated number of spindle pulses exceeds the set length
-8	The pulse number of the slave axis is set to 0

PLC LX5V Series Programming Manual (V2.2)

-10	S type acceleration and deceleration curve calculation error
-11	Unknown curve type
-12	Curve left wrong
-13	The number of slave axes exceeds the range

Key point generating curve Error code:

Error code	Content
-21	The number of key points is out of range
-22	Total resolution exceeds range
-23	Incorrect relationship between spindle size
-24	The resolution setting of each segment is incorrect
-25	When calculating, the number of control points is insufficient
-26	Unknown acceleration curve type
-27	Spindle pulse number is negative

S-type acceleration and deceleration generated curve Error code:

Error code	Content
-31	The number of pulses exceeds the range
-32	Maximum frequency out of range
-33	Acceleration and deceleration time out of range
-34	The number of pulses or frequency settings cannot meet the curve generation conditions

* Note:

After the curve is successfully generated by the ECAMTBX instruction, the cam table can be uploaded to the upper computer for viewing in the PLC of the PLC Edit upper computer software.

Example

For details, please refer to "9.2 Instruction manual of Electronic CAM (ECAM)".

9.2 Instruction manual of Electronic CAM (ECAM)

Principle of ECAM

The traditional mechanical cam is composed of cam, follower and frame. A mechanical cam is an irregular part, generally an input part with a constant speed, which can transmit motion to a follower through direct contact, so that the action moves according to a set law. The follower is a passive part driven by a mechanical cam, and is generally an output part that produces unequal speed discontinuous, and irregular motion.

ECAM is a software system that uses the constructed concave wheel curve to simulate mechanical cam to achieve the same relative motion between the camshaft and the main shaft of the mechanical cam system.

Compared with mechanical cams, ECAM makes the design of mechanical and electrical parts more and more simple. ECAM allows the equipment to be flexibly used in different templates and plate styles, and also allows the operation process and cycle of the equipment to be modified, either during the design phase of the equipment or after the equipment is formed. It reduces the complexity of the equipment, makes the equipment run more smoothly and doubles the production efficiency.

Description of ECAM function

Establish ECAM data

LX5V provides 3 ways to establish ECAM data:
(1) Write table data to the table data area by DMOV instruction.
(2) Generate ECAM data automatically by ECAMTBX instruction.
(3) Draw ECAM data with PLC Editor software.

Spindle pulse selection

The selectable spindles of LX5V series PLC are HSC, LC type and virtual time axis K.
Among them, external high-speed input uses high-speed counter, which supports single-phase single-count input\single-phase double-count input and biphase double-count input. As for the assignment of counters, refer to the instructions for high-speed counters in the PLC help.

When using HSC register (high-speed counter), the pulse of spindle is obtained internally. Modifying the value of the counter does not affect the cam to judge the actual pulse input quantity.

When using the normal counter LC, the pulse of spindle is obtained from devices. Modifying the value of the register will affect the judgment of the pulse of spindle.

When using the K type register, it means to use the internal virtual time axis, and the minimum unit is $100 \mathrm{us}, \mathrm{K} 1=100 \mathrm{us}, \mathrm{K} 10=1 \mathrm{~ms}$.

Enable ECAM configuration

Use the DECAM instruction to configure the ECAM function of PLC.

Name	Function	Bits	Whether pulse type	Instruction format	Step number
DECAM	ECAM configuration	32	No	DECAM s1 s2 s3 d1 d2	10

Ladder :

(1) Parameters

Parameter	Content	Range	Data type	Data type (label)
(s1)	Specify to receive the input pulse of the master axis	-2147483648 to +2147483647	Signed BIN 32 bit	ANY32
(s2)	Specify the data buffer area of the ECAM instruction		Form	LIST
(s3)	The external start signal of ECAM needs to be	X/M/S/D.b	Signed BIN 32 bit	ANY32

	enabled in the data buffer area to be effective.			
$(\mathrm{d} 1)$	Specify pulse output axis	Y 0 to Y 7	Bit	ANY_BOOL
$(\mathrm{d} 2)$	Specify direction output axis	$\mathrm{Y} / \mathrm{M} / \mathrm{S} / \mathrm{D} \cdot \mathrm{b}$	Bit	ANY_BOOL

Device used:

Instruction	Parameters	Device																			Offset modification	Pulse extension
		X Y	M	S	SM	T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	Kns	TC	D R	RSD	LC	HSC	KHE	[D]	XXP
DECAM	Parameter 1																	\bullet	\bullet	- -		
	Parameter 2																					
	Parameter 3	\bullet	\bullet	\bullet						\bullet						- -						
	Parameter 4	\bullet																				
	Parameter 5	\bullet	-							\bullet												

(2) Function description

When the contact MO is turned on, the PLC activates ECAM function, but the ECAM function is not yet running at this time, it just initializes the parameters of the cam. It includes that D1000 to D1005, D1031, D1032 will be cleared and check whether the cam table is correct. After initialization, these registers still need to be set for control.

This instruction configures the relevant registers and required data for cam operation, and enables the function of ECAM, but the cam does not actually run. To actually enable the ECAM function, the relevant device in the cache address of the instruction (such as D1000 in the instruction) is also needed to control the start and stop of the cam.

If the instruction is disconnected, the cam stops working.
Refer to the description of "9.2.2.5 ECAM function register" for the definition of cam parameter devices.

(3) Instruction error description

When the instruction is running, PLC will check the relevant cam parameters in the cache address and prompt the corresponding error. You can find the error according to the prompt [PLC Error code information]:

Error code	
4084 H	The parameter set in the instruction exceeds the limit
4085 H	The device used in the instruction exceeds the maximum device number
4088 H	Multiple application instructions use the same output axis for pulse output
4 E 80 H	ECAM table loading error
4 E 81 H	The currently numbered form has a cam in use
4 E 82 H	ECAM table address error
4 E 83 H	The electronic cam table exceeds the device range

When an error occurs, the ECAM function is not enabled at this time.
(4) Devices involved in instruction execution

Devices	Content	
SD881 (high byte), SD880 (low byte)	Y000 Output pulse number. Decrease when reversed. (Use 32 bits)	
SD941 (high byte), SD940 (low byte)	Y001 Output pulse number. Decrease when reversed. (Use 32 bits)	
SD1001 (high byte), SD1000 (low byte)	Y002 Output pulse number. Decrease when reversed. (Use 32 bits)	
SD1061 (high byte), SD1060 (low byte)	Y003 output pulse number. Decrease when reversed. (Use 32 bits)	
SD1121 (high byte), SD1120 (low byte)	Y004 Output pulse number. Decrease when reversed. (Use 32 bits)	
SD1181 (high byte), SD1180 (low byte)	Y005 Output pulse number. Decrease when reversed. (Use 32 bits)	
SD1241 (high byte), SD1240 (low byte)	Y006 Number of output pulses. Decrease when reversed. (Use 32 bits)	
SD1301 (high byte), SD1300 (low byte)	Y007 Output pulse number. Decrease when reversed. (Use 32 bits)	
Devices Content	Devices	Content
	453	WECON technology Co.,

PLC LX5V Series Programming Manual (V2.2)

SM882	Y000 Pulse output stop (stop immediately)	SM880	Y000 monitoring during pulse output (BUSY/READY)
SM942	Y001 Pulse output stop (stop immediately)	SM940	Y001 Monitoring during pulse output (BUSY/READY)
SM1002	Y002 Pulse output stop (stop immediately)	SM1000	Y002 Monitoring during pulse output (BUSY/READY)
SM1062	Y003 Pulse output stop (stop immediately)	SM1060	Y003 Monitoring during pulse output (BUSY/READY)
SM1122	Y004 Pulse output stop (stop immediately)	SM1120	Y004 Monitoring during pulse output (BUSY/READY)
SM1182	Y005 Pulse output stop (stop immediately)	SM1180	Y005 Monitoring during pulse output (BUSY/READY)
SM1242	Y006 Pulse output stop (stop immediately)	SM1240	Y006 Monitoring during pulse output (BUSY/READY)
SM1302	Y007 Pulse output stop (stop immediately)	SM1300	Y007 Monitoring during pulse output (BUSY/READY)

ECAM start/stop

(1) Periodic ECAM start/stop

Periodic ECAM means that while the main axis is continuously advancing, the cam axis will realize the corresponding position according to the "ECAM curve table (table)", but the table only defines one period of data, so the positional relationship of master/slave axis in this mode is the continuous repetitive extension of the table.

Main axis $\max =180$ (main axis unit)

1) Periodic ECAM start

Periodic ECAM start sequence is as below.

* At time T1, address 5=1, start periodic electronic cam.
* After the time T2 has elapsed, the PLC takes the initiative to set address 1-bit0 (ECAM initialization complete flag).
* During time T3, ECAM initialization is completed and the periodic action is started. The slave axis follows the movement of the spindle according to the position relationship in the table, and the synchronization signal terminal is output according to the synchronization point range.

Q When a cycle is completed, ECAM cycle completion flag address 1-bit1 turns ON, and the user clears the completion flag by itself, and then continues to judge the next cycle.

2) Periodic ECAM stop

The periodic ECAM stop sequence is as below.
Q When ECAM starts register (address 5) $=0$, the ECAM stops operating immediately.

* When the periodic ECAM is operating, the system receives the completion stop flag ((address 4-bit1), the periodic ECAM will continue until the current table is executed, the slave axis will stop operating, as shown in the figure below. If you want to start the periodic cam again, you need to write 0 to address 5 and keep it more than 100 us, and then you can start the periodic cam through address 5 again.

3) Example description

The following figure shows the ECAM data, where the spindle length is 50000 , the output unit is the number of pulses, and the synchronization range is 20000 to 30000 . When running into the synchronization zone, the synchronization terminal output can be used as a control signal. To create ECAM data, please refer to the ECAM data. Hardware circuit Y1 outputs pulse to connect to XO , and it means that the spindle input terminal receives the output pulse of Y1.

This example is to use the software PLC Editor2 to set the table.

Instructions

(1) When executing the program, the special register is set first. The set parameters are as follows:
A. Double word is composed of SD881 and SD880, the current position of Y0 is cleared to 0 ,
B. Start the high-speed counter HSCO and configure it as a single-phase input to receive the high-speed pulse input of XO (in this case, the pulse of XO comes from the output pulse of Y 1).
(2) SET MO to start the ECAM, Y axis starts to perform variable speed movement. The main axis receives variable speed input pulse of Y axis, the slave axis outputs pulse according to the ECAM curve, and when the main axis position is 20000-30000 in each cycle, Y 7 is ON state.

* Note: Special registers must be set before the ECAM is started. Set the upper and lower limits of the synchronization position of
the ECAM D2009 = 20000, D2011 $=30000$; and set the number of the synchronization terminal Y D2008, and the synchronization output enable D2004-BITO, an ECAM cycle is 50000 pulses and when the spindle position is 20000-30000 pulses (monitored by D2025 and D2026), the synchronization terminal is ON.
(3) RST MO, the cam stops running.

PLC program

(2) Aperiodic ECAM start/stop

Aperiodic ECAM refers to the timing when the camshaft starts to realize the corresponding position according to the table while the main shaft is continuously advancing after the cam start signal is input. Different from the periodic ECAM, The position relationship of the master/slave axis in this mode actually only runs for one cycle, that is, the table only moves once.

1) Aperiodic ECAM start

The aperiodic ECAM stop sequence is as below.
(1) At time T1, address 5=2, and aperiodic ECAM is started.
(2) After the calculation of the time T2, the PLC actively sets the address 1-bit0=ON (the initialization of aperiodic ECAM is completed). At this time, the slave axis will not follow the movement of the master axis.
(3) At time T3, the ECAM start signal is turned ON (when the external start signal is used), the slave axis will follow the spindle movement for one cycle according to the position relationship in the table.
(4) After the cycle is completed at the position of time T4, the PLC will actively clear the state of address 1-bit0=ON, and the user can also judge whether the cycle is completed according to the state of address 1-bit1 to .
(5) During the time T5, the user can choose whether to set the address 1-bit0=ON again through the program, for the purpose of completing the judgment next time.
(6) Time T6/T7 position is to repeat the action of T3 to T4 again. Note: The interval between the rising edges of the cam start signal must be more than 0.5 ms .
(7) Sync signal terminal output.

2) Aperiodic electronic cam stop
(1) When starting the ECAM register address $5=0$, the ECAM slave axis stops operating immediately, as shown in the figure below.

(2) When the aperiodic ECAM is running, address 4-BIT1=1 (stop after the current cycle is completed), the aperiodic ECAM will continue to run through the table and then the slave axis will stop operating, as shown in the figure below.

3) Example explanation

The following figure shows the ECAM running table (the spindle length is 0 to 100000 for a cycle), and its output is the number of pulses. When the external signal X 2 is triggered by the rising edge, execute two consecutive tables (D1014=2), and wait for the X 2 rising edge Trigger again, and execute two consecutive tables again, and so on.

This example uses the software PLC EDITOR to ECam0. Please refer to 9.2.2.5 for the detailed steps of creating an ECAM curve. The Y1 axis of the hardware circuit outputs pulse and connects to the X 0 axis input terminal, indicating that input terminal position of master axis is to receive the pulse output of Y 1 axis as input.

Operation steps

(1) When the program is executed, set special registers first, and the set parameters are as follows:
A. The contents of SD880, SD881 and SD940, SD941 are cleared to 0
B. Set D1014=2 (repeat the form twice)
(2) Set M0: Configure and start the cam. When M0 is the rising edge, set D1003-Bit5 to use an external start signal; when $\mathrm{D} 1005=2, \mathrm{Y} 1$ outputs pulses, and Y 0 axis has not output yet at this time.
(3) The external signal X 2 is triggered, and Y 0 axis is output with the ECAM curve; the output stops after 2 cycles.
(4) RST MO: Close the ECAM mode; if runs RST MO when the ECAM is running, YO axis will stop output immediately.
[PLC program]

9.2.2.5 Electronic cam function register

Offset address	Name	Instruction	Initial value	Range
0	Form version number		0	
1	Flag register	Bit0: Initialization complete flag After the ECAM permission signal is activated, calculate the related data, and automatically set to ON after initialization. Users need to clear the state of this flag by themselves.	0	-

PLC LX5V Series Programming Manual (V2.2)

		Bit1: Cycle completion flag ECAM completion flag. When the periodic ECAM is executed, this flag will be automatically set to ON; if you want to restart the periodic ECAM, clear the state of this flag first.	0	-
		Bit2: Pulse sending delayed flag Bit3: ECAM error stop running flag Bit4: Parameter error, ECAM stop running flag Bit5: Table error, electronic cam stop running flag Bit6: Periodic ECAM flag Bit7: Aperiodic ECAM flag Bit9: Current cycle completion stop flag Bit10: synchronization zone flag Bit11: Time axis flag Bit12: New form load completion flag Bit13: Periodic delay ECAM flag Bit14: Delayed start function, delayed waiting flag bit	0	-
2	Register error	Operation error condition (check Bit3 of address 1): Display Error code. Parameter error condition (check Bit4 of address 1): Display the offset address of the error parameter register. Table error condition (check Bit5 of address 1): display error Incorrect table segment number. Note: Bit3 of address 1 must be set with Bit4 and Bit5	0	-
3	Function register (Confirm before using electronic cam)	Bit0: Delayed start enable Bit1: Start at specified position Bit2: Spindle zoom Bit3: zoom from axis Bit5: Use external start signal Bit6: Start from current position	0	-
4	Function register (Can be changed while the ECAM is running)	Bit0: Sync signal enable Bit1: Stop the electronic cam after the current cycle is completed Bit2: Switch the table after the cycle is completed, the bit will automatically change back to 0 after the switch is completed	0	-
5	ECAM start register	0 : Stop the electronic cam immediately 1: Periodic electronic cam (start) 2: Aperiodic electronic cam (start) 3: Stop after the cycle is completed, this register automatically becomes 3 4: Periodic delay electronic cam (start) Other: reserved, not available	0	-
6	Maximum output frequency setting of ECAM	Maximum output frequency setting of electronic cam;	200000	0 to 200000
7	The highest ECAM output frequency			

	setting			
8	Sync signal Y terminal number	Output terminal number: Set the Y number of the synchronization output terminal, the range is 0 to 1777 (octal), when the synchronization output function is enabled, when in the synchronization area, the corresponding Y terminal outputs the synchronization signal. This function needs to set the upper and lower limits of the synchronization position first .	0	0 to 1777
9	CAM synchronization position lower limit (Low word)	The synchronization position upper/lower limit setting of the electronic		0 to
10	CAM synchronization position lower limit (High word)	cam, When the synchronization position lower limit \leq spindle position \leq position upper limit		2147483647
11	CAM synchronization position upper limit (Low word)	And the synchronization signal terminal Y output is ON when the synchronization signal is enabled (address 4, BITO). When the lower limit> the upper limit, the upper and lower limit values		0 to
12	CAM synchronization position upper limit (High word)	will be exchanged.		2147483647
13	Electronic cam pulse remainder distribution setting (reserved)	Reserved	-	-
14	Aperiodic ECAM execution times	Periodic electronic cam: reserved; Aperiodic electronic cam: control table execution times; when the value is H0001, the electronic cam will stop after executing once; When the value is HFFFF, it will become a periodic electronic cam execution.	11	1 to 65535
15	ECAM start delay pulse setting (low word)	Periodic electronic cam: reserved Aperiodic electronic cams and periodic delay electronic cams: the		2
16	ECAM start delay pulse setting (high word)	start enable). When the aperiodic electronic cam is executed, a cam start signal is received. If the electronic cam table is not executed immediately, but the spindle rotates for a few pulses, the table is run. At this time, this register sets the number of delayed pulses.	0	unsigned integer
17	Spindle specified position start (Low word)	Periodic electronic cam: reserved Aperiodic electronic cam:		32-bit unsigned
18	Spindle specified position start (high word)	To enable the function of the specified location. The starting position is set by this address. The setting value must be within the table period.	0	integer number
19	Current position of slave axis (low word)	Output shaft: current position of slave shaft (after conversion) The position of the slave axis during the current cam execution, after	0	32-bit unsigned

20	Current position of slave axis (high word)	scaling		integer
21	Current position of slave axis (low word)	Output shaft: current position of slave shaft (before conversion) The position of the slave axis during the current cam execution, before scaling	0	32-bit integer
22	Current position of slave axis (high word)			
23	Denominator of slave axis magnification	Zoom from axis	1	1 to 65535
24	Slave magnification numerator		1	1 to 65535
25	Spindle current position (low word)	Input axis: the current position of the spindle (after conversion) The position of the main axis during the current cam execution, after scaling	0	32-bit unsigned integer
26	Spindle current position (high word)			
27	Spindle current position (low word)	Input axis: the current position of the spindle (before conversion) The position of the main axis during the current cam execution, before scaling	0	32-bit unsigned integer
28	Spindle current position (high word)			
29	Denominator of spindle magnification	Spindle zoom	1	1 to 65535
30	Spindle magnification numerator		1	1 to 65535
31	Specify the table to be run in the next cycle	Switch to use in the table function after the cycle is completed. 0: Use the default table 1: Use the data in Table 1 (ECAMCUT specifies the address) 2: Use the data in Table 2 (ECAMCUT specifies the address)	0	0 to 2
32	Table running in current cycle	Switch to use in the table function after the cycle is completed. Indicates the current week Periodically run form.	0	0 to 2
33	Reserved	Reserved	-	-
34	Reserved	Reserved	-	-
35	Reserved	Reserved	-	-
36	Reserved	Reserved	-	-
37	Reserved	Reserved	-	-
38	Number of segments in the table	Total data segment of cam table data	0	0 to 512
39	Start offset of the table	Specify the offset address of the cam table, fixed to 40	40	40
40	Spindle segment 0 (low word)	Spindle position of segment 0	0	32-bit integer
41	Spindle segment 0 (high word)			
42	Section 0 slave axis	Slave axis position of segment 0	0	32-bit

	(low word)			integer
43	Section 0 slave axis (high word)			
44	Spindle section 1 (low word)	Spindle position of segment 1	0	32-bit integer
45	Spindle section 1 (high word)			
46	Section 1 slave axis (low word)	Slave axis position of segment 1	0	32-bit integer
47	Section 1 slave axis (high word)			
$40+\mathrm{N} * 4$	Nth spindle (low word)	Nth segment spindle position	0	32-bit integer
$40+$ N* $4+1$	Nth spindle (high word)			
$40+N * 4+2$	Nth segment slave axis(low word)	Nth segment slave axis position	0	32-bit integer
$40+$ N*4+3	Nth segment slave axis(high word)			

Description of cam register

(1) Address 2 - Error register:

Operation error (check Bit3 of address 1) error code description:

Error code	Content
-1	Form number is out of range
-2	The table is not initialized properly
-3	The number of table segments is too short
1	Spindle input error, pulse change is too large, 100us exceeds 200
3	Too many slave axes calculated
5	The spindle has too many unprocessed pulses in the current cycle
8	Calculate the number of pulses that the slave axis currently needs to output is too much
9	The cam master is 2 cycles ahead of the slave
Parameter error (check Bit4 of address 1)	Display the offset address of the error parameter register.
Form error (check Bit5 of address 1)	The wrong table segment number is displayed.

(2) Address 3-function register before ECAM is enabled

Start the corresponding function register of the cam. When the corresponding setting is 1 , the corresponding function of the cam is enabled.

BIT6: start from current position
You can set the starting point of the master and slave when the cam starts.
When this function is enabled, the initial position of the spindle is obtained from [Address 27, 28 - current position of the spindle (before conversion)];

The initial position of the slave axis is obtained from [Address 19, 20 - current position of the slave axis (after conversion)].
(3) Address 4-function register in ECAM operation

Bit0-Sync signal enable
When the address 4-Bit0=1, when the spindle position is at the lower limit of the synchronous position \leq the spindle position \leq the upper limit of the synchronous position, the synchronous terminal outputs.

Bit1-Stop when the current cycle is completed
When address 4-BIT1 = 1, the cam will stop immediately after the execution of the current table is completed. After stopping, address 5 will automatically change to 3 , reset to 1 , and the periodic electronic cam can be started again. The same applies to non-periodic electronic cams.
(4) Address 5-electronic cam start register

Periodic electronic cam start: when address 5=1, start periodic electronic cam: when address 5=0, stop electronic cam.
Periodic delay electronic cam start: when address $5=2$, start the first period delay pulse set by address 15,16 and execute according to periodic electronic cam; address 5=0, stop electronic cam.

When switching between periodic electronic cam and non-periodic electronic cam, the data switching between address $5=1 \rightarrow$ address $5=0 \rightarrow$ address $5=2$ requires an interval of more than 100us.

(5) Address 8-synchronization signal Y terminal number

This register is used to set the terminal number of the synchronization signal output.
When the address $4-B i t 0=1$, when the spindle position is at the lower limit of the synchronous position \leqq the spindle position \leqq the upper limit of the synchronous position, the synchronous terminal outputs.
(6) Address 9-12-synchronization position upper and lower limit

Address	Features	Range
Address 9	CAM synchronization position lower limit (LOW WORD)	0 to 2147483647
Address 10	CAM synchronization position lower limit (HIGH WORD)	
Address 11	CAM synchronization LOW WORD)	0 to 2147483647
Address 12	CAM synchronization position upper limit (HIGH WORD)	

The synchronization position upper/lower limit of the electronic cam is set. When the synchronization position lower limit \leq spindle position \leq position upper limit and the synchronization signal is enabled (address 4, BITO), the synchronization signal terminal Y is output.

(7) Address 14-Aperiodic electronic cam execution times setting

Address	Features	Range
Address 14	Periodic electronic cam-reserved	
	Non-periodic electronic cam-control the number of times the electronic cam is executed	1 to 65535

When the non-periodic electronic cam mode is selected, the address 14 controls the execution times of the electronic cam. The current address is set to the number of times the cam repeats the table. When the value is HFFFF, it will become periodic cam execution. When the value is 0 , the current address will automatically become 1 if it exceeds the range.

Number of repetitions=0

Number of repetitions=1

(8) Address 15-16—Electronic cam start delay pulse setting

Address	Features	Range
Address 15	Aperiodic electronic cams or periodic delay electronic cams. The electronic cam table will be	32-bit unsigned integer
Address 16	executed immediately after the spindle rotates the set number of pulses	

When executing aperiodic electronic cams or periodic delayed electronic cams, if address 3 (Bit0-delayed start enable) is set, the delayed start function is enabled. The slave axis receives a cam start signal. If the electronic cam table is not executed immediately, the table is run after delaying the spindle rotation for several pulses. At this time, the number of delayed pulses must be set for address 16.

As shown in the figure below: When the system receives a cam start signal, the electronic cam table will be executed immediately after the spindle rotates the set number of pulses.

Delayed start pulse=10

Address	Features	Range
Address 17	The non-periodic electronic cam can be started at the specified position by address	32-bit unsigned integer
Address 18	3 (Bit1-specified position start enable). The starting location is set by this address	

9.2.2.6 E-cam spreadsheet data creation

(1) Single table data change setting

Each electronic cam table can create 512 points of data, which are set using offset address 40 -address [$40+\mathrm{n} * 4+4$] respectively. Every 4 points of data is a group of ECAM data, which is composed of master axis position and slave axis position.

Use DMOV instruction to manipulate table data:

Set the total data segment of the spreadsheet data to 3
The spindle position of segment 0 is 0
The position of the 0 th segment slave axis is 0
The spindle position of the first segment is 100
The first segment slave axis position is 100
The second stage spindle position is 200
The second segment slave axis position is 0
Configure electronic cam

(2) Use PLC Editor to generate table data

Define the relationship between master axis and slave axis, which is called electronic cam table data. In the data input, the electronic cam table has two ways to express:

Method 1: The functional relationship between the adopter
Method 2: Use the point-to-point relationship of X and Y to obtain the electronic cam table in two ways:
Approach 1: According to the standard function relationship of the master and slave axis
Approach 2: According to the corresponding relationship between points measured in actual work.
The cam table can define multiple CAM curves. After the relationship is determined, the position of the slave axis can be obtained according to the position of the master axis.

For example, the cam table for sinusoidal signals:

The electronic cam table is called electronic cam table in PLC Editor. Select [electronic cam table] in [Project Properties]-[Protection Function], right click to add and delete the table.

The chart is mainly divided into 4 parts, namely the relative position of the master/slave axis, the relative speed of the master/slave axis, the relative acceleration of the master/slave axis, and the bottom data setting. The first three parts are used to display the CAM data set by the user. The horizontal axis is the main axis, and the vertical axis is the position of the slave axis, the speed ratio of the slave axis to the master axis, and the acceleration ratio of the slave axis to the master axis. The data setting area is introduced as follows:
(1) Displacement resolution: Provide users to set the total number of data points occupied by the table, and the setting range is from 10 to 512, one point occupies 4 WORD Devicess.
2) Data setting: Describe the displacement change of the master/slave axis by function.
(3) Import: describe the displacement change of the master/slave axis through a point-to-point method.
4) Export: Export and archive the change relationship of the master/slave axis in a point-to-point manner.

1) Functionally describe the position changes of the master and slave axes

Select [Data Setting] in the data setting area and the "Data Setting Window" will appear, which allows the user to describe the curve of the entire cam in a function, rather than a point-to-point description. At present, Wecon PLC provides 3 cam curve modes for users to choose, namely: Const Speed (constant speed), Const Acc (uniform acceleration), BSpline (cycloid).

[Data Setting] The window is composed of sections, each section provides the user to set a section of cam curve, and then the entire section composes the cam curve. Each section is composed of master axis, slave axis, CAM curve and resolution, as explained below: Main shaft: the displacement of the main shaft, the displacement of the main shaft must be greater than a value of 0 , and increase; Slave axis: the displacement of the slave axis, which is positive or negative;

CAM curve: the function used in the current section;
Resolution: The number of points used in the current section. The entire table can be set in the range 10-512. 1 point occupies 4 WORDs. If not set, the remaining points will be divided equally. The resolution is set according to the requirements of the device. The higher the resolution, the smoother the device runs, but the larger the device.
2) Describe the position changes of the master and slave axes in a point-to-point manner

Directly add data to the electronic cam table in a point-to-point mode. A cam table can input up to 512 points of data.
[Export]Export the current table data in a point-to-point manner and store it in the specified file.
[Import] Import the current table data in a point-to-point manner.

(3) Use ECAM TBX to generate tables

Name	Features	Bits (bits)	Whether pulse type	Instruction format	Step count
ECAMTBX	Generate spreadsheet data	16	No	ECAMTBXSO S1 D0 D1	9

S0--parameter address, allowable device: D, R.
For the setting parameters when generating the curve, please refer to the description in [Appendix]-[Parameter List]
S1--curve type, allowable Devicess: D, R, H, K.
Indicates the type of curve to be generated.
K1: Generate S type acceleration/deceleration curve with a spindle of 1 ms
K2: Customize the specified key point to generate a table
K100: Generate rotary saw curve
K101: Generate chase curve
DO--the first address of cam parameters,
Allowed devices: D, R
The generated table data is stored at the beginning of [$\mathrm{DO}+40$], and the number of table segments is stored in [DO +38].
D1--form generation result
Allowed devices: D, R
D1 <0 generates a table error;
D1> 0 The table is successfully generated. D1 represents the total number of segments in the current table.
ECAMTBX instruction generating curve error code:

Error code	Content
-1	Condition parameter error
-2	The spindle pulse number is too few, not enough for synchronization area
-3	Unknown cam curve type
-4	Resolution range error
-5	Too many pulses of the slave axis calculated
-6	The calculated number of pulses from the slave axis is too small
-7	The calculated number of spindle pulses exceeds the set length
-8	The pulse number of the slave axis is set to 0
-10	S type acceleration and deceleration curve calculation error
-11	Unknown curve type
-12	Curve left wrong

PLC LX5V Series Programming Manual (V2.2)

	-13	The number of slave axes that exceeds the range

Key point generating curve Error code:

Error code	Content
-21	The number of key points is out of range
-22	Total resolution exceeds range
-23	Incorrect relationship between spindle size
-24	The resolution setting of each segment is incorrect
-25	When calculating, the number of control points is insufficient
-26	Unknown acceleration curve type
-27	Spindle pulse number is negative

S-type acceleration and deceleration generated curve Error code:

Error code	Content
-31	The number of pulses exceeds the range
-32	Maximum frequency out of range
-33	Acceleration and deceleration time out of range
-34	The number of pulses or frequency settings cannot meet the curve generation conditions

* Note: After the curve is successfully generated by the ECAMTBX instruction, the cam table can be uploaded to the upper computer for viewing in the PLC of the PLC Edit upper computer software.

The application of ECAM

Rotary saw application

In the feeding and cutting application, the traditional method is to use the stop-and-go method. The feeding shaft first walks to a fixed length, and then the cutting shaft moves again, and then the process of "feeding stop" and "cutting stop" is repeated. Disadvantages of the medium method. In the process of feeding shaft stop and stop, the required acceleration and deceleration can not improve the production efficiency. Therefore, the new method is to use the non-stop feeding method. Generally, there are two feeding and cutting methods: rotary saw and flying saw. The difference between the two is that rotary saw moves in the same direction, while flying saw moves back and forth, and the set CAM table curves are also different.

(1) Description of rotary saw action

1) Rotary saws control the cutting axis to rotate in the same direction, and cut when the tool touches the material. During this period, the feeding axis will continue to feed at a constant speed without stopping. The action and output stroke of rotary saw control are shown in the figure below:
(1). Accelerate and move to the synchronization area from the beginning of the axis;
(2). In the synchronization zone and the spindle at the same speed and output the cutting signal (CLRO);
(3). After leaving the synchronization zone, the slave axis will decelerate and move back to the origin to complete a cycle of cutting. After knowing the stroke, the speed relationship can be drawn.
2) In the peeling process, the most important thing is speed synchronization. For example, when the cutting knife contacts the material, it must be synchronized with the material speed. If the cutting knife speed is greater than the synchronous speed during contact, a force that pulls the material forward will cause the material to be uneven. If the speed is lower than the material speed, it will appear. Blocking phenomenon.
3) The planning of the synchronization area will affect the operation of the actual equipment. If the synchronization area is larger in a cutting cycle, the acceleration and deceleration time will be smaller, which means that the equipment needs to be accelerated and decelerated in a short time. For motors and machines The impact of the cutter is very large, and it is easy to cause the servo over-current alarm and the equipment cannot operate normally.

4) The relationship between cutting length and cutter circumference:

Cutting length <cutter circumference:	
In the synchronization zone, the cutter linear speed is synchronized with	
the feeding speed. After the synchronization zone, in order to catch up with	
the next cutting, the cutting axis is accelerated, as shown in the figure.	
Cutting length = cutter circumference:	
Average speed of cutting axis	

1 times cutter circumference <cutting length <2 times cutter circumference:After the cutting action in the synchronization zone is completed, the cutting axis decelerates, then speed up to synchronize the next cutting, as shown in the figure.	The ratio of the speed of main axis and slave axis
Cutting length> 2 times the circumference of the cutter:When the cutting length is greater than 2 times the knife circumference (this is also the most common situation), in a cycle, after the cutting of the knife edge in the synchronization zone is completed, it decelerates to a stop, waits for a certain length to pass, and then starts the next cutting .	The ratio of the speed of main axis and slave axis

(2) Rotary saw generation

The PLC built-in rotary saw curve automatically generates instructions. For the parameters needed to generate the curve, please refer to the "Rotary saw Parameter Table". The CAM curve in depth 6 has 5 forms. The combination of these 5 forms can generate the required rotary saw curve. ,As shown below.

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Rotary saw curve parameter setting} \\
\hline Parameter \& Offset address \& Name \& Format \& Instruction \\
\hline Parameter 1 \& \begin{tabular}{l}
Address 0 \\
Address 1
\end{tabular} \& Spindle length \& 32 Bits Integer \& The cutting length of the feeding axis moving, the unit is Pulse. \\
\hline Parameter 2 \& Address 2
Address 3 \& Slave length \& 32-bit integer \& \begin{tabular}{l}
The circumference of the cutting axis (including the tool length), the unit is Pulse. \\
Range [-2000000000, 2000000000]
\end{tabular} \\
\hline Parameter 3 \& Address 4
Address 5 \& Slave axis sync length \& 32-bit integer \& The length of the slave axis synchronization zone is smaller than the slave axis length, generally set to \(1 / 3\) of the slave axis length. (When the new S-type rotary saw is selected, the value satisfies 40 *synchronization ratio<=synchronization length<slave axis Length-2.), synchronization area range: \(0<\) synchronization area length < |slave axis length \(\mid\) \\
\hline Parameter 4 \& Address 6

Address 7 \& Slave axis synchronization magnification \& Floating \& | Calculation method 1: In the synchronization zone, the speed of the master axis and the slave axis are equal, and the calculation method of synchronization magnification: $\begin{aligned} & \mathrm{v}=\nu 2 \Rightarrow \frac{F_{1}^{* *} .14^{*} D_{1}}{R_{1}}=\frac{F_{2}^{*} 3.14^{*} D_{2}}{R_{2}} \\ & \Rightarrow \frac{F_{2}}{F_{1}}=\frac{R_{2} / D_{2}}{R_{1} / D_{1}} \end{aligned}$ |
| :--- |
| among them |
| V1(V2)=Master (slave) axis speed |
| F1(F2) =Master (slave) axis speed (Hz) |
| D1(D2)=Master (slave) shaft diameter |
| R1 (R2) = master (slave) axis pulse number per revolution |
| Calculation method two: |
| Slave axis synchronization magnification=1mm The number of pulses required by the slave axis/ |
| Number of pulses required by 1 mm spindle |

\hline
\end{tabular}

Parameter 5	Address 8	Slave axis maximum magnification limit	Floating	Maximum magnification= Maximum speed of slave axis/maximum speed of main axis
Parameter 6	Address 10	Acceleration curve	Integer	0 : constant acceleration curve, the speed curve is T type 1: Constant jerk curve, speed curve is S type 2: reserved 3: reserved 4: New S type rotary saw curve (the synchronization zone is in the middle), Please refer to the appendix for details. The current curve only supports CAM curve 0
Parameter 7	Address 11	CAM curve	Integer	Start, stop, and various curve selections of different synchronization zone positions: 0: LeftCAM synchronization area is located on the front curve; 1: MidCAMall; 2: MidCAMBegin initial curve; 3: MidCAMEnd end curve; 4: RightCAM sync area is located at the back curve; BIT[15]=1: continue the previous data, used for splicing curves, such as setting the subdivision of the curve, the total resolution range of all splicing curves is 31 to 1024 , and the two rotary saw curves are spliced into a shearing curve
Parameter 8	Address 12	Resolution	Integer	Range [31,511], of which 20 synchronization areas; When CAM curve is selected as MdiCAMall (resolution range is [54, 511])
	Address 13	Reserved	Retained	Reserved
Parameter 9	Address 14 Address 15	Synchronization zone start position	32-bit integer	After the curve is generated correctly, the calculated starting position of the spindle synchronization area can be used to set the lower limit of the synchronization area.
Parameter 10	Address 16 Address 17	End of synchronization zone	32-bit integer	After the curve is correctly generated, the calculated end position of the spindle synchronization area can be used to set the lower limit of the synchronization area.
Parameter 11	Address 18 Address 19	Slave axis minimum limit operation magnification	Floating	It is valid only when parameter 6 acceleration curve is set to 4 . Make sure that the actual maximum speed of the slave axis cannot be less than the speed corresponding to this value. Thereby adjusting the slope of the deceleration section.

(3) Rotary saw configuration

1) Overview

Synchronization zone: At this time, the feeding axis and the cutter axis rotate at a fixed speed ratio (the linear velocity of the cutter head is equal to the linear velocity of the cutting surface), and the cutting of the material occurs in the synchronous zone.

Adjustment area: due to different cutting lengths, corresponding displacement adjustments are required. According to the cutting length adjustment zone, it can be divided into the following three situations.
Short material cutting: the cutter shaft first has a uniform speed in the adjustment area, and then decelerates to the synchronous speed.
Normal material cutting: In this case, the cutter axis accelerates first in the adjustment zone. Then decelerate to synchronous speed. Long material cutting: In this case, the cutter shaft first accelerates to the minimum limit operating speed in the adjustment area, and then decelerates to the synchronous speed. After the cutter shaft makes one revolution, the cutter shaft decelerates to zero and stays for a while, then speed up and cycle operation. The longer the material length, the longer the residence time.

* Note:

When setting the maximum limit magnification, synchronization magnification, and minimum limit operation magnification, the material length boundary is also determined. Several limit values are as follows:
(1) The speed of the shortest material (Lm1) satisfies: the actual maximum operating magnification $=$ the maximum limit magnification, and the adjustment area is a constant speed + deceleration process.

2) The shortest normal material (Lm2): the actual maximum operating magnification $=$ the maximum limit magnification, the adjustment area is the acceleration + deceleration process.

(3) The shortest length of material (Lm3): the actual maximum operating magnification $=$ the minimum limit operating magnification, the adjustment area is acceleration + deceleration + dwell process.

Therefore, the length of the material determines the type of operation of the slave axis:
(1) When $\operatorname{Lm} 1 \leq L<L m 2$, this is a short material, and its $0 \leq$ actual maximum operating magnification \leq maximum limit magnification
(2) When $\operatorname{Lm} 2 \leq L<L m 3$, this is a normal material, and its minimum limit operation magnification \leq actual maximum operation magnification \leq maximum limit magnification
(3) When $L \geq L m 3$, this is a long material, and the actual maximum operating magnification = minimum limit magnification. There is a residence zone, the longer the material, the longer the residence time.
2) Example

The process result will be different according to the difference of the maximum limit magnification, synchronization magnification and minimum limit operation magnification.
(1) Synchronous magnification <minimum limit operation magnification <maximum limit magnification

The parameter settings are as follows:

Short material:

Normal materials:

Long material:

(2) Synchronous magnification $=$ minimum limit operation magnification <maximum limit magnification In this case, when the material is long, there is no deceleration into the synchronization zone. The parameter settings are as follows:

The situation of short material and normal material is the same as described in 2.1 Long material: (no deceleration process in the adjustment zone)

(3) Synchronous magnification $=$ minimum limit operation magnification $=$ maximum limit magnification

In this case, there are no normal materials, only short materials and long materials. The parameter settings are as follows:

Short material
Long material

(4) Case

1) Control requirements:
(1). Use rotary saw curve to automatically generate cam table.
(2). For the equipment matched with the cutting axis and the feeding axis, the servo parameter is $1,000 \mathrm{pulse} / \mathrm{rev}$.
(3). Related parameters:

Cutting material length is 1000 mm , cutting shaft circumference is $60 \pi \mathrm{~mm}$, feeding shaft circumference is $100 \pi \mathrm{~mm}$, and feeding shaft speed is $1,000 \mathrm{~Hz}$
2) Parameters required to establish rotary saw curve

Parameter 1: You eed to input the length of the spindle cutting material because the cutting material length is 1000 mm , it is converted to pulse

1000*1000/100Pi=3183 (pulse)
Parameter 2: The circumference of the slave shaft, that is, the number of pulses required for one revolution of the slave shaft 1000 pulse

Parameter 3: The synchronization length of the slave axis is set to approximately $1 / 3$ of the circumference of the slave axis as 1000/3=333 pulse.

Parameter 4: During synchronization, the speed ratio of master and slave

$$
\frac{\mathrm{F} 2}{\mathrm{~F} 1}=\frac{\mathrm{RD} 2 / \mathrm{D} 2}{\mathrm{R} 1 / \mathrm{D} 1}=\frac{1000 / 60}{1000 / 100}=\frac{5}{3}
$$

Parameter 5: The maximum magnification limit is: set to 10 times the synchronization magnification as 50/3 (floating point number).
Parameter 6: Low WORD is set to 0 - uniform acceleration
High WORD set to 0 - LEFTCAM
Parameter 7: Set the curve generation result to 0
Using curve generation instructions, ECAMTBX generates curves.
Circuit program corresponding to the case:

The curve corresponding to the Circuit program:
Upload via PLC, check the electronic cam table, set the table address, and upload the generated cam curve.

Flying saw application

The flying saw system means that the feeding shaft will not stop while the system is cutting, so the camshaft must keep the same speed with the feeding shaft when cutting, and the same speed time must be enough for the cutter to complete the cutting and detach to safety s position. The flying saw camshaft will drive the cutter and the entire group of cutting mechanisms to move, so that it can maintain the same speed with the main shaft during cutting.

(1) Description of flying saw action

Suppose the wiring is as shown in the figure below, where 1, 2, 3, 4 are the waiting point (starting point), synchronization point, synchronization departure point, and waiting point (starting point), and its actions will follow the movement of the spindle. At the beginning, the camshaft stops at position 1, and then accelerates forward to position 2 to achieve speed synchronization, and continues to position 3, then decelerates and returns to position 4 in the opposite direction (assuming position 1 and position 4 are the same), and then repeat this action

Flying saw control is used in pipe cutting machines, beverage filling and other equipment that needs to move with the processed product; its action is to add axis (slave axis)-start to accelerate and follow the processed product, and after moving to the synchronization zone, it will contact the processed product Start processing at a constant speed. After leaving the synchronization zone, the speed will decrease and stop, and then return to the starting position. All the stroke feeding axes (spindles) have been feeding at a constant speed. As shown below.

The stroke of the flying saw is divided into two parts: the following part and the returning part. The two moving distances must be the same. From the speed stroke point of view, that is, positive area = negative area.

During flying saw, you need to pay attention that the feeding will not stop during processing, so the processing axis must keep the same speed with the feeding axis, and the synchronization time must be enough for the equipment to complete processing and move to a safe position.

The stroke length of the synchronization area is also the processing time, which can be considered when planning the synchronization area. In addition, the planning of the synchronization area will affect the operation of the actual equipment. If the synchronization area is large in a cutting cycle, the acceleration and deceleration time will be smaller, indicating that the equipment needs to be accelerated and decelerated in a short time. For motors, machines, and cutters The impact is very large, and it is easy to cause the servo over-current alarm, and the equipment cannot operate normally.

(2) Flying saw parameter table

PLC LX5V Series Programming Manual (V2.2)

	Address 13	Reserved	Retained	Reserved
Parameter 8	Address 14 Address 15	synchronization zone start position	32-bit integer	After the curve is generated correctly, the calculated starting position of the spindle synchronization area can be used to set the lower limit of the synchronization area.
Parameter 9	Address 16 Address 17	End of synchronization zone	32-bit integer	After the curve is correctly generated, the calculated end position of the spindle synchronization area can be used to set the lower limit of the synchronization area.
Parameter 10	$\begin{array}{\|l\|} \hline \text { Address } 18 \\ \hline \text { Address } 19 \\ \hline \end{array}$	Reserved	Reserved	Reserved
Parameter 11	Address 20 Address 21	The maximum magnification of the actual operation of slave axis	Floating	The maximum magnification of the actual operation of slave axis: It is sync magnification when it is long material, and it is between sync magnification and maximum limit magnification when it is short material.

(3) Case

1) Control parameters
(1). The servo parameter is 1000 pulse/rev.
(2). Related parameters

The processing length of the feeding shaft is 660 mm , and the circumference of the feeding shaft is 60 mm
The machining length of the machining shaft is 40 mm
One rotation of the machining axis is 20 mm
The feed shaft speed is 1000 Hz
2) Establish flying saw curve by rotary saw curve

The parameters needed to establish rotary saw curve
Spindle length (processing length): Assuming that the spindle servo parameter is 1000 pulse/rev and the mechanism parameter is $60 \pi \mathrm{~mm} / \mathrm{rev}$, then 1 pulse is 0.188 mm . If the actual processing length is $660 \mathrm{~mm} \rightarrow$ convert to $660 / 0.188=3501$ pulse. Slave axis length(machining axis length):
First consider that the slave axis servo parameter is 1000 pulse/rev and the mechanism parameter is $20 \mathrm{~mm} / \mathrm{rev}$, then 1 pulse $=0.01 \mathrm{~mm}$ can be obtained.
The actual measured slave shaft machining length is $40 \mathrm{~mm} \rightarrow$ converted to 2000 Pulse.
The location of the synchronization zone;
The lower limit of the synchronization zone is when the actual STARTO signal is triggered, the slave axis goes from 0 to the position 200 where it catches up with the spindle speed;

The upper limit of the synchronization zone is the position 500 where the processing time ends and the processing equipment also leaves.

The speed ratio of master and slave axis in synchronization zone: the speed ratio of the master axis and slave axis in the synchronization zone.

The speed ratio of master and slave axis when returning:
After the total length of the stroke subtracts the stroke of the following movement, the return stroke length can be obtained, and then use the following stroke distance $=$ return stroke distance to know the speed ratio when returning $=3$.
3) Establish flying saw curve automatically by rotary saw curve
(1) Establish a positive area curve

Parameter 1: It needs to input the processing length of the spindle feeding shaft to be 660 mm , which is converted to pulse $660^{*} 1000 / 60$ pi=3501 pulse; Since the chase shear needs to return to the origin after the machining is completed, the pulse of
the spindle $=3501 / 2=1750$ pulse;
Parameter 2: Slave shaft processing length is 40 mm , conversion $40 * 1000 / 20=2000$ pulse;
Parameter 3: Slave axis synchronization length setting agrees that $1 / 3$ of the slave axis circumference is $2000 / 3=667$ pulse;
Parameter 4:

$$
\text { Sync rate } \frac{\text { Pulse for slave axis } 1 \mathrm{~mm}}{\text { Pulse for main axis } 1 \mathrm{~mm}}=\frac{\frac{1000}{20}}{\frac{1000}{60 \pi}}=3 \pi \text { (Float) }
$$

Parameter 5: the highest synchronization magnification 10 (floating point number);
Parameter 6: Low word setting 0: uniform acceleration;
High word setting 0: LeftCam.
(2) Establish a negative area curve

Parameter 1: Need to input the processing length of the spindle feeding shaft to be 660 mm , which is converted to pulse 660*1000/60pi=3501 pulse; Since the chase shear needs to return to the origin after the machining is completed, the pulse of the spindle $=3501 / 2=1750$ pulse;

Parameter 2: Reverse running size is -2000 ;
Parameter 3: Same;
Parameter 4: Same;
Parameter 5: Same;
Parameter 6: Low word setting 0: uniform acceleration;
High word setting H8000: LeftCam continues the existing table data.
4) Generate tables with the function of flying saw

Parameter 1: Need to input the processing length of the spindle feeding shaft to be 660 mm , which is converted to pulse 660*1000/60pi=3501 pulse;

Parameter 2: Slave shaft processing length is 40 mm , conversion $40 * 1000 / 20=2000$ pulse;
Parameter 3: Slave axis synchronization length setting agrees that $1 / 3$ of the slave axis circumference is 2000/3=667 pulse;
Parameter 4:

$$
\text { Sync rate } \begin{array}{|l}
\text { Pulse for slave axis } 1 \mathrm{~mm} \\
\cline { 2 - 2 } \text { Pulse for main axis } 1 \mathrm{~mm}
\end{array}=\frac{\frac{1000}{20}}{\frac{1000}{60 \pi}}=3 \pi \text { (Float) }
$$

Parameter 5: the highest synchronization magnification 10 (floating point number)
Parameter 6: Low word setting 1: Uniform acceleration;
High word setting 0 : invalid.
Use ECAMTBX to generate curves:

Obtain the curve according to the ladder program:

S type acceleration and deceleration curve establishment
(1) S type acceleration and deceleration curve table parameters

S type acceleration and deceleration curve parameter setting						
Parameter	Offset address	Name	Format	Instruction	Unit	Range
Parameter 1	Address 0	Total number of pulses (length)	32-bit integer	Total number of output pulses	Pulse	$\begin{gathered} 1 \text { to } \\ 2147483647 \end{gathered}$
	Address 1					
Parameter 2	Address 2	Set the maximum speed of pulse	32-bit integer	Set the highest frequency of pulses	Hz	1 to 200000
	Address 3					
Parameter 3	Address 4	Reserved	Retained	Reserved		
	Address 5					
Parameter 4	Address 6	Accelerated Time	16-bit integer	Pulse acceleration time	ms	2 to 32767
Parameter 5	Address 7	deceleration time	16-bit integer	Pulse deceleration time	ms	2 to 32767
Parameter 6	Address 8	Resolution	16-bit integer	Pulse resolution	Length	50 to 511
Parameter 7	Address 9	Reserved	Retained	Reserved		
Parameter 8	Address 10	Number of spindle pulses in the last segment	32-bit integer	Number of spindle pulses in the last segment (high and low)	Pulse	Internally generated
	Address 11					
	Address 12	Number of slave axis pulses in the last segment	32-bit integer	Number of pulses from the last segment of the slave axis (high and low bits)	Pulse	
	Address 13					
Parameter 10	Address 14	Uniform time	32-bit integer	The length of the pulse at a constant speed	Pulse	
	Address 15					
Parameter 11	Address 16	Maximum speed	32-bit integer	Maximum speed of curve results during operation	Hz	
	Address 17					
Parameter 12	Address 18	Reserved				
Parameter 13	Address 19	Curve generation result				

* Note:

Generate S type acceleration and deceleration curve (table) with the given acceleration time, deceleration time, and the highest speed. When calculating, the spindle uses the pulse input frequency of $1 \mathrm{~K}(1 \mathrm{~ms})$ as the calculation basis.

(2) Case

(1) Related control parameters

Calculation case:
Total number of pulses (length): 10000 pulses
Acceleration time: 100 ms
Deceleration time: 100 ms Resolution: 200
(2) 2. Curve parameters:

Parameter 1: The total number of output pulses 10000
Parameter 2: Maximum speed 50000
Parameter 6: acceleration time 100
Parameter 7: acceleration time 100
Parameter 8: Resolution 200

Customize specified key points to generate a table
(1) Specified key points generate table parameters

Specified key points generate table parameters				
Address	Name	Length	Instruction	Range
SO	Curve result	Single word	>0 : The curve is generated successfully <0: Failed to generate curve	
S0+1	Error parameter position	Single word		
$\mathrm{SO}+2$	Total resolution	Single word		10 to 511
SO+3	Number of key points (n)	Single word		1 to 10
SO+4	T	Double word	Set the initial offset position of slave axis	Reserved
SO+5	The initial position of slave axis	Double word	Set the initial offset position of slave axis	Reserved
SO+6	Spindle segment 0	Single word	The master/slave axis segment 0 is always 0	Reserv
S0+7	Slave axis segment 0	Single word	¢	Reserved

$\begin{gathered} \text { Key } \\ \text { point } 1 \end{gathered}$	S0+8	Spindle segment 1	Double word	Number of pulses of spindle segment 1	32-bit integer
	S0+9				
	S0+10	Slave axis segment 1	Double word	Number of pulses of slave axis segment 1	32-bit integer
	SO+11				
	S0+12	Curve type of segment 1	Single word	${ }^{1}$	
	SO+13	Resolution of segment 1	Single word	*2	
$\begin{gathered} \text { Key } \\ \text { point } 2 \end{gathered}$	S0+14	Spindle segment 2	Double word	Number of pulses of spindle segment 2	32-bit integer
	SO+15				
	SO+16	Slave axis segment 2	Double word	Number of pulses of slave axis segment 2	32-bit integer
	SO+17				
	S0+18	Curve type of segment 2	Single word	*1	
	S0+19	Resolution of segment 2	Single word	${ }^{*} 2$	

Key point N	S0+n*6+2	Spindle segment N	Double word	Number of pulses of spindle segment N	32-bit integer
	S0+n*6+3				
	S0+n*6+4	Slave axis segment N	Double word	Number of pulses of slave axis segment N	32-bit integer
	S0+n*6+5				
	S0+n*6+6	Curve type of segment N	Single word	${ }^{1}$	
	S0+n*6+7	Resolution of segment N	Single word	${ }^{2}$	

Curve type: Different values represent different curve types.
$0=$ uniform acceleration, $1=S$ acceleration and deceleration (uniform acceleration), 2 = cycloid, 3 = uniform speed.
The resolution range is 0-511, the total resolution of all segments does not exceed the total resolution set by [SO]. if the resolution of all segments is set to 0 , the total resolution set by [SO] split equally. When the curve type is cycloid, the corresponding resolution range is $3-511 . \mathrm{W}$

Refer to the setting method of PLC Editor to generate a table based on the given key points and the given function relationship. The parameter setting is the same as the setting method of the upper computer. The editing interface of the upper computer is shown below. When the table is generated in K2 mode, The generated result is similar to the table result set by the relevant parameters of the upper computer. This mode expands the function of the table generated by the lower computer through the key points. In the key point curve, the spindle must have an increasing relationship, that is, the spindle pulse number of the next point must be greater than the spindle pulse number of the previous point, otherwise an error will be reported.

(2) Case

1) Specified key points parameters

When the spindle has 0-600 pulses, the slave axis stops at position 0 ;
When the spindle has 600-1500 pulses, the slave axis moves to the position 2000;
When the spindle is $1500-1700$ pulses, the slave axis stops at position 2000;
When the spindle has 1700-1900 pulses, the slave axis will return to position 600;
When the spindle has 1900-2000 pulses, the slave axis returns to position 0.
2) Specified key points for tabulation

Use PLC Editor software to create ECAM table, and set the parameter value of each key point in the table.

Then set the starting address of the parameter, check the ECam0 form in [Electronic Cam] when downloading, the system will automatically fill in the data of the above form into the corresponding parameter address.
3) Specified key point parameters table

Address	Instruction	Set value	Address	Instruction	Set value
SO	Curve generation result		S0+19	Resolution of segment 2	0
S0+1	Error parameter location		S0+20	Spindle position of segment 3	1700
SO+2	Total resolution	100	S0+21		
SO+3	Number of key point	1-10	S0+22	Slave axis position of segment 3	2000
SO+4	Initial position of slave axis	- -	S0+23		
SO+5			S0+24	Curve type of segment 3	0
SO+6	Spindle position of segment 0	Reserved	S0+25	Resolution of segment 3	0
S0+7	Slave axis position of segment 0	Reserved	S0+26	Spindle position of segment 4	1900
S0+8			S0+27		
S0+9			S0+28	Slave axis position of segment 4	600
S0+10	Slave axis position of segment 1	0	S0+29		
S0+11			S0+30	Curve type of segment 4	0
S0+12	Curve type of segment 1	0	S0+31	Resolution of segment 4	0
S0+13	Resolution of segment 1	0	S0+32	Spindle position of segment 5	2000
S0+14	Spindle position of segment 2	1500	S0+33		
S0+15			S0+34	Slave axis position of segment 5	0
S0+16	Slave axis position of segment 2	1200	S0+35		
S0+17			S0+36	Curve type of segment 5	0
S0+18	Curve type of segment 2	0	S0+37	Resolution of segment 5	0

4) The table generated by specified key points is shown as below.

5) If you do not need to fill in the data in the form, you can use the Circuit program to replace the form data:
$\left.\begin{array}{lllll} & {[\text { ZRST }} & \text { D100 } & \text { D200 }\end{array}\right]$

Special address

Devices	Content
SD881 (high byte), SD880 (low byte)	Y000 Output pulse number. Decrease when reversed. (Use 32 bits)
SD941 (high byte), SD940 (low byte)	Y001 Output pulse number. Decrease when reversed. (Use 32 bits)
SD1001 (high byte), SD1000 (low byte)	Y002 Output pulse number. Decrease when reversed. (Use 32 bits)
SD1061 (high byte), SD1060 (low byte)	Y003 output pulse number. Decrease when reversed. (Use 32 bits)
SD1121 (high byte), SD1120 (low byte)	Y004 Output pulse number. Decrease when reversed. (Use 32 bits)
SD1181 (high byte), SD1180 (low byte)	Y005 Output pulse number. Decrease when reversed. (Use 32 bits)
SD1241 (high byte), SD1240 (low byte)	Y006 Number of output pulses. Decrease when reversed. (Use 32 bits)
SD1301 (high byte), SD1300 (low byte)	Y007 Output pulse number. Decrease when reversed. (Use 32 bits)

Devices	Content	Devices	Content
SM882	Y000 Pulse output stop (stop immediately)	SM880	Y000 monitoring during pulse output (BUSY/READY)
SM942	Y001 Pulse output stop (stop immediately)	SM940	Y001 Monitoring during pulse output (BUSY/READY)
SM1002	Y002 Pulse output stop (stop immediately)	SM1000	Y002 Monitoring during pulse output (BUSY/READY)
SM1062	Y003 Pulse output stop (stop immediately)	SM1060	Y003 Monitoring during pulse output (BUSY/READY)
SM1122	Y004 Pulse output stop (stop immediately)	SM1120	Y004 Monitoring during pulse output (BUSY/READY)
SM1182	Y005 Pulse output stop (stop immediately)	SM1180	Y005 Monitoring during pulse output (BUSY/READY)
SM1242	Y006 Pulse output stop (stop immediately)	SM1240	Y006 Monitoring during pulse output (BUSY/READY)
SM1302	Y007 Pulse output stop (stop immediately)	SM1300	Y007 Monitoring during pulse output (BUSY/READY)

Appendix

Rotary saw parameter table

Rotary saw curve parameter setting				
Parameter	Offset address	Name	Format	Instruction

PLC LX5V Series Programming Manual (V2.2)

Parameter 6	Address 10	Acceleration curve	Integer	0: Constant acceleration curve, the speed curve is T type 1: Constant jerk curve, the speed curve is S type 2: reserved 3: reserved 4: New S rotary saw curve (synchronization zone is in the middle), see appendix for details. Current curve only supports CAM curve as 0.
Parameter 7	Address 11	CAM curve	Integer	Start, stop, and various curve selections of different synchronization zone positions: 0: LeftCAM synchronization area is on the front curve; 1: MidCAMall; 2: MidCAMBegin start curve; 3: MidCAMEnd end curve; 4: RightCAM synchronization area is on the back curve; BIT[15]=1: Continuing the previous data, used for splicing curves, such as setting the subdivision of the curve, the total resolution range of all splicing curves is 31 to 1024, and the two rotary saw curves are spliced into a shearing curve
Parameter 8	Address 12	Resolution	Integer	Range [31,511], of which 20 synchronization areas; When CAM curve is selected as MdiCAMall (resolution range is [54, 511])
	Address 13	Reserved	Retained	Reserved
Parameter 9	Address 14 Address 15	Synchronization zone start position	32-bit integer	After the curve is generated correctly, the calculated start position of the spindle synchronization area could be used to set the lower limit of the synchronization area.
Parameter 10	Address 16 Address 17	End of synchronization zone	32-bit integer	After the curve is correctly generated, the calculated end position of the spindle synchronization area could be used to set the lower limit of the synchronization area.
Parameter 11	Address 18 Address 19	Slave axis minimum limit operation magnification	Floating	It is valid only when parameter 6 acceleration curve is set to 4 . Make sure that the actual maximum speed of the slave axis cannot be less than this value magnification corresponds to the speed so as to adjust the slope of the deceleration section.
Parameter 11	Address 20 Address 21	The maximum magnification of the actual operation of slave axis	Floating	The maximum magnification of the actual operation of slave axis: It is sync magnification when it is long material, and it is between sync magnification and maximum limit magnification when it is short material.

9.2.5.2 Flying saw parameter table

Parameter setting of flying saw curve				
Parameter	Offset address	Name	Format	
	Address 0	Spindle length	32-bit integer	The cutting length of the feeding axis moving. Unit: Pulse.
	Address 1			

Parameter 2	Address 2 Address 3	Slave length	32-bit integer	The circumference of the cutting axis (including the tool length). Unit: Pulse. Range [-2,000,000,000, 2,000,000,000]	
Parameter 3	Address 4 Address 5	Slave synchronization length	32-bit integer	The length of the slave axis synchronization zone. Synchronization area range: $0<$ synchronization area length < \|slave axis length/2	
Parameter 4	Address 6	Slave axis synchronization magnification	Floating	Calculation method one: In the synchronization zone, the speed of master axis and the slave axis are equal, and the synchronization magnification calculation method is as below. $\begin{aligned} & \mathrm{v}=\nu 2 \Rightarrow \frac{F_{1}^{* 3.14 *} D_{1}}{R_{1}}=\frac{F_{2}^{*} 3.14 * D_{2}}{R_{2}} \\ & \Rightarrow \frac{F_{2}}{F_{1}}=\frac{R_{2} / D_{2}}{R_{1} / D_{1}} \end{aligned}$ among them V1(V2)=Master (slave) axis speed F1(F2) =Master (slave) axis speed (Hz) D1(D2)=Master (slave) axis diameter R1 (R2) = master (slave) axis pulse number per revolution Calculation method two: Slave axis synchronization magnification=1mm The number of pulses required by the slave axis/1mm The number of pulses required by the spindle	
Parameter 5	Address 8 Address 9	Slave axis maximum magnification limit	Floating	Maximum magnification = maximum speed of slave axis/maximum speed of main axis	
	Address 10	Acceleration curve	Integer	0: constant acceleration curve, the speed curve is T type 1: Constant jerk curve, the speed curve is S type	
Parameter 6	Address 11	CAM curve	Integer	Start, stop, and various curve selections for different synchronization zone positions: (currently only one type is supported, the tracking RightCam and the return LeftCam curve type are defaulted and can not be set)	
Parameter 7	Address 12	Resolution	Integer	Range [62,511]	
	Address 13	Reserved	Reserved	Reserved	
Parameter 8	Address 14 Address 15	Synchronization zone start position	32-bit integer	After the curve is generated correctly, the calculated starting position of the spindle synchronization area can be used to set the lower limit of the synchronization area.	
Parameter 9	Address 16 Address 17	End of synchronization zone	32-bit integer	After the curve is correctly generated, the calculated end position of the spindle synchronization area can be used to set the lower limit of the synchronization area.	
Parameter 11	Address 20 Address 21	The maximum magnification of the actual operation of slave axis	Floating	The maximum magnification of the actual operation of slave axis: It is sync magnification when it is long material, and it is between sync magnification and maximum limit magnification when it is short material.	

S type acceleration and deceleration curve parameter table

S type acceleration and deceleration curve parameter setting						
Parameter	Offset address	Name	Format	Instruction	Unit	Range
Parameter 1	Address 0	Total number of pulses (length)	32-bit integer	Total number of output pulses	Pulse	1 to 2147483647
	Address 1					
Parameter 2	Address 2	Set the maximum speed of pulse	32-bit integer	Set the highest frequency of pulses	Hz	1 to 200000
	Address 3					
Parameter 3	Address 4	Reserved	Retained	Reserved		2 to 32767
	Address 5					
Parameter 4	Address 6	Accelerated time	16-bit integer	Pulse acceleration time	ms	2 to 32767
Parameter 5	Address 7	Deceleration time	16-bit integer	Pulse deceleration time	ms	50 to 511
Parameter 6	Address 8	Resolution	16-bit integer	Pulse resolution	Length	51 to 512
Parameter 7	Address 9	Reserved	Reserved	Reserved		
Parameter 8	Address 10	Number of pulses of spindle in the last segment	32-bit integer	Number of pulses of spindle in the last segment (high and low)	Pulse	Internally generated
	Address 11					
Parameter 9	Address 12	Number of pulses of slave axis in the last segment	32-bit integer	Number of pulses of slave axis in the last segment(high and low)	Pulse	
	Address 13					
Parameter 10	Address 14	Uniform time	32-bit integer	The time span when outputting pulses at a constant speed	Pulse	
	Address 15					
Parameter 11	Address 16	Maximum speed	32-bit integer	The maximum speed of curve during operation	Hz	
	Address 17					
Parameter 12	Address 18	Reserved				
Parameter 13	Address 19	Curve generation result				

4 Specified key points generate a table

Specified key points generate table parameters					
Address		Name	Length	Instruction	Range
SO		Curve generation result	Single word	>0 : The curve is generated successfully <0 : Failed to generate the curve	
S0+1		Error parameter location	Single word		
$\mathrm{SO}+2$		Total resolution	Single word		10 to 511
SO+3		Number of key points (n)	Single word		1 to 10
SO+4		Start position of slave axis	Double word	Set the start offset position of slave axis	Reserved
SO+5					
SO+6		Spindle segment 0	Single word	The master/slave axis of segment 0 is always 0	Reserved
SO+7		Slave axis segment 0	Single word		
Key	S0+8	Spindle segment 1	Double word	The number of pulse of spindle segment 1	32-bit integer
	S0+9				
	S0+10	Slave axis segment 1	Double word	The number of pulse of slave axis segment 1	32-bit integer
	S0+11				

point 1	SO+12	Curve type of segment 1	Single word	*1	
	S0+13	Resolution of segment 1	Single word	*2	
$\begin{gathered} \text { Key } \\ \text { Point } 2 \end{gathered}$	SO+14	Spindle segment 2	Double word	The number of pulse of spindle segment 2	32-bit integer
	S0+15				
	S0+16	Slave axis segment 2	Double word	The number of pulse of slave axis segment 2	32-bit integer
	S0+17				
	S0+18	Curve type of segment 2	Single word	*1	
	S0+19	Resolution of segment 2	Single word	*2	
	\ldots
$\begin{gathered} \text { Key } \\ \text { point N } \end{gathered}$	S0+n*6+2	Spindle segment N	Double word	The number of pulse of spindle segment N	32-bit integer
	S0+n*6+3				
	S0+n*6+4	Slave axis segment N	Double word	The number of pulse of slave axis segment N	32-bit integer
	S0+n*6+5				
	S0+n*6+6	Curve type of segment N	Single word	$*_{1}$	
	S0+n*6+7	Resolution of segment N	Single word	*2	

10 Communication instruction

10.1 Communication port protocol setting

PROTOCOL/communication port protocol setting

PROTOCOL(P)

Set (s) protocol for (n) communication port.
-[PROTOCOL (s) (n)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	Protocol number to be set	-	Unsigned BIN 16 bit	ANY16
(n)	Which communication port to set, 0 means COM1,1 means COM2 *1	0,1	Unsigned BIN 16 bit	ANY16

Device used

Instruction	Parameter	Devices																		Offset modification [D]	Pulse extension XXP
		XYMS		SM	T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	$\mid \mathrm{KnS}$	TC	DR		LC	HSC	KHE		
	Parameter 1										\bullet	\bullet	\bullet	- -	-	-			- -	\bullet	\bullet
	Parameter 2										\bullet	-	\bullet		-	-			$\bullet \bullet$	\bullet	\bullet

Features

This instruction is mainly used to set the protocol during run, and can also be used in the first cycle of run.
The value of the protocol address (COM1 SD2542, COM2 SD2592) and the protocol modification flag (COM1 SD2543, COM2 SD2593) can be directly set according to the command parameters.

The specific calculation formula for setting the protocol modification flag (COM1 SD2543, COM2 SD2593) is: (parameter setting value + offset of the corresponding serial port's initial special soft component +10)*2

For example, setting the protocol to 2 is $(2+2593-2590+10) * 2$, which is $(2+3+10) * 2=30$. At this time, SD2592 will be set to 1 , and SD2593 will be set to 32 .

* Note: Whether it is by self-calculation and then modifying the setting value of the identifier (COM1 SD2543, COM2 SD2593) to the protocol, or using this instruction to set, it is possible to modify the protocol when the PLC is in the RUN state.

Regarding the protocol modification flags (COM1 SD2543, COM2 SD2593): During the RUN process, the first cycle of setting the protocol and modifying the flags is correct (judging at END) to the correct first cycle. When the modification is completed, the protocol modification flags (COM1 SD2543, COM2 SD2593) is cleared, and then set the same value will not be processed. Mainly to avoid repeated settings multiple times.

Agreement Number

Agreement Number	Content
0 H	Wecon Modbus slave
2 H	ModbusRTU slave
3 H	ModbusASCII slave
10 H	User-defined protocol
20 H	ModbusRTU master station
30 H	ModbusASCII master

Related software components

Devices	Content
SD2542	COM1 protocol settings
SD2543	COM1 protocol modification sign
SD2592	COM2 protocol settings
SD2593	COM2 protocol modification sign

* Note:

The setting of communication parameters will affect the overall communication. The processing in the PLC is to modify it when there is no communication or after a round of communication is completed. This point needs attention.

If the set protocol does not match the provided protocol number, the protocol modification flag (COM1 SD2543, COM2 SD2593) will not be cleared after setting. At this time, the protocol will not be set successfully, and it will run according to the original protocol.

Error code

Error code	Content
4085 H	The read address of (s) and (n) exceeds the device range
4084 H	(n) is not 1

Example

$\left.\begin{array}{|ccccc|}M 1 & \text { M1 } & \text { SPROTOCOL } & \text { H20 } & \text { K1 }\end{array}\right\}$

Example above

M1 changes from OFF to ON during the run
SD2592 will be set to $32(20 H)$, SD2593 will be set to 90 and then it will be cleared. At this time, it means that the setting is successful.

SD2592	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	32
SD2593	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

If you turn M1 from OFF to ON again
SD2592 will be set to $32(20 \mathrm{H})$, SD2593 will be set to 90 but will not be cleared.

| SD2592 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 32 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| SD2593 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 90 |

10.2 Modbus serial port parameter setting

PORTPARA/Modbus serial port parameter setting

PORTPARA(P)

Set (s) serial port parameters for (n) communication port.
-[PORTPARA (s) (n)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	Serial port parameters to be set	-	Unsigned BIN 16 bit	ANY16
(n)	Which communication port to set, 0 means COM1, 1 means COM2	0,1	Unsigned BIN 16 bit	ANY16

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		X Y M S SM T(bit)			C(bit)	LC(bit)	HSC(bit)	D.b	KnX		KnM	Kns		CD		SD	LC	HSC	KHE	[D]	XXP
ECAMCUT	Parameter 1									\bullet	\bullet	\bullet	-	- \bullet	\bullet	\bullet			$\bullet \bullet$	\bullet	-
	Parameter 2									\bullet	\bullet	-		-	-	\bullet			$\bullet \bullet$	\bullet	-

Features

This instruction is mainly used to set serial port parameters during run, and can also be used in the first cycle of run.
Can directly set the serial port parameter address (COM1 SD2540, COM2 SD2590) and the value of the serial parameter modification flag (COM1 SD2541, COM2 SD2591) according to the command parameters.

The specific calculation formula for setting the serial port parameter modification flags (COM1 SD2541, COM2 SD2591) is: (parameter setting value + offset of the corresponding serial port's initial special soft component +10) 2

For example, setting the COM1 serial port parameter to 193 (HC1) is $(193+2541-2540+10)^{*} 2$ which is $(193+1+10) * 2=408$. At this time, 193 (HC1) will be set for SD2540 and 408 for SD2541.
(Note: Whether it is by self-calculation and then to the serial port parameter to modify the flag (COM1 SD2541, COM2 SD2591) setting value, or use this instruction to set, it is possible to modify the serial port parameter when the PLC is in the RUN state. About serial port parameter modification flags (COM1 SD2541, COM2 SD2591): During RUN, when the serial port parameters are set and the modified flag is correct (judging at END) to the correct first cycle, the serial port parameter modification flag (COM1 SD2541, COM2, SD2591) are cleared, and then set the same value will not be processed. Mainly to avoid repeated settings multiple times.
Serial port parameter setting table

Bit number	B0	B1, B2	B3	B4, B5, B6, B7, B8, B9		B10	B11
Name	Data length	Parity	$\begin{gathered} \text { Stop } \\ \text { Bit } \end{gathered}$	Baud Rate (bps)		STX	ETX
Content	7bit	b2,b1 (0,0):None (0,1):Odd parity(ODD) (1,1):Even parity(EVEN)	1bit	4800	0111	Turn off STX function	Turn off ETX function
				9600	1000		
				19200	1001		
				38400	1010		
	8bit		2bit	57600	1011	Enable STX function, the specific value is set by D8124	Turn on the ETX function, the specific value is set by D8125
				115200	1100		
				187500	1101		
				230400	1110		
				460800	1111		
				921600	10000		

Related software components

Devices	Content
SD2540	COM1 serial port parameter setting
SD2541	COM1 serial port parameter modification identification
SD2590	COM2 serial port parameter setting
SD2591	COM2 serial port parameter modification sign

(Note:

The setting of communication parameters will affect the overall communication. The processing in the PLC is to be modified when there is no communication or after a round of communication is completed. This point needs attention.

STX function and ETX function are only useful in the case of custom protocol.
If the set protocol does not match the provided protocol number, the serial port parameter modification flags (COM1 SD2541, COM2 SD2591) will not be cleared after setting. At this time, the protocol will not be set successfully, and it will run according to the original protocol.

Error code

Error code	Content
4085 H	The read address of (s) and (n) exceeds the device range
4084 H	(n) is not 0 or 1

Example

| M1 | | |
| :---: | :---: | :---: | :---: | :---: |
| M1 | [PORTPARA | H81 K0 |

Example above
M1 changes from OFF->ON during run
SD2540 will be set to 129 (H81, baud rate: 9600 , stop bit: 1, data bit: 8, parity bit: none), SD2541 will be set to 280 and then cleared. At this time it has been set successfully

| $\operatorname{SD} 2540$ | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 129 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\operatorname{SD2541}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

If you turn M1 from OFF->ON again
SD2540 will be set to 129 (H81), SD2541 will be set to 280 but will be cleared.

SD2540	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	129
SD2541	0	0	0	1	1	0	0	0	1	0	0	0	0	0	0	0	280

10.3 Modbus station number setting

STATION/Modbus station number setting

STATION(P)

Under the Modbus slave station protocol. Set the station number (s) for the (n) communication port.
-[STATION
(s) (n)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	Station number to be set	0 to 255	Unsigned BIN 16 bit	ANY16
(n)	Which communication port to set 0 means COM1, 1 means COM2	0,1	Unsigned BIN 16 bit	ANY16

Device used

Instruction	Parameter	Devices																		Pulse extension
		XYMSSM T(bit)		C(bit)	LC(bit)	HSC(bit)	D.b K	KnX KnY KnM ${ }^{\text {KnS }}$ T			T C		DRSDLCHSCKHE					[D]		XXP
ECAMCUT	Parameter 1							\bullet	-	\bullet	-	-	-			$\bullet \bullet$		\bullet		
	Parameter 2							\bullet	\bullet	-	$\bullet \bullet$	-	\bullet			$\bullet \bullet$		\bullet		

Features

-This instruction is mainly used to set the station number during run, and it can also be used in the first cycle of run.
-The value of the station number address (COM1 SD2544, COM2 SD2594) and the station number modification flag (COM1 SD2545, COM2 SD2595) can be directly set according to the command parameters.
-The specific calculation formula for setting the station number modification flag (COM1 SD2545, COM2 SD2595) is: (parameter setting value + offset of the corresponding serial port's initial special device +10) ${ }^{2}$
\bullet For example, setting the COM2 station number to 1 is $(1+2595-2590+10) * 2$, which is $(1+5+10) * 2=32$. At this time, SD 2594 will be set to 1 , and SD2595 will be set to 32 .

Note: Whether it is by self-calculation and then modifying the ID (COM1 SD2545, COM2 SD2595) setting value to the station number, or setting with this instruction, the station number can be modified when the PLC is in the RUN state.
-Regarding station number modification identification (COM1 SD2545, COM2 SD2595): During RUN, when the station number is set and the modification identification is correct (judgment at END) to the correct first cycle, the station number will be modified when the modification is completed (COM1 SD2545, COM2 SD2595) are cleared, and then set the same value will not be processed. Mainly to avoid repeated settings multiple times.

Related software components

Devices	Content
SD2544	COM1 station number setting
SD2545	COM1 station number modification sign
SD2594	COM2 station number setting
SD2595	COM2 station number modification sign

Error code

Error code	Content
4085 H	The read address of (s) and (n) exceeds the device range
4084 H	(s) not in the range of 0 to 255
	(n) is not 0 or 1

* Note:

The setting of communication parameters will affect the overall communication. The processing in the PLC is to modify it when there is no communication or after a round of communication is completed. This point needs attention.

Example

Example above

M1 changes from OFF->ON during run
SD2594 will be set to 2 , SD2595 will be set to 34 and then it will be cleared. At this time it has been set successfully

| SD2594 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | |
| :--- |
| SD2595 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |

If you turn M1 from OFF->ON again
SD2594 will be set to 2, SD2595 will be set to 34 but will not be cleared

| SD2594 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| SD2595 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 34 |

10.4 RS instruction

RS/External communication instruction

RS
In the case of Modbus master station protocol: This instruction is the setting interface for the master station to send protocol frames. The function code (s), slave address (m), length (d) of the station number set according to the instruction, and the function code determines whether the data of n is required to be automatically combined to send and receive protocol frames. If it is a read type function code, the data will be written into (n).
-[RS
(s) (m)
(d) (n)]

Content, range and data type

In the case of user-defined protocol:

Parameter	Content	Range	Data type	Data type (label)
(s)	The start address of register area that stores the data to be sent	-	Unsigned BIN 16 bit	ANY16
(m)	The length of data to be sent (bytes)	0 to 523	Unsigned BIN 16 bit	ANY16
(d)	The device start number that stores the written data	-	Unsigned BIN 16 it	ANY16
(n)	Number of data written (bytes)	0 to 523	Unsigned BIN 16 bit	ANY16

In the case of Modbus protocol:

Parameter	Content	Range	Data type (label)	
(s)	The high byte stores the station number of slave station, and the low byte stores function code of Modbus	-	Unsigned BIN 16 bit	ANY16
(m)	Slave address. The address provided by the slave station will read or write data from this address of the slave station	-	Unsigned BIN 16 bit	ANY16
(d)	Length. The length of Modbus read or write. The unit is determined by function code.	-	Unsigned BIN 16 bit	ANY16
(n)	Start address for reading or writing data	-	Unsigned BIN 16 bit	ANY16

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		X Y M S SM		T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	Kn X	KnY	KnM	KnS	T	CD		SD	LC	HSC	KHE	[D]	XXP
	Parameter 1												\bullet		-				$\bullet \bullet$		
RS	Parameter 2												-		-				- -		
RS	Parameter 3												-		-				- -		
	Parameter 4												\bullet	- -	\bullet				$\bullet \bullet$		

(1) Custom protocol

When the communication protocol is set as a custom protocol. When the contact in before RS instruction is turned on and SM2591 is also turned on at the same time, if the sending length (m) is not 0 , the data of (s) will be sent (m) bytes out, and then it will be in the mode of waiting for reception. When the data is received, (n) bytes of data will be stored in (d). SM2593 will be turned ON after receiving (n) data.

In addition, when the sending length (m) is 0 , it will be in the receive-only mode. When the receiving length (n) is 0 , it will be in the send-only mode.

To enable the start character (STX) and the end character (ETX) modes of RS instruction, the status of the 10th and 11th bits of the special address SD2600 must be set. See the table below for detailed settings:

Bit number	B0	B1, B2	B3	$\begin{aligned} & \text { B4, B5, B6, } \\ & \text { B7, B8, B9 } \end{aligned}$		B10	B11
Name	Data length	Parity	Stop Bit	Baud rate(bps)		STX	ETX
Content	7-bit	b2, b1 (0,0): None (0,1): Odd parity (ODD) (1,1): Even parity (EVEN)	1-bit	9600	001000	None	None
				19200	001001		
				38400	001010		
				57600	001011		
	8-bit		2-bit	115200	001100	Turn on STX, the STX value is set in SD2600	Turn on ETX, the ETX value is set in SD2601
				187500	001101		
				230400	001110		
				460800	001111		
				921600	010000		

Example

When M 1 is ON , the sending and receiving data of communication after executing instruction is stored as the following figure.
$(\mathrm{s}) \longrightarrow \mathrm{D} 2$
High byte Low byte

02	01
04	03
06	05

The amount used for the deep background is the length of sending(m)

The data sent in the figure
are: $\mathbf{2 1 H}, ~ 22 \mathrm{H}, ~ 23 \mathrm{H}, ~ 24 \mathrm{H}$

The amount used for the deep background is the length of receiving(n)

Some configuration and preparation of serial communication are needed for actual programming to communicate as expected, such as setting the transceiver mode of serial port, baud rate, number of bits, parity, software protocol settings, timeout judgment conditions, and data preparation for the transceiver buffer, send and receive flag processing, etc.,

A relatively complete RS communication setup program is shown as follows:

Serial port parameters settings:
Baud rate 112500, stop bit 1, data bit 8, parity bit none
Set the protocol as a custom protocol
Sending interval: 5ms
Receiving timeout: 100 ms
Number of repetitions: 3 times
Timeout between characters: 30 ms
Custom protocol, send start address D200, sending length 8, receive start address D300, receiving length 8 ,

Send directly after trigger

After receiving, close the instruction directly and reset the instruction receiving flag

[^7]
(2) Modbus protocol

When the protocol is set to Modbus master protocol (whether it is RTU or ASCII). When the contact before RS instruction is turned ON, the RS instruction will send the combined data frame according to the station number function code (s), slave station address (m), length (d) and judge whether the data of (n) is needed according to the function code.

As the ladder program shown above:
When M1 is turned ON, PLC will send data (hexadecimal) from COM2 of PLC: 0103000 A 0005 A5 C8
01: represents slave address, the upper 8 bits of (s);
03: Modbus instruction code, the lower 8 bits of (s), meaning to read the slave register;
00 0A: The address of slave register to be read, the value of (m);
00 05: The number of registers to be read, the value of (d),
A5 C8: CRC check code.
For detailed custom protocol instructions, please refer to "10.7.2 Modbus protocol description"

(8) Note:

Although the RS instruction currently allows all the parameters of the instruction to use constants such as K and H , there are different restrictions depending on the protocol.

When the protocol is a custom protocol, S and D cannot be constants, otherwise it will report (3189 H) error.
When the protocol is Modbus protocol, n cannot be a constant, otherwise it will report (3189 H) error.
The combination of RTU protocol and 7-bit data bits cannot be set.
If the serial port parameter settings are different, it may still be able to communicate. At present, it is normal to set one. Currently, the RS instruction cannot be used in interrupts and events.

Error code

Error code	Content
4085 H	The read address of $(\mathrm{s}),(\mathrm{m}),(\mathrm{d})$ and (n$)$ exceed the device range.
3180 H	COM2 data reception error. There may be interference on the communication line, it is recommended to connect the ground wire.
3181 H	COM2 data reception timed out. "Check the wiring, check whether the serial port parameter settings are compatible with master and slave, check whether there is interference. Check whether the slave station is too late to respond. For this reason, you can try to increase the sending interval SD2546."

3182H	COM2 CRC check error. There may be interference on the communication line, it is recommended to connect the ground wire.
3183H	COM2 LRC check error. There may be interference on the communication line, it is recommended to connect the ground wire.
3184H	The COM2 station number is incorrectly configured. Check the slave station number setting, and check whether there is any problem with the receiving and sending mechanism of slave station.
3185H	COM2 send buffer overflow. Contact a technician if this error occurs
3186 H	COM2 function code is wrong. Check whether the set function code is a function code supported by PLC
3187H	COM2 address is wrong. Check whether the slave station has this address (please refer to Modbus Abnormal 02)
3188 H	The length of COM2 is wrong. Check whether the communication length exceeds the length range specified by the Modbus protocol, or whether it exceeds the specified length range of the custom protocol.
3189H	COM2 data error. "Check whether there are errors in the parameters of the instruction. Check whether the slave station supports the setting of this value. (Please refer to Modbus Abnormal 03)"
318AH	COM2 slave station is busy. Slave station returns information: Slave station is busy (please refer to Modbus exception 06)
318BH	COM2 slave station does not support function codes. Check whether the slave station supports this function code (please refer to Modbus exception 01)
318 CH	COM2 slave station is faulty. Slave station returns information: Slave station is faulty, please check whether the slave station is faulty (please refer to Modbus Abnormal 04)
318DH	COM2 slave station confirmation. Slave station return information: slave station confirmation (please refer to Modbus abnormal 05)
318EH	COM2 current protocol does not support this instruction or function. The related conmunication instruction of master station or the function of maste station cannot be used when it is set to slave station protocol, please change the protocol or close the contact before the corresponding instruction or diable the corresponding communication function.
318FH	COM2 sending timed out. Contact a technician if this error occurs
31 AOH	COM2 is not available as a gateway. Slave station returns information: unavailable gateway (please refer to Modbus exception 0 A)
31A1H	COM2 indicates that no response was obtained from the target device. Slave station returns information: the device is not in the network (please refer to Modbus exception OB)

10.5 RS2 instruction

RS2/External communication instruction

RS2
In custom protocol: This instruction is a communication send and receive instruction. It takes out (M) of the initial data specified (s) and send it , and stores (n) of the data received through the serial port in (d) and sent by (n 1) automatic communication port.

In Modbus master station protocol: This instruction is the setting interface for the master station to send protocol frames. According to the station number function code (s), slave address (m), length (d) set by the instruction, and the function code to determine whether n data is required to automatically combined sending and receiving protocol frames. If it is a read type function code, the data would be written to (n) and sent by (n 1) custom communication port.
-[RS2
(s) (m)
(d) (n)
(n1)]

Content, range and data type

In custom protocol

Parameter	Content	Range	Data type	Data type (label)
(s)	The start address of register area that stores the data to be sent	-	Unsigned BIN 16 bit	ANY16
(m)	The length of data to be sent (bytes)	0 to 528	Unsigned BIN 16 bit	ANY16
(d)	The device start number that stores the written data	-	Unsigned BIN 16 bit	ANY16
(n)	Number of data written (bytes)	0 to 528	Unsigned BIN 16 bit	ANY16
(n1)	Specify the communication port		Unsigned BIN 16 bit	ANY16

In Modbus protocol

Parameter	Content	Range	Data type	Data type (label)
(s)	The high byte stores the station number of slave station, and the low byte stores function code of Modbus	-	Unsigned BIN 16 bit	ANY16
(m)	Slave address. The address provided by the slave station will read or write data from this address of the slave station	-	Unsigned BIN 16 bit	ANY16
(d)	Length. The length of Modbus read or write. The unit is determined by function code.	-	Unsigned BIN 16 bit	ANY16
(n)	The start address of the data to be read or written	-	Unsigned BIN 16 bit	ANY16
(n 1)	Specify the communicatiom port		Unsigned BIN 16 bit	ANY16

Device used

Instruction	Parameter	Devices																				Pulse extension
		XYMSSM T (bit)			C(bit)	LC(bit)	HSC(bit)	D.b Kn		KnX KnY	KnM KnS		T CD		RSDLCHSCKHE					[D]		XXP
	(s)	--	-	-	-	-	-	-	-	-	-	-	$\bullet \bullet$ -	- - -	- -	-	-	$\bullet \bullet$		-		-
	(m)	-	-	-	-	-	-	-	-	-	-	-	$\bullet \cdot$ -	- -	- -	-	-	-		-		-
RS2	(d)	--	-	-	-	-	-	-	-	-	-	-	$\bullet \cdot$ -	- -	-	-	-	$\bullet \bullet$		-		-
	(n)	--	-	-	-	-	-	-	-	-	-	-	$\bullet \cdot$ -	- \cdot	- \cdot		-	$\bullet \bullet$		-		-
	(n1)																	$\bullet \cdot$				

Features

Parameter (n 1) is the specified port. Curently, k0 indicates COM1, and k1 indicates COM2.

(1) Custom protocol

When the communication protocol is set as a custom protocol. When the contact in before RS2 instruction is turned on and "sending control enable" is also turned on at the same time, and the sending length (m) is not 0 , the data of (s) will be sent (m) bytes out, and then it will be in the mode of waiting for reception. When the data is received, (n) bytes of data will be stored in (d). "reception control or reception notice" will be turned ON after receiving (n) data.

In addition, when the sending length (m) is 0 , it will be in the receive-only mode. When the receiving length (n) is 0 , it will be in the send-only mode.

To enable the start character (STX) and the end character (ETX) modes of RS2 instruction, the status of the 10th and 11th bits of the special address "communication port setting" must be set. See the table below for detailed settings:

Bit number		B0	B1, B2	B3	B4, B5 B7,	$\begin{array}{r} \text { B6, } \\ \text { B9 } \end{array}$	B10	B11
Name		Data length	Parity	Stop Bit	Baud rate(bps)		STX	ETX
Content	$\begin{gathered} 0 \\ \text { off } \end{gathered}$	7-bit	b2, b1 $(0,0)$: none (0,1): odd parity (ODD) (1,1): even parity (EVEN)	1-bit	9600	001000	None	None
					19200	001001		
					38400	001010		
					57600	001011		
	$\begin{gathered} 1 \\ \text { on } \end{gathered}$	8-bit		2-bit	115200	001100	Turn on STX, the STX value is set in the device of the	Turn on ETX, the ETX value is set in the device of the
					187500	001101		
					230400	001110		
					460800	001111	corresponding communication	corresponding
					921600	010000		communication

Example

M1	(s)	(m)	(d)	(n)	(n1)
L RS2	D200	K5	D500	K4	K1

When M 1 is ON , the sending and receiving data of communication after executing instruction is stored as the following figure.

Some configuration and preparation of serial communication are needed for actual programming to communicate as expected, such as setting the transceiver mode of serial port, baud rate, number of bits, parity, software protocol settings, timeout judgment conditions, and data preparation for the transceiver buffer, send and receive flag processing, etc., A relatively complete RS communication setup program is shown as follows:

For detailed custom protocol instructions, please refer to "10.7.1 Custom protocol description"

(2) Modbus protocol

When the protocol is set to Modbus master protocol (whether it is RTU or ASCII). When the contact before RS2 instruction is turned ON, the RS2 instruction will send the combined data frame according to the station number function code (s), slave station address (m), length (d) and judge whether the data of (n) is needed according to the function code.

M8	(s)	(m)	(d)	(n)	(n1)
\{RS2	H103	K10	K5	D300	K0\}

As the ladder program shown above:
When M1 is turned ON, PLC will send data (hexadecimal) from COM2 of PLC: 0103000 A 0005 A5 C8
01: represents slave address, the high 8 bits of (s);
03: Modbus command code, the low 8 bits of (s), which means to read the slave register;
00 OA : The address of slave register to be read, the value of (m);
00 05: The number of registers to be read, the value of (d),
A5 C8: CRC check code.

PLC LX5V Series Programming Manual (V2.2)
For detailed custom protocol instructions, please refer to "10.7.2 Modbus protocol description"

* Note:

1. The RS2 instruction allows parameters to be represented by K and H constants, but there are different restrictions depending on the protocol.
2) When the protocol is a custom protocol, S and D cannot be constants, otherwise it will report (3 X 189 H) error.

3 When the protocol is Modbus protocol, n cannot be a constant, otherwise it will report (3 X 89 H) error.
4. When the protocol is set to the RTU protocol, only 8 bits of data can be selected

5 If the serial port parameter settings are different, it may still be able to communicate. However, it is recommended that the serial port parameters be the same to avoid other faults.

6 Currently, the RS2 instruction cannot be used in interrupts and events.

Error code

Error code	Content
4085H	The read address of (s$)$, (m), (d) and (n) exceed the device range.
4084H	The parameter value exceed the specified range
3080H	COM1 data reception error. There may be interference on the communication line, it is recommended to connect the ground wire.
3081H	COM1 data reception timed out. "Check the wiring, check whether the serial port parameter settings are compatible with master and slave, check whether there is interference. Check whether the slave station is too late to respond. For this reason, you can try to increase "the sending interval".
3082H	COM1 CRC check error. There may be interference on the communication line, it is recommended to connect the ground wire.
3083H	COM1 LRC check error. There may be interference on the communication line, it is recommended to connect the ground wire.
3084H	The COM1 station number is incorrectly configured. Check the slave station number setting, and check whether there is any problem with the receiving and sending mechanism of slave station.
3085H	COM1 send buffer overflow. Contact a technician if this error occurs
3086H	COM1 function code is wrong. Check whether the set function code is a function code supported by PLC
3087H	COM1 address is wrong. Check whether the slave station has this address (please refer to Modbus Abnormal 02)
3088H	The length of COM1 is wrong. Check whether the communication length exceeds the length range specified by the Modbus protocol, or whether it exceeds the specified length range of the custom protocol.
3089H	COM1 data error. "Check whether there are errors in the parameters of the instruction. Check whether the slave station supports the setting of this value. (Please refer to Modbus Abnormal 03)"
308AH	COM1 slave station is busy. Slave station returns information: Slave station is busy (please refer to Modbus exception 06)
308BH	COM1 slave station does not support function codes. Check whether the slave station supports this function code (please refer to Modbus exception 01)
308CH	COM1 slave station is faulty. Slave station returns information: Slave station is faulty, please check whether the slave station is faulty (please refer to Modbus Abnormal 04)
308DH	COM1 slave station confirmation. Slave station return information: slave station confirmation (please refer to Modbus abnormal 05)
308EH	COM1 current protocol does not support this instruction or function. The related conmunication instruction of master station or the function of maste station cannot be used when it is set to slave station protocol, please change

	the protocol or close the contact before the corresponding instruction or diable the corresponding communication function.
308FH	COM1 sending timed out. Contact a technician if this error occurs.
30 AOH	COM1 is not available as a gateway. Slave station returns information: unavailable gateway (please refer to Modbus exception 0 A)
30A1H	COM1 indicates that no response was obtained from the target device. Slave station returns information: the device is not in the network (please refer to Modbus exception OB).
3181H	COM2 data reception timed out. "Check the wiring, check whether the serial port parameter settings are compatible with master and slave, check whether there is interference. Check whether the slave station is too late to respond. For this reason, you can try to increase the "sending interval".
3182H	COM2 CRC check error. There may be interference on the communication line, it is recommended to connect the ground wire.
3183H	COM2 LRC check error. There may be interference on the communication line, it is recommended to connect the ground wire.
3184H	The COM2 station number is incorrectly configured. Check the slave station number setting, and check whether there is any problem with the receiving and sending mechanism of slave station.
3185H	COM2 send buffer overflow. Contact a technician if this error occurs
3186 H	COM2 function code is wrong. Check whether the set function code is a function code supported by PLC
3187H	COM2 address is wrong. Check whether the slave station has this address (please refer to Modbus Abnormal 02)
3188 H	The length of COM2 is wrong. Check whether the communication length exceeds the length range specified by the Modbus protocol, or whether it exceeds the specified length range of the custom protocol.
3189H	COM2 data error. "Check whether there are errors in the parameters of the instruction. Check whether the slave station supports the setting of this value. (Please refer to Modbus Abnormal 03)"
318AH	COM2 slave station is busy. Slave station returns information: Slave station is busy (please refer to Modbus exception 06)
318BH	COM2 slave station does not support function codes. Check whether the slave station supports this function code (please refer to Modbus exception 01)
318 CH	COM2 slave station is faulty. Slave station returns information: Slave station is faulty, please check whether the slave station is faulty (please refer to Modbus Abnormal 04)
318DH	COM2 slave station confirmation. Slave station return information: slave station confirmation (please refer to Modbus abnormal 05)
318EH	COM2 current protocol does not support this instruction or function. The related conmunication instruction of master station or the function of maste station cannot be used when it is set to slave station protocol, please change the protocol or close the contact before the corresponding instruction or diable the corresponding communication function.
318FH	COM2 sending timed out. Contact a technician if this error occurs
31 AOH	COM2 is not available as a gateway. Slave station returns information: unavailable gateway (please refer to Modbus exception 0 A)
31A1H	COM2 indicates that no response was obtained from the target device. Slave station returns information: the device is not in the network (please refer to Modbus exception OB)

10.6 Expansion module communication

Single word data writing from TO/PLC to the module (16-bit specification)

TO(P)

Write the data at the start (n) point of the device specified in (s 3) to the buffer memory in the intelligent function module specified in (s1) after the address specified in (s2).
-[TO
(s1)
(s2)
(s3) (n

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
$(\mathrm{s} 1)$	Module number, the first module is 0, the second module is 1, and so on	0 to 32767	Unsigned BIN 16 bit	ANY16
$(\mathrm{s} 2)$	Start writing from which BFM in the module	0 to 32767	Unsigned BIN 16 bit	ANY16
$(\mathrm{s} 3)$	Start number of the device storing the written data	-32768 to 32767	Signed BIN 16 bit	ANY16
(n)	Number of data written	0 to 512	Unsigned BIN 16 bit	ANY16

Device used

Instruction	Parameter	Devices															Offset odification	Pulse extension
		XYM SSM T(bit)		() C(bit)	LC(bit)	HSC(bit)	D.b Kn		KnX $/ \mathrm{KnY}$ KnM ${ }^{\text {KnS }}$ T			CDRSDLCHSCKHE					[D]	XXP
	Parameter 1								\bullet	-	$\bullet \bullet$	- \cdot	$\bullet \bullet \bullet$		$\bullet \bullet$		\bullet	\bullet
TO	Parameter 2								\bullet	\bullet	-	-	-		- \cdot		\bullet	\bullet
	Parameter 3								\bullet	\bullet	-	- \cdot	$\bullet \cdot$		$\bullet \cdot$		\bullet	\bullet
	Parameter 4								\bullet	\bullet	-	-	- - -		$\bullet \cdot$		\bullet	\bullet

Features

Write the data at the start (n) point of the device specified in (s 3) to the buffer memory in the intelligent function module specified in (s 1) after the address specified in (s 2).
(s3)

As the following Circuit program

Indicates that when X1 is ON, write the data in the PLC's D220 register to the buffer register (BFM) \#24 in the \#1 (second) special module. When X 1 is OFF, no operation is performed.

Currently LX5VPLC supports 16 special expansion modules at the same time.
The special devices used are as follows

Devices	Content
SD2081	Total number of modules
SD2082	Number of IO expansion modules
SD2083	Number of special expansion modules
SD2084	The first missing expansion module. When the value is -1, it means not lost

Error code

Error code	Content
4085 H	The read addresses of (s1), (s2), (s3) and (n) exceed the device range
4084 H	(s1) and (s2) is not in the range of 0 to 32767 or (n) is not in the range of 0 to 512
7080 H	Check error when communicating between PLC and module
7081 H	Expansion module communication message is abnormal
7082 H	FROM/TO instruction error
7083 H	The specified extension module was not found

Example

When M1 is turned on
The values of D200 and D201 will be passed to BFM2 and BFM3 of module \#0 (the first)

Double word data write from DTO/PLC to the module (32-bit specification)

DTO(P)
Write the data of $(n) \times 2$ points from the device specified in $(s 3)$ to the buffer memory in the intelligent function module specified in (s1) and beyond the address specified in ($s 2$).
-[DTO
(s 1) (s 2)
(s3) (n)

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	Module number, the first module is 0, the second module is 1, and so on	0 to 32767	Unsigned BIN 16 bit	ANY16
(s2)	Start writing from which BFM in the module	0 to 32767	Unsigned BIN 16 bit	ANY16
(s3)	Start number of the device storing the written data	-2147483648 to 2147483647	Signed BIN 32 bit	ANY32
(n)	Number of data written	0 to 256	Unsigned BIN 16 bit	ANY16

Device used

Instruction	Parameter	Devices																				Offset modification	Pulse extension
		XYM S SM T(bit)				C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS			D				HSC	K HE	[D]	XXP
	Parameter 1										\bullet	\bullet	\bullet		-	-	$\bullet \bullet$				$\bullet \bullet$	\bullet	\bullet
DTO	Parameter 2										\bullet	\bullet	\bullet		-	-	\bullet				- -	\bullet	\bullet
	Parameter 3										\bullet	\bullet	\bullet	-	-	-	\bullet	-	-	\bullet	$\bullet \bullet$	\bullet	\bullet
	Parameter 4										\bullet	\bullet	\bullet			-	$\bullet \bullet$				$\bullet \bullet$	\bullet	\bullet

Features

Write the data of $(n) \times 2$ points from the device specified in $(s 3)$ to the buffer memory in the intelligent function module specified in ($s 1$) and beyond the address specified in (s2).

As the following Circuit program

Indicates that when M1 is ON, write the data in the PLC's D200 and D201 registers to the buffer registers (BFM) \#1 and \#2 in the \#0 (first) special module. When X1 is OFF, no operation is performed.

Currently LX5V PLC supports 16 special expansion modules at the same time.
The special devices used are as follows

Devices	Content
SD2081	Total number of modules
SD2082	Number of IO expansion modules
SD2083	Number of special expansion modules
SD2084	The first missing expansion module. When the value is -1, it means not lost

Error code

Error code	Content
4085 H	$(\mathrm{s} 1)(\mathrm{s} 2)(\mathrm{s} 3)(\mathrm{n})$ The read address exceeds the device range
4084 H	$(\mathrm{s} 1)(\mathrm{s} 2)$ is not in the range of 0 to 32767 or (n) is not in the range of 0 to 256
7080 H	Check error when communicating between PLC and module
7081 H	Expansion module communication message is abnormal
7082 H	FROM/TO instruction error
7083 H	The specified extension module was not found

Example

$$
\mid \mathrm{M}^{\mathrm{M} 1} \mapsto[\mathrm{DT0} \text { K0 K1 D200 K2 }] \mid
$$

When M1 is turned on
The values from D200 to D203 will be transferred to BFM1 to BFM4 of module \#0 (first)

1200	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	30
D201	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	40
D202	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D203	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- Buffer memory				Module station							Address 0						Dec
Monitor start				Monitor end							Set current value						Close
Device	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F	
0000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0001	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	30
0002	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	40
0003	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0
0004	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0

PLC LX5V Series Programming Manual (V2.2)

FROM/Read single word data from the module (16-bit specification)

FROM(P)

Read (n) word data from the buffer memory specified in ($s 2$) in the module specified in ($s 1$), and store it in the device specified in (d) and later.

Ladder
-[FROM (s1) (s2) (d) (n)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	Module number, the first module is 0, the second module is 1, and so on	0 to 32767	Unsigned BIN 16 bit	ANY16
(s2)	Start reading from which BFM in the module	0 to 32767	Unsigned BIN 16 bit	ANY16
(d)	Start number of the device storing the read data	-	Signed BIN 16 bit	ANY16
(n)	Number of read data	0 to 512	Unsigned BIN 16 bit	ANY16

Device used

Instruction	Parameter	Devices																			Offset modification	Pulse extension
		XYM SSM T(bit)				C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS			D R		LC	HSC	KHE	[D]	XXP
	Parameter 1										-	\bullet	\bullet	-		-	\bullet			$\bullet \bullet$	\bullet	\bullet
FROM	Parameter 2										\bullet	\bullet	\bullet	-		- \bullet	\bullet			- -	\bullet	\bullet
	Parameter 3										\bullet	\bullet	\bullet	-		-	\bullet				\bullet	\bullet
	Parameter 4										\bullet	\bullet	\bullet	\bullet		-	\bullet			$\bullet \bullet$	\bullet	\bullet

Features

Read (n) word data from the buffer memory specified in ($s 2$) in the intelligent function module specified in ($s 1$) and store it in the device specified in (d) and later.

As the following Circuit program

$$
\mathrm{M}^{\text {M1 }} \longmapsto[\text { FROM K0 K10 D200 K2 }\rfloor
$$

It means that when M1 is ON, the data in the buffer registers (BFM) \#10 and \#11 in the special module \#0 (the first) will be written into the D200 and D201 registers of the PLC. When M1 is OFF, no operation is performed. Currently LX5V PLC supports 16 special expansion modules at the same time.

The special soft components used are as follows:

Devices	Content
SD2081	Total number of modules
SD2082	Number of IO expansion modules
SD2083	Number of special expansion modules
SD2084	The first missing expansion module. When the value is -1, it means not lost

Error code

Error code	Content
4085 H	(s1) (s2) (n) The read address exceeds the device range
4086 H	(d) The write address exceeds the device range
4084 H	(s1) (s2) is not in the range of 0 to 32767 or (n) is not in the range of 0 to 512
7080 H	Check error when communicating between PLC and module
7081 H	Expansion module communication message is abnormal
7082 H	FROM/TO instruction error
7083 H	The specified extension module was not found

Example

When M1 is turned on
The values of BFM3, BFM4, and BFM5 of the \#0 (first) module will be transferred to D200, D201, D202

(-) Buffer m			Module station							Address 0							Dec
Monitor start			2	Monitor end							Set current value						Close
Device	0	1		3	4	5	6	7	8	9	A	B	C	D	E	F	
0000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0001	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	8
0002	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	8
0003	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	8
0004	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	8
0005	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	32767
1200	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	8
D201	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	8
D202	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	32767
D203	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

DFROM/single word data read from the module (32-bit specification)

DFROM(P)

Read $(n) * 2$ words of data from the buffer memory specified in ($s 2$) in the module specified in ($s 1$), and store it in the device specified in (d) and later.
-[DFROM (s1) (s2) (d) (n)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	Module number, the first module is 0, the second module is 1, and so on	0 to 32767	Unsigned BIN 16 bit	ANY16
(s2)	Start reading from which BFM in the module	0 to 32767	Unsigned BIN 16 bit	ANY16
(d)	Start number of the device storing the read data	-	Signed BIN 32 bit	ANY32
(n)	Number of read data	0 to 256	Unsigned BIN 16 bit	ANY16

Device used

Instruction	Parameter	Devices																				Offset modification	Pulse extension
		X Y M ${ }^{\text {S }}$		SM T(bit)		C(bit)	LC(bit)	HSC(bit)	D.b	$\mathrm{Kn} \times \mathrm{Kn}$		KnM KnS		T C		D	RSD	LC HSC		K HE		[D]	XXP
	Parameter 1										-	\bullet	-	-	-	- -	- -				\bullet	\bullet	-
DFROM	Parameter 2										\bullet	\bullet	\bullet	-	-	-	-			\bullet	\bullet	\bullet	\bullet
DFROM	Parameter 3										\bullet	\bullet	\bullet	-	-	- -	-	\bullet	\bullet			\bullet	\bullet
	Parameter 4										\bullet	\bullet	\bullet	\bullet		- \cdot	- \bullet			\bullet	\bullet	\bullet	\bullet

Features

Read $(n) \times 2$ words of data from the buffer memory specified in ($s 2$) in the intelligent function module specified in ($s 1$), and store it in the device specified in (d) and later.

As the following Circuit program

It means that when M1 is ON, the data in the buffer register (BFM) \#10 to \#13 in the special module \#0 (the first) will be written to the D200 to D203 registers of the PLC. When M1 is OFF, no operation is performed.

Currently LX5V PLC supports 16 special expansion modules at the same time.
The special soft components used are as follows:

Devices	Content
SD2081	Total number of modules
SD2082	Number of IO expansion modules
SD2083	Number of special expansion modules
SD2084	The first missing expansion module. When the value is -1, it means not lost

Error code

Error code	Content
4085 H	(s1) (s2) (n) The read address exceeds the device range
4086 H	(d) The write address exceeds the device range
4084 H	(s1) (s2) is not in the range of 0 to 32767 or (n) is not in the range of 0 to 256
7080 H	Check error when communicating between PLC and module
7081 H	Expansion module communication message is abnormal
7082 H	FROM/TO instruction error
7083 H	The specified extension module was not found

Example

When M 1 is turned on
The value of BFM3 to BFM8 of module \#0 (first) will be transferred to D200 to D205

(-)				Module station							Address 0						Dec
Monitor start				Monitor end							Set current value						Close
0000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0001	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	8
0002	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	8
0003	0	0	+ 0	1	0	0	0	0	0	0	0	0	0	0	0	0	8
0004	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	8
0005	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	32767
0006	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	32767
0007	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	32767
0008	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	32767
0009	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	32767
000A	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	32767
000B	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	32767
000C	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	32767

| D 200 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| D 201 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 |
| D 202 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 32767 |
| D 203 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 32767 |
| D 204 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 32767 |
| D 205 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 32767 |
| D 206 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| D 207 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

10.7 RS and RS2 instructions corresponding protocol description

10.7.1 Custom protocol description

Introduction

The function of custom protocol is that it can directly transmit data with the device without any processing or communicate with other devices with the corresponding protocol set by the customer.

At present, the custom protocol of 5V PLC is configured and sent by COM2, and the instruction used is RS instruction, and it need to configure the protocol and serial port parameters through the Devices.

The current custom protocol is generally close to 3 V series.

Basic configuration

(1) Instructions

The RS instruction itself has the same usage as the previous RS instruction at 3 V , and it can use R device.
$-[\operatorname{RS}(\mathrm{s})(\mathrm{m})(\mathrm{d})(\mathrm{n})]$
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The start address of the register area where the data to be sent is stored	-	Unsigned BIN 16 bit	ANY16
(m)	Is the length of the data to be sent (number of bytes)	0 to 528	Unsigned BIN 16 bit	ANY16
(d)	Start number of the device storing the written data	-	Unsigned BIN 16 bit	ANY16
(n)	Number of data written	0 to 528	Unsigned BIN 16 bit	ANY16

Device used

Q Note: Although the RS instruction currently allows all the parameters of the instruction to use constants such as K and H, there are different restrictions according to the different protocol. When the protocol is a custom protocol, S and D cannot be constants, otherwise it will report an error.

(2) Special device settings

Special address table

COM2 special D device (SD)		COM2 special M Device (SM)	
2590	Communication port setting	2590	Send control on
2591	Serial parameter modification identification	2591	Send control/send reminder
2592	Protocol settings	2592	Receive control on
2593	Protocol modification logo	2593	Accept control/receive prompt
2594	Station number setting	2594	8-bit mode (for custom protocol)
2595	Station number modification logo	2595	
2596	Sending interval (0.1ms) 0-32767 It is 10 (1ms) when set to 0		

2597	Communication timeout setting (10ms) 0-32767 It is 10(100ms) when set to 0	2597	
2598	$\underline{\text { Timeout retry times 0-32767 }}$	2598	
2599	Character interval timeout setting (for custom protocol) (0.1ms) $\mathbf{0 - 3 2 7 6 7 . \text { It is 10 (1ms) when set to 0 }}$	2599	
2600	$\underline{\text { STX value }}$	2600	
2601	ETX value	2601	
\ldots		\ldots	
2610	The amount of data received	2610	Communication complete flag
2611	Last error	2611	Receiving flag
2612	Current error	2612	Retry occurred
2613	Error steps	2613	Communication error
2614	Error station number	Communication timeout	
2615	Cumulative number of errors	2615	

The contents that the custom protocol will be used and set has been marked with underline and bold.
In addition, the devices to be used as judgment conditions have also been marked in bold in the table.
Q Note: COM1 currently does not support custom protocols.

1) Communication port setting SD2590

Bit number		B0	B1, B2	B3	B4, B B7,	B6, B9	B10	B11
Name		Data length	Parity	Stop Bit	Baud rate(bps)		STX	ETX
Content	0 off	7 bit	b2,b1 (0,0): None (0,1): Odd parity (ODD) (1,1): Even parity (EVEN)	1 bit	4800	0111	None	None
					9600	1000		
					19200	1001		
					38400	1010		
					57600	1011		
					115200	1100	Turn on ETX,	Turn on ETX,
	1 on	8 bit		2 bit	187500	1101	the ETX value	the ETX value
					230400	1110	is set in	is set in
					460800	1111	SD2600	SD2601
					921600	10000		

Set the serial port parameters to SD2590 according to the bit settings provided in the table above. The setting is roughly the same as 3 V . It is mainly because the baud rate can be set to a higher baud rate, the bit used need backward two bits when STX and ETX start. For example: To set the serial port parameters: baud rate 115200, stop bit 1, data bit 8, no parity bit, turn on STX, you need to set the value H4C1 (K1217) on SD2590. The parameters directly set to SD2590 are only valid in the first cycle of PLC RUN.

If you need to modify it during RUN, you can use the PORTPARAM instruction to set it.
2) Protocol setting SD2592

Protocol settings		Protocol settings	
0 H	Wecon Modbus slave station	10 H	Cunstom protocol
2 H	ModbusRTU slave station	20 H	ModbusRTU master station
3 H	ModbusASCII slave station	30 H	ModbusASCII master station

The corresponding protocol can be set by setting the corresponding value in SD2592.

The parameters directly set to SD2592 are only valid in the first cycle of PLC RUN.
If you need to modify it during RUN, you can use the PROTOCOL instruction to set it.

3) Sending interval SD2596

The main function of sending interval is: how long to wait for sending the next instruction after one instruction is completed. If the value is set to 0 , there is basically no waiting for sending interval, but it will be affected by the scan cycle.

The unit of the sending interval is 0.1 ms , that is, the interval time is 10 ms when the setting is 100 .
4) Communication timeout SD2597 and timeout retry SD2598

The main function of communication timeout is: How long does it take to wait for no data to be received after the PLC sends retry or occurs an error. When 0 is set, the default is 100 ms .
The unit of communication timeout is 10 ms , that is, the timeout judgment time is 10 ms when the setting is 100 .
When a receiving timeout occurs, it will determine whether there are retry times and the current retry times. If the retry times are greater than or equal to SD2598, an error will be reported.

If SD2598 is set to 0 , it will not try again.
If it is set to 1 , send once again after sending a timeout.

5) Character interval timeout SD2599

Currently this setting is only available for custom protocols.
The main function of the character interval timeout is: after receiving at least one character before the communication timeout, judge whether the interval time between the following two characters has exceeded. if it is, report an error and end the communication.

This setting is mainly designed considering that some devices may send slow or have other specific sending requirements.
The character interval timeout will not retry.

(3) Serial port parameter setting instructions

1) Host computer interface settings

PLC Parameter \times					
Device latch COM1 COM2					
Parameter	Value				
Whether to set	True				
- Transfer Setup					
Baud rate	115200				
Data bits	7				
Stops	1				
Check bit	No verification				
Timeout (10ms)	10				
Sending interval (0.1 ms)	10				
Protocol	Dedicated protocol				
\square Agreenent related					
Station number (0 is the main station)	1				
Whether to enable the start character	False				
Header	0				
Whether to enable terminator	False				
Terminator	0				
Timeout between characters (0.1 ms)	10				
	Check	Reset	OK	Cancel	

Through the PLC parameter setting in the upper computer interface, If protocol is set to none, it is a custom protocol.
The serial port parameter content mainly sets the serial port parameters such as baud rate and data bit.
After the start character is enabled, the start/end character can be sent. The start/end character will also be distinguished when receiving. See the description in the sending and receiving process for details.
(Note: The characters here are decimal values.
2) PORTPARA instruction
-[PORTPARA (s) (n)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	Serial port parameters to be set	0 to 256	Unsigned BIN 16 bit	ANY16
(n)	Which communication port to set (0 means COM1, 1 means COM2)	0,1	Unsigned BIN 16 bit	ANY16

Device used

Instruction	Parameter	Devices																			Offset modification	Pulse extension
		XYM S		SM	T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM KnS T			TCD	RSD LCHSCKME					[D]	XXP
	Parameter 1										\bullet	\bullet	-	-		-	-			$\bullet \bullet$	\bullet	\bullet
	Parameter 2										\bullet	-	-	\bullet		\bullet	\bullet			$\bullet \bullet$	\bullet	\bullet

Function: To set communication parameters when running.
Please refer to "PORTPARA instruction description" for details.

3) PROTOCOL instruction

-[PROTOCOL (s) (n)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	Protocol number to be set	0 to 65535	Unsigned BIN 16 bit	ANY16
(n)	Which communication port to set (0 means COM1, 1 means COM2 *1)	1	Unsigned BIN 16 bit	ANY16

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		XYMS		SM	T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	Kns	T C	DR	SD	LC	HSC	K HE	[D]	XXP
	Parameter 1										\bullet	\bullet	\bullet	- -	\bullet	\bullet			$\bullet \bullet$	\bullet	
	Parameter 2										\bullet	\bullet	\bullet	- \bullet	-	\bullet			- -	\bullet	

Features:
It is used to set the communication protocol when running. The above instruction actually sets a specific value for the parameter modification flag. The specific calculation formula is: (parameter setting value + the offset of the start special device corresponding to the serial port +10) ${ }^{2}$

For example, setting the protocol to Modbusrtu master station (H 20) is $(0 \times 20+2593-2590+10) * 2$, that is $(32+3+10) * 2=90$. This is to prevent the serial port parameters from being modified at will.

The trigger of setting parameters in custom protocol will not change the value until an instruction is completed.
The trigger of setting parameters in Modbus master station protocol won't change the value until an instruction is completed.
The trigger of setting parameters in the Modbus slave protocol can be switched as long as it is not processing the received data. Please refer to "PROTOCOL instruction description" for details.

4) Priority description of serial port parameters

The priority of serial port parameter settings are listed as blow. The serial port parameters are saved by power failure currently. Serial port parameter set instruction setting = Ladder program MOV instruction set the corresponding SD device > the download parameters of host computer > Previous power-off save data.
(4) Ladder program

Set serial port parameters: Baud rate 112500, stop bit 1, data bit 8, no parity bit none

Set protocol to custom protocol
Sending interval: 5ms
Receiving timeout: 100ms
Number of repetitions: 3 times
Characters interval timeout: 30 ms
Custom protocol sending start address D200, sending length 8. Receiving start address D300, receiving length 6

Send directly after trigger
After receiving is completed, close the instruction directly and reset the instruction receiving flag

10.7.1.3 Sending and receiving process

(1) Sending and receiving mechanism

1) No start character (STX) and end character (ETX)
(1) 16-bit (SM2594 is OFF)

The devices will be divided into high and low directly, and send data from the low address first and then the high address in order.

(2) 8-bit (SM2594 is ON)

Get the value of the low address of device directly and send it

D200	0	0	0	0	1	1	1	0	1	0	1	1	1	1	1	0	7D70
D201	1	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	OOE1
D202	1	0	0	0	1	1	0	0	1	0	1	0	1	0	0	0	1531
D203	0	1	0	0	0	1	1	0	0	0	0	1	1	0	0	0	1862
D204	0	0	1	1	0	1	1	0	0	1	1	1	1	0	0	0	1E6C
D205	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0000
nens	n	n	n	n	n	ก	n	n	n	n	n	n	ก	n	n	n	กกกก

The data sent in the case of the ladder program and the data above should be 70 E1 31626 C .

D300	0	1	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0002									
D301	0	1	1	0	1	0	0	1	0	0	0	0	0
0	0	0	0096										
D302	0	1	0	0	0	0	1	0	0	0	0	0	0
0	0	0	0042										
D303	1	1	0	0	1	0	1	0	0	0	0	0	0
D304	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0053								

Receiving will also be stored in the lower address

2) Open and set the start character STX

The value of the start character SD2600 is only valid in the low bit
When STX is enabled, the send will start with STX. When receiving, the send will start with STX, but STX will not be displayed.
If it receives the STX during the receiving, the receiving will restart.
If the first character is not received, the timeout period is judged by the first character timeout. When a character is received, no matter what data is received, the inter-character timeout will be counted from the last character received.

D200	0	0	0	0	1	1	1	0	1	0	1	1	1	1	1	0	7D70
D201	1	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	OOE1
D202	1	0	0	0	1	1	0	0	1	0	1	0	1	0	0	0	1531
D203	0	1	0	0	0	1	1	0	0	0	0	1	1	0	0	0	1862
D204	0	0	1	1	0	1	1	0	0	1	1	1	1	0	0	0	1E6C
D205	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0000
nonk	ก	n	n	n	ก	ก	ก	ก	ก	ก	ก	ก	n	ก	n	ก	กกกก

For example, the result of the above ladder program and the above data sending is FE 707 D E1 0031.
Sending FE 51263415 to the PLC at this time will receive the following data. And if you send FE 2563 FE 51263415 you will also receive the following data.

| D300 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 2651 |
| :--- |
| D301 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1534 |

3) Open and set the end character ETX situation

The value of ending character SD2601 is only valid in the low bit.
When ETX is enabled, the send will end with ETX.
When ETX is received, SM2610 and SM2593 are immediately turned ON, regardless of whether sufficient length is received.

D200	0	0	0	0	1	1	1	0	1	0	1	1	1	1	1	0	7D70
D201	1	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	OOE1
D202	1	0	0	0	1	1	0	0	1	0	1	0	1	0	0	0	1531
D203	0	1	0	0	0	1	1	0	0	0	0	1	1	0	0	0	1862
D204	0	0	1	1	0	1	1	0	0	1	1	1	1	0	0	0	1E6C
D205	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0000
n?nf	n	ก	n	n	n	0	n	ก	n	ก	0	0	n	n	n	ก	กกกก

For example, the result of the above Circuit program and the above data transmission is 707 D E1 0031 FD.
If the above Circuit program sends 0106 FD to him, the following data will be received. If the FD is sent directly, it will be judged as the end directly.

D300	1	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0601
D301	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0000
D302	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0000
D303	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0000

4) Both the start character STX and the end character ETX are turned on

When both are opened, it is basically a combination of the above single opened states. But if only ETX data is received when both start, it will not end immediately. It will judge the character interval time and does not start receiving data.

(2) Receiving after sending (similar to Modbus master station mechanism)

1) Send control switch (SM2590) and receive control switch (SM2592) OFF (default)

When the contact of RS instruction is on, turn SM2591 on and send it immediately. SM2591 will be automatically OFF immediately after sending.

After sending, SM2593 is ON, it will always stop at this instruction, and wait for it to be OFF and then receive data. If it is OFF, it will start to receive data.

After the first character timeout period (SD2597), if no character is received, it is judged as a timeout. If there are retry times, it will retry. But after retrying, the communication still does not report an error, and SM2593 and SM2614 are turned on.

After receiving the first character, it will judge whether that the interval between characters exceeds the time set by SD2599. If it it doesn't. it will report an error.(For the details, please refer to [the timeout of the interval character].)

When there are two or more instructions, the first RS instruction which is set ON will be sent after SM2591 is ON. Later, if this RS instruction is completed*1, then turn ON, SM2591 will switch to the next RS instruction*2 in the ladder sequence.

When there are two or more instructions, switch to another one during the data reception and it continue to stay back in the original instruction to until the reception is complete.

(Note:

(Completion refers to receiving data or reporting an error.
Q If there is no other open RS instruction after the ladder sequence, it will return to the first RS instruction that was opened in the ladder sequence for execution.
2) The sending way when the sending control switch (SM2590) is ON

When the sending control switch (SM2590) is ON, there is no need to set SM2591 ON. At this time, as long as the contact of the RS instruction is triggered, it can be sent, and SM2591 is automatically turned ON.
3) The receiving way when the receiving control switch (SM2592) is ON

When the receiving control switch (SM2592) is ON, SM2593 will be OFF automatically when the instruction is executed. It will no longer judge the status of SM2593 when receiving, and SM2593 will still be turned ON after receiving.
4) Sending control switch (SM2590) and receiving control switch (SM2592) ON

In this case, you only need to trigger the contact before the RS instruction to send data, then it will automatically switch to the waiting status. When the reception is completed, it will turn to the next RS instruction that is turned on.
(3) Send-only
$\left.\begin{array}{llllll}\square & \text { DRS } & \text { D200 } & \text { K5 } & \text { D300 } & \text { K0 }\end{array}\right]$

When the sending length is set to a value other than 0 , and the receiving length is set to 0 , it is send-only mode.

1) The sending control switch (SM2590) is OFF

When SM2591 is turned ON, the data will be sent without receiving.
When there are two or more instructions, the first RS instruction which is turned ON will be sent after SM2591 is turned ON. After this RS instruction is completed, then turn ON SM2591 will switch to the next RS instruction in the ladder program.

2) The Sending control switch (SM2590) is ON

The RS instruction will be sent when triggered. Multiple instructions are triggered and sent in a loop. During the sending cycle, the interval will be sent according to the set sending interval.
(4) Receive-only

$\square[R S$	D200	K0	D300	K4	$]$

When the sending length is 0 and the receiving length is not 0 , it is only receiving.

1) SM2592 receiving control switch OFF

SM2593 will be turned ON when receiving, and the ladder program control must be turned OFF to continue receiving. SM2593 will not turn ON without receiving data.

When multiple instructions are enabled to receive only at the same time, it will start to receive from the smallest number of steps in the ladder diagram. Time out or received data will be forwarded to the second to continue receiving.
2) SM2592 receiving control switch ON

It can receive normally and will not be controlled by the flag bit. The SM2593 receiving identifier serves as the receiving prompt identifier, and SM2593 will not turn ON without receiving data.
If multiple RS receive only instructions are turned on at the same time, the receiving position is uncertain due to the timeout
judgment and switching to the next one.
(5) Use receive-only and send-only methods to send after receiving (similar to Modbus slave mechanism)

Receive-only: When it is determined that the reception is complete, it will determine the instruction to be triggered according to the received content, and save the received data at the same time.

Send-only: The content sent by triggered M2 is different from that of triggered M3. After the trigger is over, they will return to trigger the receive-only of M1.

10.7.1.4 Error message

Currently The Error code will be displayed on SD7, SDO, SD 2611 and SD2612.
The Error codes that will appear in the custom protocol are mainly as follows

Error code	Content
3181 H	Data receiving timeout
3188 H	Wrong length
3189 H	COM2 data error. "Check whether there are errors in the parameters of instruction. Check whether the
slave station supports the setting of this value. (Please refer to Modbus exception 03)"	

After resetting the protocol or communication parameters, the error will be cleared.
In addition, the communication completion/communication error/communication timeout flag will be set after the executed instruction.

10.7.1.5 The difference with Mitsubish

The current differences:

1) STX and ETX: Mitsubishi can set up to 4 bytes, we only have one byte.

2 Add sum check and CR, LF
3) The instruction control of Mitsubishi is that the first instruction triggered is fixed to execute this instruction. It will not be switched to other instructions midway, unless the contact of this instruction is closed.

10.7.2 Modbus protocol description

Introduction

The Modbus master station protocol is generally close to LX3V. The address was modified in the slave station.

Basic configuration

(1) Introduction

The RS instruction has the same usage as the previous RS instruction of 3 V , and can use R device.
$-\left[\begin{array}{lllll}\mathrm{RS} & (\mathrm{s}) & (\mathrm{m}) & \text { (d) } & (\mathrm{n})\end{array}\right]$
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	The high byte stores the station number of slave station, and the low byte stores the Modbus function code.	-	Unsigned BIN 16 bit	ANY16
(m)	Slave address. The address provided by slave station will read or write data from this address of the slave station	-	Unsigned BIN 16 bit	ANY16
(d)	Length. The length of Modbus read or write. The unit is determined by function code.	-	Unsigned BIN 16 bit	ANY16
(n)	Start address for reading or writing data	-	Unsigned BIN 16 bit	ANY16

Device used

Instruction	Parameter	Devices																				Offset modification	Pulse extension
		XYMSSM			T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS	TC		D R	SD LC		HSCKHE			[D]	XXP
	Parameter 1														-	- -				$\bullet \bullet$			
RS	Parameter 2															-				- -			
RS	Parameter 3															-				- -			
	Parameter 4														-	- -							

* Note: Although the RS instruction currently allows all the parameters of the instruction to use constants such as K and H, there are different restrictions according to the different protocols. When the protocol is Modbus master station protocol, n cannot be a constant, otherwise an error will be reported.
(2) Special device setting

Special address table

COM 1 special D device (SD)	
2540	Communication port settings
2541	Serial parameter modification identification
2542	
2543	
2544	Station number setting
2545	Station number modification logo

* Note: COM1 does not support modifying the protocol.

COM2 special D device (SD)		COM2 special M Device (SM)	
2590	Communication port setting	2590	Send control start
2591	Serial parameter modification identifier	2591	Send control/send reminder
2592	Protocol setting	2592	Receive control start
2593	Protocol modification identifier	2593	Receive control/receive prompt
2594	Station number setting	2594	8-bit mode (for custom protocol)
2595	Station number modification identifier	2595	

2596	Sending interval (0.1ms) 0-32767. It is $\mathbf{1 0}$ when set to 0 (1ms)	2596	
2597	Communication timeout setting (10ms) 0-32767 It is $\mathbf{1 0}$ when set to 0 (100ms)	2597	
2598	$\underline{\text { Timeout retry times 0-32767 }}$	2598	
2599	Character interval timeout setting (for custom protocol) (0.1ms) $\mathbf{0 - 3 2 7 6 7 . ~ I t ~ i s ~} 10$ when set to 0 (1ms)	2599	
2600	STX value	2600	
2601	ETX value	2601	
\ldots		\ldots	
2610	The amount of data received	2610	Communication complete flag
2611	Last error	2611	Receiving flag
2612	Current error	2612	Retry occurred
2613	Error steps	2613	Communication error
2614	Error station number	2614	Communication timeout
2615	Cumulative number of errors	2615	

The contents that the custom protocol will be used and set has been marked with underline and bold. In addition, the devices to be used as judgment conditions have also been marked in bold in the table.

1) Communication port setting SD2590

Set the serial port parameters to SD2590 according to the bit settings provided in the table above. The setting is roughly the same as 3 V . It is mainly because the baud rate can be set to a higher baud rate, the bit used need backward two bits when STX and ETX start. For example: To set the serial port parameters: baud rate 115200, stop bit 1, data bit 8, no parity bit, you need to set the value H4C1 (K1217) on SD2590. The parameters directly set to SD2590 are only valid in the first cycle of PLC RUN. If you need to modify it during RUN, you can use the PORTPARAM instruction to set it.
2) Protocol setting SD2592

Protocol settings				
0 H	Wecon Modbus slave station	10 H	Custom protocol	
2 H	ModbusRTU slave station	20 H	ModbusRTU master station	
3 H	ModbusASCII slave station	30 H	ModbusASCII master station	

The corresponding protocol can be set by setting the corresponding value in SD2592. The parameters directly set to SD2592 are only
valid in the first cycle of PLC RUN. If you need to modify it during RUN, you can use the PROTOCOL instruction to set it. COM1 cannot use protocols other than Wecon Modbus slave station Currently.

3) Sending interval SD2596

The main function of sending interval is: how long to wait for sending the next instruction after one instruction is completed. If it is set to 0 , there is basically no waiting for interval sending, but it will be affected by the scan cycle. The unit of the sending interval is 0.1 ms , that is, the interval is 10 ms when set to 100 .
4) Communication timeout SD2597 and timeout retry SD2598

The main function of communication timeout is: How long does it take to wait for no data to be received and then retry or report an error after the PLC sends. When it is set to 0 , the default value is 100 ms .

The unit of communication timeout is 10 ms , that is, the timeout determine time is 100 ms when set to 10 .
When a receiving timeout occurs, it will determine whether there are retry times and the current retry times. If the retry times are greater than or equal to SD2598, an error will be reported.
If SD2598 is set to 0 , it will not retry.
If it is set to 1 , send once and then send once again after timeout.
(3) Serial port parameter setting

1) PORTPARA instruction
-[PORTPARA (s) (n)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	The start number of the device that stores the number of digits of converted value	-	Signed BIN 16 bit	ANY16_S_ARRAY
(s2)	Converted BIN data	-2147483648 to 2147483647	Signed BIN 32 bit	ANY32_S

Device used

Features

Set communication parameters when used for run. Please refer to "PORTPARA instruction description" for details.

2) PROTOCOL instruction

-[PROTOCOL (s) (n)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	Protocol number to be set	0 to 65535	Unsigned BIN 16 bit	ANY16
(n)	Which communication port to set (0 means COM1, 1 means COM2 ${ }^{*}$ 1)	1	Unsigned BIN 16 bit	ANY16

Device used

Features

Set the communication protocol when used for run. The instruction above actually is to set a specific value for the parameter modification flag.

The calculation formula is: (parameter setting value + the offset of the start special device corresponding to the serial port +10)*2 For example, setting the protocol to ModbusRTU master station (H 20) is $(0 \times 20+2593-2590+10) * 2$, which is $(32+3+10) * 2=90$. This is to prevent the serial port parameters from being modified at will. .

In Modbus master protocol, the trigger of setting parameters is to change the value after an instruction is completed.
In Modbus slave protocol, the trigger of setting parameters is that to switch as long as it is not processing the received data.
For details, please refer to "PROTOCOL instruction description"
3) Host computer settings

The PLC parameter setting of host computer can set the corresponding serial port parameters.

Specialized protocol station number cannot be 0 .
The station number under ModbusRTU and ModbusASCII protocol is 0 : the protocol sets the master station.
The station number under ModbusRTU and ModbusASCII protocol is not 0 : the protocol sets the slave station.
The serial port parameters are filled in according to the content in the form.
\otimes Note: RTU protocol cannot set data bit of 7-bit.

4) Priority description of serial port parameters

The priority of serial port parameter settings are listed as blow. The serial port parameters are saved by power failure currently. Serial port parameter set instruction setting = Ladder program MOV instruction set the corresponding SD device > the download parameters of host computer > Previous power-off save data.
(4) Basic ladder program

SM102				
		[MOV	HC1	SD2590
		$[\mathrm{MOV}$	H20	SD2592
		$[\mathrm{MOV}$	K50	SD2596
		$[\mathrm{MOV}$	K10	SD2597
		$[\mathrm{MOV}$	K3	SD2598
$\mathrm{H}^{\mathrm{M} 1} \longmapsto[\mathrm{RS}$	H103	K10	K5	D300

Serial port parameter setting
Baud rate 115200, data bit 8, parity bit none, stop bit 1

Communication protocol setting: ModbusRTU master station protocol

Sending interval: 5ms
Receiving timeout: 100ms
Timeout retry times: 3 times
Station number 01 H , function code 03 H , slave address 10 ,

10.7.2.3 Send and receive process

(1) Modbus master station

When programming, before each RS (Modbus mode) instruction, the assignment of each operand unit, such as the communication operation object address, operation type, operation register address, data number, sending or receiving unit, etc., is completed, once the execution starts, the system program will automatically calculate the CRC check, organize the communication frame, and complete the operation of sending data and receiving response.

If you use Modbus-ASC protocol communication (set SD2592 as H30), the HEX-ASC format conversion of sending and receiving data is automatically completed by the PLC system program. The RS (Modbus mode) instruction method and the Modbus-RTU protocol method are exactly the same.

In the plc program, if multiple RS (Modbus mode) instructions are driven, the system program will still execute the "sending, waiting for answer, receiving, verification, analysis and storage" of an RS instruction, and then perform the same process for the next RS instruction until all RS instructions are executed and then restarted. You don not need to care about the timing and process of its execution, which simplifies the PLC programming design. This is the advantage of Modbus instruction.

Modbus master function list

Function code	Function name	Details
0×01	Coil readout	Coil readout (multiple points optional)
0×02	Input readout	Input and read (multiple points optional)
0×03	Holding register readout	Holding register readout(multiple points optional)
0×04	Input register readout	Input register readout (multiple points optional)
0×05	1 coil write	Coil writing (only 1 point)
0×06	1 register write	Holding register write (only 1 point)
$0 \times 0 F$	Batch coil write	Multi-point coil writing
0×10	Batch register write	Multi-point holding register write

Example:

SM102				
1		[MOV	HC1	SD2590
		$[\mathrm{MOV}$	H20	SD2592
		[MOV	K50	SD2596
		[MOV	K10	SD2597
		[MOV	K3	SD2598
$\bigoplus^{M 1} \longmapsto \text { RS }$	H103	K10	K5	D300

Serial port parameter setting
Baud rate 115200, data bit 8, no parity bit, stop bit 1
Communication protocol setting: ModbusRTU master station protocol
Sending interval: 5 ms
Receiving timeout: 100 ms

Timeout retry times: 3 times
Station number 01H, function code 03H, slave address 10,
As shown in the ladder program shown:
When M1 is turned ON, PLC will send data (hexadecimal) from COM2 of PLC: 0103000 A 0005 A5 C8
01: Slave address, the high 8 bits of (s);
03: Modbus instruction code, the lower 8 bits of (s). It is to read the slave register;
00 OA : The address of the slave register to be read, the value of (m);

00 05: The number of registers to be read, the value of (d),
A5 C8: CRC check code.

* Note:

When using 1 coil to write (0×05), the value used for writing 1 is $0 \times F F 00$, and the value used for writing 0 is 0×0000.
When using batch coil write ($0 x 0 F$), pay attention to the high and low byte exchange. For example, when writing 1 length, the fourth parameter value is 1 (0×0001), which means 0 is sent. You need to write $256(0 \times 0100)$ to write 1 to the target address.

(2) Modbus slave

When the PLC series is used as a Modbus slave, it supports Modbus communication operation instructions such as $0 \times 01,0 \times 03,0 \times 05$, $0 \times 06,0 x 0 f, 0 x 10$. The coils of the PLC that can be read and written include $\mathrm{M}, \mathrm{S}, \mathrm{T}, \mathrm{C}, \mathrm{X}$ (only Read) SM, Y, LC, HSC and other variables through these instructions. Register variables include $D, T, C, R, S D, L C, H S C$.

When the Modbus communication master accesses (reads or rewrites) the internal variables of the PLC slave, it must follow the following communication instruction frame definition and the variable address index method in order to carry out normal communication operations.

1) instruction code 0×01 (01): read coil

Serial number	Data (byte) meaning	Number of bytes	Instruction
1	Slave address	1 byte	Value 1 to 247, set by SD2544, SD2594
2	0×01 (instruction code)	1 byte	Read coil
3	Coil start address	2 bytes	High bit in front, low bit in back, see coil addressing
4	Number of coils	2 bytes	High bit in front, low bit in back (N)
5	CRC check	2 bytes	Low bit in front, high bit in back

Response frame format: slave address + 0x01 + number of bytes + coil status + CRC check

Serial number	Data (byte) meaning	Number of bytes	Instruction
1	Slave address	1 byte	Value 1 to 247 , set by SD2544, SD2594
2	0×01 (instruction code)	1 byte	Read coil
3	Number of bytes	1 byte	Value: $[(\mathrm{N}+7) / 8]$
4	Coil state	$[(\mathrm{N}+7) / 8]$ bytes	Every 8 coils are combined into one byte. If the last one is less than 8 bits, fill in 0 in the undefined part. The first 8 coils are in the first byte, and the coil with the smallest address is in the lowest bit. And so on
5	CRC check	2 bytes	High bit first, then low bit

Error response: refer to error response frame.

2) instruction code 0x03 (03): read register

Request frame format: slave address + 0×03 + register start address + number of registers + CRC check.

Serial number	Data (byte) meaning	Number of bytes	Instruction
1	Slave address	1 byte	Value 1 to 247, set by SD2544, SD2594
2	0×03 (instruction code)	1 byte	Read register
3	Register start address	2 bytes	High bit in front, low bit in back, see register addressing
4	Number of registers	2 bytes	High bit in front, low bit in back (N)
5	CRC check	2 bytes	High bit in front, low bit in back

Response frame format: slave address + $0 \times 03+$ number of bytes + register value + CRC check.

Serial number	Data (byte) meaning	Number of bytes	Instruction
1	Slave address	1 byte	Value 1 to 247, set by SD2544, SD2594

PLC LX5V Series Programming Manual (V2.2)

2	0x03 (instruction code)	1 byte	Read register
3	Number of bytes	1 byte	Value: $\mathrm{N}^{*} 2$
4	Register value	$\mathrm{N}^{*} 2$ bytes	Every two bytes represent a register value, with high bit in front, low bit in back. The smallest register address comes first
5	CRC check	2 bytes	High bit in front, low bit in back

Error response: See error response frame.
3) instruction code 0×05 (05): write single coil

Request frame format: slave address $+0 \times 05+$ coil address + coil status + CRC check.

Serial number	Data (byte) meaning	Number of bytes	Instruction
1	Slave address	1 byte	Value 1 to 247, set by SD2544, SD2594
2	$0 x 05$ (instruction code)	1 byte	Write single coil
3	Coil address	2 bytes	High bit in front, low bit in back, see coil addressing
4	Coil state	2 bytes	High bit in front, low bit in back. Non-zero is valid
5	CRC check	2 bytes	High bit in front, low bit in back

Response frame format: slave address + 0x05 + coil address + coil status + CRC check.

Serial number	Data (byte) meaning	Number of bytes	Instruction
1	Slave address	1 byte	Value 1 to 247, set by SD2544, SD2594
2	0×05 (instruction code)	1 byte	Write single coil
3	Coil address	2 bytes	High bit in front, low bit in back, see coil addressing
4	Coil state	2 bytes	High bit in front, low bit in back. Non-zero is valid
5	CRC check	2 bytes	High bit in front, low bit in back

Error response: see error response frame. The coil status 0xFFOO means ON, and 0x0000 means OFF.
4) instruction code 0×06 (06): write a single register

Request frame format: slave address $+0 \times 06+$ register address + register value + CRC check.

Serial number	Data (byte) meaning	Number of bytes	Instruction
1	Slave address	1 byte	Value 1 to 247, set by SD2544, SD2594
2	0x06 (instruction code)	1 byte	Write single coil
3	Register	2 bytes	High bit in front, low bit in back, see coil addressing
4	Register value	2 bytes	High bit in front, low bit in back. Non-zero is valid
5	CRC check	2 bytes	High bit in front, low bit in back

Response frame format: slave address + 0x06 + register address + register value + CRC check.

Serial number	Data (byte) meaning	Number of bytes	Instruction
1	Slave address	1 byte	Value 1 to 247, set by SD2544, SD2594
2	0x06 (instruction code)	1 byte	Write single coil
3	Register	2 bytes	High bit in front, low bit in back, see coil addressing
4	Register value	2 bytes	High bit in front, low bit in back. Non-zero is valid
5	CRC check	2 bytes	High bit in front, low bit in back

Error response: See error response frame.

5) instruction code 0x of (15): write multiple coils

Request frame format: slave address $+0 x 0 f+$ coil start address + coil number + byte number + coil status $+C R C$ check.

Serial number	Data (byte) meaning	Number of bytes	
1	Slave address	1 byte	Value 1 to 247 , set by SD2544, SD2594
2	$0 x$ Of (instruction code)	1 byte	Write multiple single coils
3	Coil start address	2 bytes	High bit in front, low bit in back, see coil addressing
4	Number of coils	2 bytes	High bit in front, low bit in back. The maximum of N is 1968
5	Number of bytes	1 byte	Value: [(N+7)/8]
6	Coil state	Every 8 coils are combined into one byte. If the last one is less than 8 bits, fill in 0 in the undefined part. The first 8 coils are in the first byte, and the coil with the smallest address is in the lowest bit. And so on	
7	CRC check	2 bytes	High bit in front, low bit in back

Response frame format: slave address $+0 \times 0 f+$ coil start address + coil number + CRC check

Serial number	Data (byte) meaning	Number of bytes	Instruction
1	Slave address	1 byte	Value 1 to 247, set by SD2544, SD2594
2	$0 x$ Of (instruction code)	1 byte	Write multiple single coils
3	Coil start address	2 bytes	High bit in front, low bit in back, see coil addressing
4	Number of coils	2 bytes	High bit in front, low bit in back
5	CRC check	2 bytes	High bit in front, low bit in back

Error response: See error response frame.

6) 3.2.6 instruction code 0×10 (16): write multiple registers

Request frame format: slave address $+0 \times 10+$ register start address + register number + byte number + register value $+C R C$ check.

Serial number	Data (byte) meaning	Number of bytes	Instruction
1	Slave address	1 byte	Value 1 to 247, set by SD2544, SD2594
2	0x10(instruction code)	1 byte	Write multiple registers
3	Register start address	2 bytes	High bit in front, low bit in back, see register addressing
4	Number of registers	2 bytes	High bit in front, low bit in back. The maximum of N is 120
5	Number of bytes	1 byte	Value: $\mathrm{N}^{*} 2$
6	Register value	$\mathrm{N}^{*} 2\left(\mathrm{~N}^{*} 4\right)$	
7	CRC check	2 bytes	High bit in front, low bit in back

Response frame format: slave address $+0 \times 10+$ register start address + register number + CRC check.

Serial number	Data (byte) meaning	Number of bytes	Instruction
1	Slave address	1 byte	Value 1 to 247, set by SD2544, SD2594
2	0×10 (instruction code)	1 byte	Write multiple registers
3	Register start address	2 bytes	High bit in front, low bit in back, see register addressing
4	Number of registers	2 bytes	High bit in front, low bit in back. The maximum of N is 120
5	CRC check	2 bytes	High bit in front, low bit in back

Error response: See error response frame.

7) Error response frame

Error response: slave address + (instruction code $+0 \times 80$) + Error code + CRC check.

Serial number	Data (byte) meaning	Number of bytes	Instruction
1	Slave address	1 byte	Value 1 to 247, set by SD2544, SD2594
2	Instruction code+0x80	1 byte	Error instruction code
3	Code	1 byte	1 to 4
4	CRC check	2 bytes	High bit in front, low bit in back

Serial number	Error code	Instruction
1	01	Unsupported function code
2	02	Wrong address or function code
3	03	Wrong length
4	04	Imperfect instruction
5	05	Address not allowed

8) Slave address table

Word address					
Address type	Occupy	Address range	Decimal address	Total reserved address size	
T0 to T511	512 WORD	$0 \times 0000-0 x 01 f f$	0	1536	
C0 to C255	256 WORD	$0 \times 0600-0 x 06 f f$	1536	1024	
LC0 to LC255	512 WORD	$0 \times 0 A 00-0 x 0 B F F$	2560	1024	
HSC0 to HSC15	32 WORD	$0 \times 0 E 00-0 x 0 E 1 F$	3584	512	
D0 to D7999	8000 WORD	$0 \times 1000-0 \times 2 F 3 F$	4096	16384	
SD0 to SD4095	4096 WORD	$0 \times 5000-0 \times 5 F F F$	20480	12288	
R0 to R30000	30000 WORD	$0 \times 8000-0 x F 52 F$	32768	30000	

Bit address				
Address type	Occupy	Address range	Decimal address	Total reserved address size
T0 to T511	512 bit	0x0000-0x01ff		1536
C0 to C255	256 bit	0x0600-0x06ff	1536	1024
LC0 to LC255	256 bit	0x0A00-0x0AFF	2560	1024
HSCO to HSC15	16 bit	0x0E00-0x0EOF	3584	512
M0 to M8000	8000 bit	0x1000-0x2F3F	4096	16384
SM0 to SM4095	4096 bit	0x5000-0x5FFF	20480	12288
Reserved		0x8000-0xBFFF		16383
S0 to S4095	4096 bit	0xC000-0xCFFF	49152	8192
X0 to X1023	1024 bit	0xE000-0xE3FF	57344	4096
Y0 to Y1023	1024bit	0xF000-0xF3FF	61440	4096

10.7.2.4 Error message

Currently the Error code will be displayed on SD7 and SDO and SD2611 and SD2612.
The Error codes that appear in the Modbus protocol are mainly as follows.

Error code	Content
4085H	$(\mathrm{s})(\mathrm{m})(\mathrm{d})(\mathrm{n})$ The read address is out of the device range (this error is only displayed on SD7 and SDO)
3180 H	COM2 data reception error. There may be interference on the communication line, it is recommended to connect the ground wire.
3181H	COM2 data reception timed out. "Check the wiring, check whether the serial port parameter settings are compatible with master and slave, check whether there is interference. Check whether the slave station is too late to respond. For this reason, you can try to increase the sending interval SD2546."
3182H	COM2 CRC check error. There may be interference on the communication line, it is recommended to connect the ground wire.
3183H	COM2 LRC check error. There may be interference on the communication line, it is recommended to connect the ground wire.
3184H	The COM2 station number is incorrectly configured. Check the slave station number setting. And check whether there is any problem with the receiving and sending mechanism from the station.
3185H	COM2 send buffer overflow. Contact a technician if this error occurs
3186H	COM2 function code is wrong. Check whether the set function code is a function code supported by PLC
3187H	COM2 address is wrong. Check whether the slave station has this address (please refer to Modbus Abnormal 02)
3188 H	The length of COM2 is wrong. Check whether the communication length exceeds the length range specified by the Modbus protocol, or whether it exceeds the specified length range of the custom protocol.
3189 H	COM2 data error. "Check whether there are errors in the parameters of the instruction. Check whether the slave station supports the setting of this value. (Please refer to Modbus Abnormal 03)"
318AH	COM2 slave is busy. Slave station returns information: Slave station is busy (please refer to Modbus exception 06)
318BH	The COM2 slave station does not support function codes. Check whether the slave station supports this function code (please refer to Modbus exception 01)
318 CH	The COM2 slave is faulty. Slave station returns information: Slave station is faulty, please check whether the slave station is faulty (please refer to Modbus Abnormal 04)
318DH	COM2 slave confirms. Slave station return information: slave station confirmation (please refer to Modbus abnormal 05)
318EH	COM2 current protocol does not support this instruction. RS instruction cannot be used when it is set to slave station protocol, please change the protocol or close the contact before RS instruction (this error is only displayed on SD7 and SDO)
318FH	COM2 sending timed out. Contact a technician if this error occurs
3190 H	COM2 receiving data exceeds the buffer limit.
31 AOH	COM2 is not available as a gateway. Returned information from the station: unavailable gateway (please refer to Modbus exception OA)
31A1H	COM2 indicates that no response was obtained from the target device. Slave station returns information: the device is not in the network (please refer to Modbus exception OB)

After resetting the protocol or communication parameters, the error will be cleared.
In addition, the communication completion/communication error/communication timeout flag will be set after the executed instruction.

10.8 PLCLINK/Fast interconnect function

PLCLINK function is used to simplify the fast connection between PLCs. The fast communication of the LX5V series PLC could be achieved only using the configuration parameters without using the communication instruction(RS).

The topological diagram is shown in the figure below.

When using the PLCLINK function:
(1) Master station configuration: Select COM2 port and set the protocol to PLCLINK protocol.
(2) Slave configuration: Select COM1 or COM2 and set the protocol to dedicated protocol.

Create a table

In [Project manager]-[Extended function]-[PLCLINK], right click [PLCLINK], and click it to create a table.

Click it and a prompt box as below would pop up.

Click "Yes" will automatically change the protocol to PLCLINK, click "No" will not change the protocol.
The number of PLCLINK protocol is H60.

$\mathbf{0 H}$	Wecon Modbus slave station
2 H	ModbusRTU slave station
3 H	ModbusASCII slave station
$\mathbf{1 0 H}$	user-defined protocol
20 H	ModbusRTU main station
30 H	ModbusASCII main station
$6 \mathbf{6 H}$	PLCLINK protocol

Click "Yes" will generate an empty table MAIN.

Double click MAIN will pop up the POLCLINK table as below.

Currently only one PLCLINK table can be created. Creating a new table after creating one is disallowed.

(1) Write the table

After writing the station number in the new instruction station number in the table, click the new instruction to add the communication instruction. The range of station number is 1 to 31 . The maximum number of communication instruction is 255 .

Currently the station number is only selected by drop-down box.

The devices of main station and slave station are selected by drop-down box.

The transfer direction are read and write, and also selected by drop-down box.

The device address range limitations are as below.

1) The device address could not exceed the current device range
2) In the device of bit written, the mantissa of points of X and Y must be zero, such as $X 0, X 10, X 20, Y 0, Y 10, Y 20$ and so on. The software PLC Editor 2 will adjust automatically.
3) The Points of bit device other than X and Y must be a multiple of 8 , such as M0, M8, N16, T (bit) $16, \mathrm{C}$ (bit) 24 and so on. The software PLC Editor 2 will adjust automatically.
4) Bit device must communicate with bit device, and word device must communicate with word device. Double word device can only communicate with double word device. This is to avoid length perception differences.

The number limitations of slave station device are as below.

1) The number of bit device ranges from 8 to 2,032 .
2) The number of word device ranges from 1 to 126 .
3) The number of double word device ranges from 1 to 63 . HSC can only use a maximum of 16 due to the number limitation.
4) The number of bit device must be a multiple of 8 , such as $8,16,24,32$ and so on. The software PLC Editor 2 will adjust automatically.display the corresponding device address and range.
(2) Download

Currently PLCLINK could only be downloaded with the program and could not downloaded separately.

Click on PLCLINK in monitoring mode to re-write part of the table into PLC, but the start device could not be modified.

In monitoring mode, monitoring read and monitoring write could not be executed if the ladder program comparison is incorrect.
(3) Automatic check

Click "Check" in monitoring mode, the PLC that can communicate will be automatically searched and enabled. Stations that could not communicate will be closed. The Stations without instructions will not be checked. The PLCLINK table will be updated after the automatic check of the upper computer is finished.

Write 1 to in the table for addresses whose start address is offset 12 (for example, R200 is R212). The corresponding function is as below.

S1+12	Auto check	0: No check; 1: Automatic check mode; 2: Automatic check in progress. When enabled, all the station numbers will send data to determine whether the station number exists. (Reserved)

No error will be reported during auto check after the auto check is enabled. After the check is complete, the corresponding station number will be automatically enabled and disabled.

S1+13	Corresponding station number communication switch 1	The switch control of station 1 to 15 Bit0: ON: Station number 0 (broadcast) normal communication OFF: Station number 0 (broadcast) communication prohibited (broadcast prohibited) Bit1: ON: Station number 1 normal communication; OFF: Station 1 communication prohibited Bit2: ON: Station number 2 normal communication; OFF: Station 2 communication prohibited
S1+14	Corresponding station number communication switch 2	The switch control of station 16 to 31

Click [station number enable] to set the station enable according to the corresponding situations.

station no. enable		\times
Station No.	Enable	-
1	V	
2	V	
3	V	
4	V	\equiv
5	V	
6	V	
7	V	
8	V	
9	V	
10	V	
11	V	
12	V	
13	V	
14	V	
15	V	
16	V	-
0K	Cancel	

N Note: When in the automatic check state, forcibly turn off the automatic check state (write 0 in $\mathrm{S} 1+12$), an error may occur.
(4) Main station parameter configuration

The protocol must be PLCLINK protocol, and the data bit can not be 7-bit data bit. Other parameters can be selected as required.
(5) Slave station configuration

For PLCLINK communication ports, select the dedicated protocol from the station protocol.

The settings of Baud rate, data bit, stop bit, parity bit must be consistent with main station. The parameters above are consistent if not modified. The station number needs to be configured separately. The slave station number ranges from 1 to 31 .
(6) Close PLCLINK

In S1+11, The pause and start of PLCLINK are controlled by bit 8 . If bit 8 is ON, PLCLINK would be closed. No error is reported when switching protocol after this function is disabled.

S1+11	Operation state	Bit0=1, Port is occupied. This function obtains the right of data transaction transmission. Bit2=1, One cycle has been executed. Bit4, Communication transmission output indication Bit5, Communication error output indication (Exceeds the number of retry times) Bit6, Communication completion output indication Bit8, PLCLINK suspension (0: Normal operation, 1: Operation paused)

(7) Table contents

Currently the communication table is downloaded to the device to operate. The details of the table are as follows.

Address offset	Brief description		Detailed description
	High byte	Low byte	
S1+0	Header		Header $=70 \mathrm{~h}$, correct PLCLINK table. (modification prohibited)
S1+1	Number of communication instructions		1 to 255 (modification prohibited)
S1+2	Version		V1.100 (modification prohibited)
S1+3	The start address of communication table		modification prohibited
S1+4	Check bit of the number of header and communication		Simple check calculation for table header, number of communication instructions, version, and the start address of communication table ((modification prohibited))
S1+5	Which instruction currently is running		Display the current running command (read only)
S1+6	Station NO. 1	Read/write direction	The instruction content of current communication
S1+7	The data start address of station NO. 1		
S1+8	Station NO. 2	Address type distinction	
S1+9	The data start address of station NO. 2		
S1+10	Data length		
S1+11	Operation state		Bit0 $=1$,Port is occupied. This function obtains the right of data transaction transmission. Bit2=1, One cycle has been executed. Bit4, Communication transmission output indication Bit5, Communication error output indication (Exceeds the number of retry times) Bit6, Communication completion output indication Bit8, PLCLINK suspension (0: Normal operation, 1: Operation paused)
S1+12	Auto check mode (Reserved)		0: No check; 1: Automatic check mode; 2: Automatic check in progress. When enabled, all the station numbers will send data to determine whether the station number exists. The corresponding communication switch will be turned on if it exists. If not, the corresponding communication switch will be turned off.

S1+13	Corresponding station number communication switch 1		The switch control of station 1 to 15 Bit0: ON: Station NO. 0 (broadcast) normal communication OFF: Station NO. 0 (broadcast) communication prohibited (broadcast prohibited) Bit1: ON: Station NO. 1 normal communication; OFF: Station NO. 1 communication prohibited Bit2: ON: Station NO. 2 normal communication; OFF: Station NO. 2 communication prohibited
S1+14	Correspondin communicat	tation number switch 2	The switch control of station 16 to 31
S1+15	Reserved		
S1+16	Reserved		
S1+17	Reserved		
S1+18	Reserved		
S1+19	Reserved		
S1+20	Reserved		
S1+21	Station NO. 1	Read/write direction	- Station NO. 1 to 32, FF(FF represents main station) - Function code: $=01 \mathrm{H}$, read $=02 \mathrm{H}$, write
S1+22	The data start address of station NO.1		- Valid word. Define operating the start address of slave station data
S1+23	Station NO. 2	Address type distinction	- Station NO. 0 to 32 (If it is 0 , broadcast to all the slave stations on behalf of master station, and slave stations do not respond - Distinguish the type of the starting device for storing data in the main station. Main station address type distinction. 0: word address; 1: bit address
S1+24	The data start address of station NO.2		- Valid word. Define operating the start device of slave station data. Define the corresponding address by MUDBUS address of 5 V .
S1+25	Data length		- Valid word. Range 1 to 126(bit data), 1 to 2,032(bit data)
S1+26	Station NO. 1	Read/write direction	
S1+27	The data start address of station NO. 1		
S1+28	Station NO. 2	Address type distinction	The second data transmission description
S1+29	The data start address of station NO. 2		
S1+30	Data length		
\bullet			
\bullet			
S1+20+n×5	Reserved		- n is the total number of data transmission commands.

* Note:

(1) It is forbidden to modify SO to S4.

2 It is not recommended to change the value except the function enable or station number enable. Otherwise, the operation or upload may be abnormal.

Error code

드는

Error code	Contents
31 COH	Abnormal PLCLINK header. Re-download the program.
31C1H	PLCLINK function is not supported by COM port currently.
31 C 2 H	PLCLINK table version is incompatible. Re-download the program.
31 C 3 H	The number of PLCLINK command exceeds the range. The value ranges from 1 to 255 Currently.
31 C 4 H	The station number of PLCLINK table exceeds the range. Check the station number in the table.
31 C 5 H	PLCLINK table exceeds the range of device. Check the corresponding device range of table.
$31 \mathrm{C6H}$	The device used by PLCLINK table command exceeds the range. Check the device used for each command in the table.
3180 H	COM2 data reception error. There may be interference on the communication line. It is recommended to connect the ground wire.
3181H	COM2 data reception time. Check wiring, whether the parameters of the serial port setting is master-slave correspondence, whether there is interference, whether it is caused by the delay of the slave station. For this reason, try to increase the sending interval SD2546.
3182H	COM2 CRC check error. There may be interference on the communication line. It is recommended to connect the ground wire.
3184H	COM2 station number error. Check the setting of slave station number. Check whether there is a problem with the slave receiving and sending mechanism.
3186 H	COM2 function code error. Check whether the function code is supported by PLC.
3187H	COM2 address error.
3188 H	COM2 length error. Check whether the communication length exceeds the length range specified by Modbus or user-defined protocol.
3189H	COM2 data error. Check whether the parameter of instruction is wrong. Check whether the setting of the value is supported by slave station. (Please refer to Modbus abnormal 03)
318AH	COM2 slave station is busy. Slave station returns message: Slave station is busy. (Please refer to Modbus abnormal 06)
318BH	COM2 slave station does not support function codes. Check whether the function code is supported by slave station. (Please refer to Modbus abnormal 01)
318CH	COM2 slave station fault. Slave station returns message: Slave station is fault. Check whether the slave station is faulty. (Please refer to Modbus abnormal 04)
318DH	COM2 slave station confirmation. Slave station returns message: Slave station confirmation.(Please refer to Modbus abnormal 05)
318EH	COM2 does not support this instruction or function. When slave station protocol is set, the corresponding communication instruction or function of main station could not be used. Please change the protocol or close the contacts before the corresponding instruction, or the corresponding communication function.
3190 H	The data received by COM2 exceeds the cache limit.

Example

Create a PLCLINK table and automatically switch the Com 2 protocol to PLCLINK.

Open PLCLINK table, write the master station D10 to the slave station D10 device number 10, and read the slave station D10 to the master station D20 device number 10.

Connect Com2 of master station PLC to COM1 of slave station, and set the slave station number to 1 . After downloading, set the value of main station D10 to 1 and D11 to 8192 . Then, D20 will change to 1 and and D21 will change to 8192 .

The situation of connecting more than one

When adding commands, the station number that corresponding more slave station number can add more station number communication connections

10.9 Wecon Modbus protocol description

The current Wecon Modbus protocol description (special protocol) is modified based on the ModbusRTU protocol.
Therefore, 7-bit data bits cannot be used in the serial port parameter part.
The protocol of COMO and COM1 can only use WECON Modbus protocol at present and cannot be changed.
This protocol is fully compatible with Modbus RTU protocol, and the address is also the same as the default address of LX5V PLC's Modbus RTU protocol.

The extended function is mainly used to communicate with PLCEDITOR.

11 Special instructions

PID/PID calculation

PID

This instruction is used to perform PID control that changes the output value according to the amount of input change
-[PID (s1)(s2)(s3)(d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	Device number for storing the target value (SV)	-32767 to 32767	Signed BIN 16 bit	ANY16
(s2)	Device number for storing the measured value (PV)	-32767 to 32767	Signed BIN 16 bit	ANY16
(s3)	Device number for storing parameters	1 to 32767	Signed BIN 16 bit	ANY16
(d)	Device number for storing output value (MV)	-32767 to 32767	Signed BIN 16 bit	ANY16

Device used

Instruction	Parameter	Devices																Offset modification	Pulse extension
		XYM M S SM T ${ }^{\text {(bit) }}$			C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	Kns	TCD		LCH	HSC K		[D]	XXP
	Parameter 1													$\bullet \bullet$					
	Parameter 2													$\bullet \bullet \cdot$					
	Parameter 3													\bullet					
	Parameter 4													$\bullet \bullet$					

Features

This instruction is to complete the PID operation and is used to control the parameters of the closed-loop control system. PID control has a wide range of applications in mechanical equipment, pneumatic equipment, constant pressure water supply and electronic equipment, etc. among them:
S1 is the target value of PID control;
S2 is the measured feedback value;
S3 The starting address of the buffer area for setting parameters required for PID operation and saving intermediate results, occupies a total of 26 variable units in the subsequent addresses, the value range is DO to D7974, it is best to specify the power failure retention area, which will remain after the power is OFF Set the value, otherwise the buffer area needs to be assigned value before starting the operation for the first time. The function and parameter description of each unit are described in this section; (D) is the storage unit of the PID calculation result. Please designate as a non-battery holding area, otherwise it needs to be initialized and cleared before starting the calculation for the first time.

Programming example

The parameter description is as follows:
What is stored in D9 is the target value of PID adjustment, and D10 is the closed-loop feedback value. Note that D9 and D10 must be of the same dimension, such as both 0.01 MPa units, or $1^{\circ} \mathrm{C}$ units, etc.;

A total of 26 units of D200 to D225 are used to store the set value and process value of PID operation. These values must be set item by item before the first PID calculation;

The D130 unit is used to store the calculated control output value to control the execution of the action.
The function and setting method of the parameter value of each unit about starting of S3 are described in the following table:

Unit	Features	Setting instructions
S3	Sampling time (TS)	The setting range is 1 to $32767(\mathrm{~ms})$, but it needs to be greater than the PLC program scan period

PLC LX5V Series Programming Manual (V2.2)

(53) +1	Action direction (ACT)	bit0: $0=$ positive action; $1=$ reverse action bit3: $0=$ unidirectional; $1=$ bidirectional bit4: $0=$ auto-tuning does not work; 1 = auto-tuning is executed, others cannot be used.
(53) +2	Maximum ascent rate (DeltaT)	Setting range 0 to 32000 is the threshold of integral increment
S3 +3	Proportional gain (Kp)	Setting range 0 to 32767 , note that this value is enlarged by 256 times, the actual value is $\mathrm{Kp} / 256$
S3 +4	Integral gain (Ki)	Setting range 0 to $32767, \mathrm{Ki}=16384 \mathrm{Ts} / \mathrm{Ti}$, Ti is the integral time
(S3) +5	Differential gain (Kd)	Setting range 0 to $32767, \mathrm{Kd} \approx \mathrm{Td} / \mathrm{Ts}$, Td is the derivative time
(S3) +6	Filtering (C0)	Setting range 0 to 1023, integral part filtering
S3 +7	Output lower limit	Recommended setting range -2000 to 2000 When bit3 of $S 3+1=0$, set to 0 ; When bit3 of $S 3+1=1$, set to -2000 ;
(S3) +8	Output upper limit	Recommended setting value 2000
(S3) +9	Reserved	Reserved
!	!	:
S3 +25	Reserved	Reserved

Auto tuning example

* Note:

- When multiple instructions are used, the device number of (d) cannot be repeated.
- During the execution of auto-tuning, the (s3) parameter space cannot be modified.
- The instruction occupies 26 point devices from the device specified in (s3).
- PID instruction can be used multiple times in the program and can be executed at the same time, but the variable area used in each PID instruction should not overlap; it can also be used in step instructions, jump instructions, timing interrupts, and subroutines, in this case When executing the PID instruction, the $(s 3)+9$ cache unit must be cleared in advance.
- The maximum error of the sampling time Ts is $-(1$ operation cycle $+1 \mathrm{~ms})+(1$ operation cycle). If the sampling time Ts ≤ 1 operation cycle of the programmable controller, the following PID operation error (4D86H) will occur, and the PID operation will be executed with TS = operation cycle. In this case, it is recommended to use constant scan mode or use PID instruction in timer interrupt.

Error code

Error code	Content
4085 H	When the device specified in the read application instructions (s1), (s2), (s3), (d) exceeds the range of the corresponding device.
4086 H	When the device specified in the write application instruction (s3) and (d) exceeds the range of the corresponding device.
4 D 80 H	The sampling time is out of range. $T s \leq 0$
4 D 81 H	Input filter constant (Co) is out of range (. $C o<0 \mathrm{Or} C o \geq 1023$)
4 D 82 H	The maximum ascent rate (ΔT) is out of range. $\Delta T<0 \mathrm{Or} \Delta T>32000$
4 D 83 H	The proportional gain (Kp) is out of range. $K p<0$
4 D 84 H	The integral gain (Ki) is out of range. $K i<0$
4 D 85 H	The differential gain (Kd) is out of range. $K d<0$
4 D 86 H	The sampling time (Ts) is less than the operation cycle. $T s<$ Scan cycle

Example

See manual.

CCPID/CCPID calculation

CCPID
This instruction is used to perform PID control that changes the output value according to the amount of input change.
-[CCPID (s1) (s2) (s3) (d)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	Device number for storing the target value (SV)	-32767 to 32767	Signed BIN 16 bit	ANY16
(s2)	Device number for storing the measured value (PV)	-32767 to 32767	Signed BIN 16 bit	ANY16
(s3)	Device number for storing parameters	1 to 32767	Signed BIN 16 bit	ANY16
(d)	Device number for storing output value (MV)	-32767 to 32767	Signed BIN 16 bit	ANY16

Device used

Instruction	Parameter	Devices																	Offset modification	Pulse extension
		XYM SSM T (bit)			C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS ${ }^{\text {T }}$	TD	R	SD	LC	HSC	KHE	[D]	XXP
	Parameter 1													-	\bullet					
CCPID	Parameter 2														-					
CCPID	Parameter 3														-					
	Parameter 4														\bullet					

Features

After setting target value (s1), measured value (s2), parameter (s3) to (s3) +12 and executing the program, the calculation result (MV) will be stored to the output according to the first sampling time ($s 3$) in the parameter Value (d). For details, please refer to the user manual of "Wecon CC Series ccpid Function Description v1.4".

N Note:

It can be executed multiple times at the same time (there is no limit to the number of loops), but please note that the device numbers (s 3) and (d) used in the calculation cannot be repeated.

The instruction occupies 52 points of devices starting from the device specified in (s3).
During the execution of auto-tuning, the ($s 3$) parameter space cannot be modified.
Error code

Error code	
4085 H	When the device specified in the read application instructions (s1), (s2), (s3), (d) exceeds the range of the corresponding device.
4086 H	When the device specified in the write application instruction (s3) and (d) exceeds the range of the corresponding device.
4 D 80 H	The sampling time is out of range. $T s \leq 0$
4 D 81 H	Input filter constant ($C o$) is out of range ($\mathrm{Co}<0 \mathrm{OrCo} \geq 1023$)
4 D 82 H	The maximum ascent rate (ΔT) is out of range. $\Delta T<0 \mathrm{OR} \Delta T>32000$
4 D 86 H	The sampling time (Ts) is less than the operation cycle. $T s<\mathrm{Scan}$ cycle
4 D 87 H	The proportional gain (Kp) is out of range. $K p<1 \mathrm{Or} K p>30000$
4 D 88 H	The integral time constant (Ti) is out of range. Ti $<0 \mathrm{OrTi}>3600$
4 D 89 H	The differential time constant (Td) is out of range. $T d<0 \mathrm{Or} T d>1000$
4 D 90 H	The upper limit of CCPID output is less than the lower limit.

Example

See "CCPID Instruction Manual".

FPID/FPID calculation

FPID

The function of this instruction is to adjust PID control parameters by fuzzy algorithm.
-[FPID (s) (d1) (d2) (d3)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	Store the start number of the device of the fuzzy parameter table (no input required)	-	Signed BIN 16 bit	ANY16
(d1)	Start number of the device storing the initialization parameters	-	Signed BIN 16 bit	ANY16
$(d 2)$	Store the start number of the device of the input PID parameter	-	Signed BIN 16 bit	ANY16
$(d 3)$	The start number of the device that stores the adjusted PID parameters	-	Signed BIN 16 bit	ANY16

Device used

Instruction	Parameter	Soft component																	Offset modification	Pulse extension
		XYMS	$5 \begin{gathered} \mathrm{S} \\ \mathrm{M} \end{gathered}$	$\begin{gathered} \text { T(bit } \\ \hline \end{gathered}$	$\begin{gathered} \text { C(bit } \\ \text {) } \end{gathered}$	LC(bit 1	HSC(bit)	D. b	$\begin{gathered} \mathrm{Kn} \\ \mathrm{X} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Kn} \\ \mathrm{Y} \end{gathered}$	$\begin{aligned} & \mathrm{Kn} \\ & \mathrm{M} \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline \mathrm{Kn} \\ \mathrm{~S} \\ \hline \end{array}$	TCD	R	S	L	HS C	KHE	[D]	XXP
FPID	Parameter 1														-	\bullet				
	$\begin{array}{\|c\|} \hline \text { Parameter } \\ 2 \end{array}$														-	\bullet				
	$\begin{array}{\|c\|} \hline \text { Parameter } \\ 3 \end{array}$														-	\bullet				
	$\begin{array}{\|c\|} \hline \text { Parameter } \\ 4 \\ \hline \end{array}$													-	-	-				

Features

This instruction needs to be used in conjunction with the PID instruction. It completes the fuzzy calculation of the adjustments of the three parameters of PID, Kp, Ki, and Kd. By passing in the three parameters of the PID, the new three parameters are calculated and substituted into the PID for output control.

Parameter Description:

d1 parameter setting					
Parameter	Offset address	Name	Format	Instruction	Range
Parameter 1	d1	em domain	Floating point	Temperature difference	>0
	d1+1				
Parameter 2	d1+2	ecm domain	Floating point	Temperature difference	>0
	d1+3				
Parameter 3	d1+4	kpm coefficient	Floating point	0.5 (fixed) (not set)	-
	d1+5				
Parameter 4	d1+6	kim coefficient	Floating point	1 (fixed) (not set)	-
	d1+7				
Parameter 5	d1+8	kdm coefficient	Floating point	1 (fixed) (not set)	-
	d1+9				

PLC LX5V Series Programming Manual (V2.2)

Parameter 6	d1+10	EM	32-bit integer	6 (fixed) (not set)	-
	d1+11				
Parameter 7	d1+12	ECM	32-bit integer	6 (fixed) (not set)	-
	d1+13				
Parameter 8	d1+14	UM	32-bit integer	6 (fixed) (not set)	-
	d1+15				
Parameter 9	d1+16	Size_x	32-bit integer	13 (fixed) (not set)	-
	d1+17				
Parameter 10	d1+18	Size_y	32-bit integer	13 (fixed) (not set)	-
	d1+19				
Parameter 11	d1+20	Kpm reserved for internal use	Reserved	Reserved	-
Parameter 12	d1+21	Kim reserved for internal use	Reserved	Reserved	-
Parameter 13	d1+22	Kdm reserved for internal use	Reserved	Reserved	-
Parameter 14	d1+23	Kukp reserved for internal use	Reserved	Reserved	-
Parameter 15	d1+24	Kuki reserved for internal use	Reserved	Reserved	-
Parameter 16	d1+25	Kukd reserved for internal use	Reserved	Reserved	-
!	!	:	!	Reserved	-
Parameter 20	d1+37	Reserved for internal use	Reserved	Reserved	-

d2 parameter setting					
Parameter	Offset address	Name	Format	Instruction	Range
Parameter 1	d2	Current Temperature	16-bit integer	Current test temperature	-
Parameter 2	d2+1	set temperature	16-bit integer	Set temperature	-
Parameter 3	d2+2	Calculation period	16-bit integer	Take an integer multiple of the pid sampling time, usually the same	-
Parameter 4	d2+3	Kp	16-bit integer	PID initial Kp value	-
Parameter 5	d2+4	Kı	16-bit integer	PID initial Ki value	-
Parameter 6	d2+5	KD	16-bit integer	PID initial Kd value	-
Parameter 7	d2+6	Sampling cycle	16-bit integer	No need to enter	-
Parameter 8	d2+7	Initialization flag	16-bit integer	Reserved for internal use	-
Parameter 9	d2+8	Last calculation time	32-bit integer	View usage (not operable)	-
	d2+9				
Parameter 10	d2+10	Last temperature	16-bit integer	View usage (not operable)	-
Parameter 11	d2+11	Reserved	16-bit integer	Reserved	
d3 parameter setting					
Parameter	Offset address	Name	format	Instruction	Range
Parameter 1	d3	Current Temperature	16-bit integer	Current test temperature	-
Parameter 2	d3+1	set temperature	16-bit integer	Set temperature	-
Parameter 3	d3+2	Calculation period	16-bit integer	Take an integer multiple of the pid sampling time, usually the same	-
Parameter 4	d3+3	Kp	16-bit integer	Kp value of PID after adjustment	-
Parameter 5	d3+4	KI	16-bit integer	Ki value of PID after adjustment	-

PLC LX5V Series Programming Manual (V2.2)

Parameter 6	$\mathrm{d} 3+5$	KD	16-bit integer	Kd value of PID after adjustment	-
Parameter 7	$\mathrm{d} 3+6$	Sampling cycle	16-bit integer	No need to enter	-
Parameter 8	$\mathrm{d} 3+7$	Reserved	16-bit integer	Reserved	-

* Note:

The instruction starts from the device specified in (d1) and occupies 38 points of the device, and initializes the parameters. Normally, it only needs to be initialized once before calling (some parameters are fixed) (occupies 38 words space).

The instruction starts with the device specified in (d2) and occupies 12 points of the device, input parameters, and input the first 6 parameters, where $\mathrm{Kp}, \mathrm{Ki}, \mathrm{Kd}$ are the initial values of the PID control parameters (occupies 12 words space).

The instruction starts from the device specified in (d3) and occupies 8 points of soft elements and output parameters, among which $\mathrm{Kp}, \mathrm{Ki}, \mathrm{Kd}$ are the parameter values after fuzzy adaptive calculation, which can be input to the designated position of PID (occupy 8 words space).

The FPID instruction occupies 58 words. The address of each operand must have a specified interval interval, which cannot be occupied by other instructions.

Error code

Error code	Content
4085 H	When the device specified in the read application instructions (d1), (d2), (d3) exceeds the range of the corresponding device.
4086 H	When the device specified in the write application instructions (d1), (d2), (d3) exceeds the range of the corresponding device.
4 D 91 H	FPID calculation cycle is less than or equal to 0
4 D 92 H	FPID parameter range error
4 D 93 H	FPID initial flag error

Example

1. Parameter d1

2. Parameter d2

3. Invoke FPID

CCPID instruction introduction manual

Background and purpose

(1) Background:

PID (proportion, integral, derivative) controller has been the earliest practical controller for nearly a hundred years, and it is still the most widely used industrial controller. The PID controller is simple and easy to understand, and does not require precise system models and other prerequisites in use, making it the most widely used controller.
(2) Purpose:

You might not be familiar with the parameter settings in the new series of CCPID for the first time, this manual could let you quickly understand the meaning of each parameter in the CCPID and the influence on the control effect, so that you can quickly learn the CCPID.

Description of the host CCPID instruction

Instruction description

Content, range and data type

Name	Features	Bits (bits)	Whether pulse type	Instruction format	Step count
CCPID	PID Operation	16	No	CCPID	S1

Instruction	Parameter	Devices																			Offset odification	Pulse extension
		XYMSSM T(bit)				C(bit)	LC(bit)	HSC(bit)	D.b Kn		nX KnY KnM ${ }^{\text {a }}$		KnS T C D			DRSDLCHSCKHE					[D]	XXP
	Parameter 1																					
	Parameter 2															\bullet						
	Parameter 3															-						
	Parameter 4															\bullet						

Device used

(SD) is the target value (SV) of PID control;
(S2) is the measured feedback value (PV);
(S3) is the start address of the buffer area for setting parameters required for PID operation and saving intermediate results, occupying a total of 52 variable units of subsequent addresses (recommended to reserve 100 continuous spaces). The value range is D0 to D7,948, it is better to specify power failure retention, and the setting value remains after power supply is off. Otherwise,the buffer needs to be assigned value before starting the calculation for the first time. The function and parameter description of each unit are described in this section;
(D) is the storage unit (MV) of the PID calculation result. Please specify it as a non-battery retentive area, otherwise it needs to be initialized and cleared before the first start of calculation.

Programming example

The parameter description is as follows:
In D9, the target value of PID adjustment is stored, and D10 is the closed-loop feedback value. Note that D9 and D10 must be of the same dimension, such as both 0.01 MPa units, or $1^{\circ} \mathrm{C}$ units, etc.;

A total of 52 units of D200 to D224 are used to store the set value and process value of PID operation. These values must be set item by item before the first PID calculation;

D130 unit is used to store the calculated control output value to control the execution of the action.
The functions and setting methods of the parameter values of each unit used by $\$ 3$ are described in the following table:
(S3) to +14 is the parameter range that can be set (parameters set when CCPID is executed).

PLC LX5V Series Programming Manual (V2.2)
(53) +15 to (53) +21 is the space used internally by CCPID control.
(83) +22 to ${ }^{(33)}+51$ is the parameter space used in the auto-tuning process.

Unit	Features	Setting instructions	Supplement
	Sample time (TS)	The set range is 1 to $32,767(\mathrm{~ms})$, but greater than PLC program scan cycle.	It is how often the instruction calculates and updates the output value (MV). When TS is less than one scan time, PID instruction is executed with one scan time and alarm 4 D 86 H . When $\mathrm{TS} \leq 0$, alarm 4D80H and no execution.
+1	Action direction (ACT)	bit0: $0=$ positive action; $1=$ reverse action bit2: auto-tuning transition zone switch. $0=$ not open;1=open bit3: 0=unidirection; 1=bidirection Bit4: 0=auto-tuning does not execute; 1=execute auto-tuning [Bit6:0=Two-stage auto-tuning does not execute. 1=Execute two-stage auto-tuning (bit4 must be set to 1). bit7: $0=$ Three-stage auto-tuning does not execute. 1=Execute three-stage auto-tuning (bit4 must be set to 1)] The Others cannot be used.	bit0: Positive action: similar heating system, when the temperature is lower than the set value, increases the output ; Reverse action: similar cooling system, when the temperature is greater than the set value, increases the output. bit2: Self-tuning transition zone switch. There is a transition zone size of $1.5^{\circ} \mathrm{C}$ when opened. bit3: Bidirection indicates that outputs the positive and negative values to the heating system or the cooling system to control two external systems by one PID. bit4: \otimes When bit4=1 and bit6 and bit7 are not 1, auto-tuning is not executed. When bit4=0 and one of bit6 and bit7 is 1 , auto-tuning is not executed. When bit4=1 and bit6 and bit7 are both 1, auto-tuning is executed
+2	Filter coefficient	The first-order inertia filter of feedback amount (0 to 100%) has a range of 0 to100	When the value is greater than or equal to 100 , it will be executed as 0 , that is, no filtering will be executed;
+3	Proportional gain(Kp)	Set range: 0 to 30,000[\%]	Overrun error 4D87H
+4	Integration time (Ti)	Ti is integration time, and the range is 0 to $3,600 \text { (s) }$	Overrun error 4D88H
+5	Differential time (Td)	Td is derivative time, and the range is 0 to 1,000 (s)	Overrun error 4D89H
+6	Working interval	Operating temperature setting enabled by PID (0 indicates no effect) The range is 0 to 1,000	It is recommended to be greater than $5^{\circ} \mathrm{C}$, that is, 50 (precision $0.1^{\circ} \mathrm{C}$). If it exceeds the range, the boundary value will be taken.
+7	Output low limit	Range: -10,000 to 10,000. Recommended setting range: -2,000 or 0 (when $\mathrm{S} 3+1$ bit $3=0$, the lower limit $=0$; when bit3=1, the lower limit $=-2,000$)	1. Self-tuning initialization: (1) Unidirection control: the lower limit is 0 ; (2) Bidirection control: If the lower limit is greater than 0 , adjust the lower limit to 0 ; if the upper limit and the lower limit are equal to 0 , the default lower limit is $-2,000$. Note: If set to $-2,000$, and the output value (MV) is less than - 2,000 , it will output $-2,000$. 2. During the control process, the lower limit is dynamically adjustable. If the lower limit is greater than

PLC LX5V Series Programming Manual (V2.2)

			or equal to the upper limit, error 4D90H will be reported.
+8	Output upper limit	Value range: -10,000 to 10,000. Recommended setting value is 2,000	1. Self-tuning initialization: (1) Unidirection control: If the upper limit is less than 0 , the default upper limit is 2,000 ; (2) Bidirection control: If the upper limit is less than 0 , adjust the upper limit to 0 ; if the upper limit and the lower limit are equal to 0 , the default upper limit is $-2,000$. Note: If set to $-2,000$ and the output value (MV) is greater than $-2,000$, it will output 2,000 2. During the control process, the upper limit is dynamically adjustable. If the lower limit is greater than or equal to the upper limit, error 4D90H will be reported.
+9	Mode setting	0: Overshoot allowed 1: Slight overshoot or no overshoot 2: Dynamic setting	0:Overshoot allowed (ukd = 100) 1: Slight overshoot or no overshoot mode (ukd =300)
+10	Scale factor (ukp)	Typically sets value to 100 (default 100) [enabled when $\mathrm{S} 3+9$ is set to 2]. The range is 1 to 500.	When the value is less than or equal to 0 , or greater than 500, the boundary value will be taken.
+11	Integral coefficient (uki)	Typically sets value to 50 (default 50) [enabled when $\mathrm{S} 3+9$ is set to 2]. The range is 1 to 300 .	When the value is less than or equal to 0 , or greater than 300 , the boundary value will be taken.
+12	Differential coefficient (ukd)	Typically sets value to 50 (default 100. 300 to 400 can be set when slight overshoot is required) [Enable when $\mathrm{S} 3+9$ is set to 2]. The range is 1 to 500.	When the value is less than or equal to 0 , or greater than 500, the boundary value will be taken.
+13	Maximum ascent rate (DeltaT)	The range is 0 to 32,000, which is the threshold of integral increment	Overrun error 4D82H
+14	Filtering (C0)	The range is 0 to 1,023, integral part filtering	Overrun error 4D81H
+15 \vdots +21	reserved for internal control	Internal control space occupation	
+22 \vdots +51	used space for self-tuning	New self-tuning space for internal use	

1) The auto-tuning process occupies the space of $S 3+22$ to $S 3+51$. When the auto-tuning is successful, the adjusted parameters will be written into the space of $\mathrm{S} 3+2$ to $\mathrm{S} 3+21$.
2) +2 filter coefficient α : Processing in first-order inertial filter

[^8]T_{α} is the currently measured temperature. $\mathrm{T}_{\text {old }}$ is the temperature that participated in the PID calculation last time. $\mathrm{T}_{\text {now }}$ is the temperature used for the current PID calculation. α is the filter coefficient (when $\alpha=0$, no filtering is performed, and the range of α is 0 to 100 . (If there is a temperature with a small overshoot but a long stabilization time, the parameter can be set to 80 , and analyze the specific problems in detail)
3) +6 work range: Twork(example: 170 represents $17^{\circ} \mathrm{C}$)

| Positive action: | OUT $= \begin{cases}100 \% \text { power output } & \mathrm{PV}<\mathrm{SV}-\mathrm{T}_{\text {work }} \\ \text { PidOut } & \mathrm{PV} \geqslant \mathrm{SV}-\mathrm{T}_{\text {work }}\end{cases}$ |
| :--- | :--- | :--- |
| Reverse action: \quad OUT $= \begin{cases}100 \% \text { power output } & \mathrm{PV}<\mathrm{SV}-\mathrm{T}_{\text {work }} \\ \text { PidOut } & \mathrm{PV} \leqslant \mathrm{SV}-\mathrm{T}_{\text {work }}\end{cases}$ | |

4) +9 working mode:

0 : Working mode that allows overshoot
1: Slight overshoot or no overshoot working mode
2: Custom settings; to achieve by setting $+10,+11,+12$ three coefficients.
5) $\quad+1$ bit2 self-tuning transition zone switch: (upper limit $1^{\circ} \mathrm{C}$, low limit $0.5^{\circ} \mathrm{C}$)

The transition zone description in forward control:

In the heating process, when $\mathrm{PV} \leq \mathrm{SV}+1^{\circ} \mathrm{C}, 100 \%$ power output; when $\mathrm{PV}>\mathrm{SV}+1{ }^{\circ} \mathrm{C}$, no output. In the cooling process, when $\mathrm{PV}<\mathrm{SV}-0.5^{\circ} \mathrm{C}, 100 \%$ power output; When $\mathrm{PV} \geq \mathrm{SV}-0.5^{\circ} \mathrm{C}$, no output.

The transition zone description in reverse control:

In the cooling process, when $\mathrm{PV} \geq \mathrm{SV}-1^{\circ} \mathrm{C}, 100 \%$ power output; when $\mathrm{PV}<\mathrm{SV}-1^{\circ} \mathrm{C}$, no output.
In the heating process, when $\mathrm{PV}>\mathrm{SV}+0.5^{\circ} \mathrm{C}, 100 \%$ power output; When $\mathrm{PV} \leq \mathrm{SV}+0.5^{\circ} \mathrm{C}$, no output.
The transition zone description in bidirectional control:

In the heating process, when $\mathrm{PV} \leq \mathrm{SV}+1^{\circ} \mathrm{C}, 100 \%$ power heating output; when $\mathrm{PV}>\mathrm{SV}+1^{\circ} \mathrm{C}, 100 \%$ power cooling output. In the cooling process, when $\mathrm{PV}<\mathrm{SV}-0.5^{\circ} \mathrm{C}, 100 \%$ power heating output. When $\mathrm{PV} \geq \mathrm{SV}-0.5^{\circ} \mathrm{C}, 100 \%$ power cooling output

Programming case

CCPID application configuration
(1) Parameter setting

(2) CCPID control process setting

(3) Bidirection control

* Note:

1. CCPID is a special instruction for operation control. CCPID operation will be executed only after the sample time is reached.
2. There is no limit to the number of times the CCPID instruction can be used, but+51 cannot be repeated.
3. Before CCPID instruction is executed, CCPID parameters need to be set.

Case analysis

(1) Control requirements

The control environment of this example is a kettle. The configuration is controlled by PLC-5V2416 host with 4PT module, and PI8070 screen is used for data storage and process curve viewing

(2) Sample program

(3) Parameter description

PLC device	Control instructions
M0	Set auto tuning
M1	CCPID instruction calculation start
M2	CCPID operating status
Y0	Pulse output with adjustable pulse width
D0	Temperature measured value
D1	Temperature setting value
D100	Control detail settings
D101	First-order inertial filter coefficient
D102	Working interval
D106	Operating mode
D109	

(4) Parameter control effect description

1) Boiling water experiment
(1) Auto-tuning process and control process (no transition zone setting), take two-stage auto-tuning as an example

Figure 1 Auto-tuning process curve without transition zone
When the control system is a single temperature control system or a system where environmental interference does not cause large fluctuations. Generally the automatic tuning without transition zone is selected, so that the self-tuning process can be completed more quickly than the method with transition zone.
2. Self-tuning process and control process (transition zone setting)

Figure 2 Self-tuning process curve with transition zone
It is more suitable in a two-way control system with transition zone self-tuning process. The transition zone has a range of $1.5^{\circ} \mathrm{C}$. The upper limit is $1^{\circ} \mathrm{C}$, and the lower limit is $0.5^{\circ} \mathrm{C}$.
2) Difference in working interval setting

Figure 3 Process curve under different working interval parameters

Figure 4 Process curve without different working interval parameters (heating process diagram)
It can be seen from the partially enlarged graph that the parameters of the working interval have a certain influence on the overshoot and the stable time. In the case of allowing overshoot, setting the working interval parameters can make the overshoot smaller. This is because the deviation E of PID starting to work is relatively small, and the integration accumulation will not quickly saturate.
3) Result of filter coefficient setting

Figure 5 Process curve under different filtering parameters
The figure above is the experimental result under the small overshoot coefficient, the sample time is 1 s . The coefficients of the first-order inertial filtering are ($20,50,70,80,90$). After adding the inertia coefficient, the stability time of system control is greatly accelerated, and it is increased by about 6 minutes for the boiling water experiment. The overshoot is about $1.2^{\circ} \mathrm{C}$ to $1.7^{\circ} \mathrm{C}$.

Therefore, the introduction of first-order inertial filtering could greatly improve the PID environment where the temperature fluctuates to a certain extent and increase stabilization time.

Note: This parameter of filter coefficient is helpful for systems with not very large hysteresis or the control effect of the phenomenon that the control amount fluctuates back and forth has been greatly improved.
4) The difference in mode selection

0 : Overshoot allowed(ukd $=100$)
1: Small overshoot or no overshoot (ukd =300)

Figure 6 Process curves in different working modes
When selecting mode 1 (small overshoot or no overshoot), the stable temperature may be slightly higher than the set temperature (fluctuates above the set temperature).
5) The function of the coefficient

Figure 7 Process curve under dynamic setting
When selecting working mode 2 , there are three corresponding adjustable parameters: ukp[S3+10], uki[$\mathrm{S} 3+11]$, ukd[$\mathrm{S} 3+12$]. Usually, the default parameters can be used for ukp and uki. Adjust the value of ukd could achieve the control effect.

Ukp is adjusted when the value of Kp reaches the maximum value, and the default value is usually 100 .
Uki is adjusted when periodic oscillations occur. Gradually increase the value of uki to track the control effect.

CCPIN_SHT operation

CCPIN_SHT

This instruction is used to perform PID control that changes the output value according to the variation of the input.
-[CCPID_SHT (s1) (s2) (s3) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
$(s 1)$	The device number that stores the target value (SV)	-32767 to 32767	Signed BIN 16 bit	ANY16
$(s 2)$	The device number that stores the measured value (SV)	-32767 to 32767	Signed BIN 16 bit	ANY16
(s3)	The device number that stores parameters	1 to 32767	Signed BIN 16 bit	ANY16
(d)	The device number that stores the output value (SV)	-32767 to 32767	Signed BIN 16 bit	ANY16

Device used

Instruction	Parameter	Devices																			Offset dification	Pulse extension
		X Y M S SM T(bit)			C(bit)	LC(bit)	HSC(bit)	D.b KnX		KnY	KnM KnS T C D				DR	SDLCHSCKHE					[D]	XXP
	Parameter 1														\bullet	\bullet						
CCPID SHT	Parameter 2														-	-						
	Parameter 3														-	\bullet						
	Parameter 4														\bullet	\bullet						

Features

This instruction is to complete the temperature control operation, used to control the parameters of the closed-loop control system.is the target value of CCPID SHT control (SV).
(S2) is the measured feedback value (PV).
(S3) is the start address of the cache where the parameters required by CCPID_SHT operation and intermediate results are saved, occupying a total of 36 variable units of subsequent addresses. The value range is from D0 to D7946 or from R0 to R29964. It is better to specify power failure retention, and the setting value remains after power supply is off. Otherwise, the cache needs to be assigned value before starting the calculation for the first time. The function and parameter description of each unit are described in this section.
(D) is the storage unit of the CCPID_SHT calculation result. Please specify it as a non-battery retentive area, otherwise it needs to be initialized and cleared before the first start of calculation.

Programming example

The parameter description is as follows:
The target value of CCPID_SHT adjustment is stored in D1, and D0 is the closed-loop feedback value. Note that D0 and D9 must be of the same dimension, such as both 0.01 MPa units, or $1^{\circ} \mathrm{C}$ units, etc..

A total of 36 units of D1000 to D1035 are used to store the set value and process value of CCPID_SHT operation. These values must be set item by item before the first CCPID_SHT calculation.

D100 unit is used to store the calculated control output value to control the execution of the action.to $\$ 3+15$ is the parameter range that can be set (parameters set when CCPID_SHT is executed).
 +2 to+31 is the parameter space used in the self-tuning process. (This space is multiplexed with the parameter space during control)

PLC LX5V Series Programming Manual (V2.2)
The functions and setting methods of the parameter values of each unit started by $\$ 3$ are described in the following table:

Unit	Function	Description
(S3)	Sampling time (TS)	Range: 1 to 32767 (ms). It must be longer than PLC program scan cycle.
(53) +1	Control flag bit	bit0: $0=$ Forward action; $1=$ Reverse action bit3: $0=$ one-way; $1=$ two-way bit4: $0=$ Self-tuning does not act; $1=$ Perform self-tuning and the others are not available. bit6: $0=$ Two-segment self-tuning does not act; $1=$ Perform two-segment self-tuning (bit4 must set to 1) bit7: $0=$ Three-segment self-tuning does not act; $1=$ Perform three-segment self-tuning (bit4 must set to 1) Bit15: The instruction initialization flag bit. When initialization is complete, it is set to 1 .
(S3) +2	Maximum rate of increase (DeltaT)	Range: 0 to 32000. Threshold of integral increment
(83) +3	Proportional gain (Kp)	Range: 0 to 32767 . This value is magnified 256 times and the actual value is $\mathrm{Kp} / 256$.
(53) +4	Integral gain (Ki)	Range: 0 to 32767, $\mathrm{Ki}=16384 \mathrm{Ts} / \mathrm{Ti}, \mathrm{Ti}$ is integral time
(53) +5	Differential gain (Kd)	Range: 0 to $32767, \mathrm{Kd} \approx \mathrm{Td} / \mathrm{Ts}$, Td is differential time
(53) +6	Filter constant (Co)	Range: 0 to 1023, Integral partial filtering.
(83) +7	Output lower limit	Recommended setting range: -2000 to 2000
(S3) +8	Output upper limit	Recommended setting value: 2000. When the upper and lower limits are both 0 , the upper limit becomes 2000 and the lower limit becomes 0 .
(83) +9	Reserved	Reserved for internal use
!	;	!
(S3) +35	Reserved	Reserved for internal use

Parameter space corresponding to the self-tuning time

Unit	Function	Description
(33)	Sampling time (TS)	Range: 1 to 32767 (ms). It must be longer than PLC program scan cycle.
(53) +1	Control flag bit	bit0: 0 $=$ Forward action; 1 $=$ Reverse action bit3: $0=$ one-way; $1=$ two-way bit4: $0=$ Self-tuning does not act; $1=$ Perform self-tuning and the others are not available. bit6: $0=$ Two-segment self-tuning does not act; $1=$ Perform two-segment self-tuning (bit4 must set to 1) bit7: $0=$ Three-segment self-tuning does not act; $1=$ Perform three-segment self-tuning (bit4 must set to 1) Bit15: This instruction initializes the flag bit. When initialization is complete, the position is set to 1 .
(53) +2	Sampling time of PID running after self-tuning	Setting range: 1 to 32767 ms() . When $\mathrm{Ts} \leqq 0, \mathrm{Ts}=3000$
(53) +3	Coefficient ukp for PID parameter calculation	Setting range: 0 to 500. When ukp $\leqq 0$, ukp=100; When ukp $\geqq 500$, ukp=500.
(53) +4	Coefficient uki for PID parameter calculation	Setting range: 0 to 32767 . When $u k i \leqq 0, u k i=50$.
(S3) +5	Coefficient ukd for PID	Setting range: 0 to 32767 . When ukd $\leqq 0$, ukd=50.

PLC LX5V Series Programming Manual (V2.2)

	parameter calculation	
(53) +6	Reserved	Reserved
(S3) +7	Output lower limit	Recommended setting range: -2000 to 2000
(S3) +8	Output upper limit	Recommended setting value: 2000. When the upper and lower limits are both 0 , the upper limit becomes 2000 and the lower limit becomes 0 .
(S3) +9	Reserved	Reserved for internal use
!	!	!
(53) +35	Reserved	Reserved for internal use

Error code

Error code	Content
4085H	Read application instruction (S1), (S2), (S3) and (d) output results exceed the range of device.
4086H	The devices specified in write application instruction (S3) and (d) exceed the range of the corresponding device.
4DBOH	Sampling time (Ts) exceeds the range the object ($T s \leqq 0$)
4DB1H	Output filter constant (Co) exceeds the range the object ($\mathrm{Co}<0$ or $\mathrm{Co}>1023$)
4DB2H	Maximum rate of increase (DeltaT) exceeds the range the object (deltaT<0 or deltaT>32000)
4DB3H	Proportional gain (Kp) exceeds the range the object ($\mathrm{Kp} \leqq 0$)
4DB4H	Integral gain (Ki) exceeds the range the object ($\mathrm{Ki} \leqq 0$)
4DB5H	Differential gain (Kd) exceeds the range the object ($\mathrm{Kd} \leqq 0$)
4DB6H	Sampling time (Ts) < operation cycle

Example

LAGCDL Large time-delay temperature control instruction

LAGCDL

This instruction is used to perform large time-delay system temperature control that changes the output value according to changes in the input.
-[LAGCDL (s1)
(s2) (s3)
(d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	The device number that stores the target value (SV)	-32767 to 32767	Signed BIN 16 bit	ANY16
(s2)	The device number that stores the measured value (SV)	-32767 to 32767	Signed BIN 16 bit	ANY16
(s3)	The device number that stores parameters	1 to 32767	Signed BIN 16 bit	ANY16
(d)	The device number that stores the output value (SV)	-32767 to 32767	Signed BIN 16 bit	ANY16

Device used

Features

This instruction is to complete large time-delay system control operation, and used to control the parameters of the closed-loop control system.
(SI) is the target value of CCPID SHT control (SV).
(52) is the measured feedback value (PV).
(53) is the start address of the cache where the parameters required by LAGCDL operation and intermediate results are saved, occupying a total of 634 variable units of subsequent addresses. The value range is from DO to D7974 or from RO to R35000. It is better to specify power failure retention, and the setting value remains after power supply is off. Otherwise, the cache needs to be assigned value before starting the calculation for the first time. The function and parameter description of each unit are described in this section.
(D) is the storage unit of the LAGCDL calculation result. Please specify it as a non-battery retentive area, otherwise it needs to be initialized and cleared before the first start of calculation.

Programming example
$[$ [LAGCDL D1 D0 D1000 D100 $]$

The parameter description is as follows:
The target value of LAGCDL adjustment is stored in D1, and DO is the closed-loop feedback value. Note that DO and D9 must be of the same dimension, such as both 0.01 MPa units, or $1^{\circ} \mathrm{C}$ units, etc..

A total of 634 units of D1000 to D1633 are used to store the set value and process value of LAGCDL operation. These values must be set item by item before the first LAGCDL calculation.
D100 unit is used to store the calculated control output value to control the execution of the action.
(53) to (53) +15 is the parameter range that can be set (parameters set when LAGCDL is executed). (53) +28 to (83) +631 is the historical data space for LAGCDL control internal use. (53) +4 to $\sqrt{\text { (53 } ~}+27$ is the parameter space used in the self-tuning process. (This space is multiplexed with the parameter space during control)
The functions and setting methods of the parameter values of each unit started by s3 are described in the following table:

Unit	Function	Description
(53)	Sampling time (TS)	Range: 1 to 32767 (ms). It must be longer than PLC program scan cycle.
(53) +1	Control flag bit	bit0: $0=$ Forward action; $1=$ Reverse action bit1: Overshoot power limit output enable bit. $0=$ no limit; $1=$ limited Bit2: Reset historical data. $0=$ reset; $1=$ no reset. This bit must be 0 before each execution. bit4: $0=$ Self-tuning does not act; $1=$ Perform self-tuning and the others are not available. Bit14:Historical data initialization flag bit. When initialization is complete, it is set to 1 . Bit15: The instruction initializes the flag bit. When initialization is complete, it is set to 1 .
(33) +2	Output lower limit	Range: -32000 to 32000. Recommended setting range: -2000 or 0 .
(33) +3	Output upper limit	Range: 0 to 32000 . Recommended setting value is 2000. When the upper and lower limits are both 0 , the upper limit becomes 2000 and the lower limit becomes 0 .
(33) +4	Full power output boundary	The suggested value can be obtained by self-tuning, and can also be adjusted according to the actual situation.
(33) +5	Half-power output boundary	The suggested value can be obtained by self-tuning, and can also be adjusted according to the actual situation.
(33) +6	Stop output boundary	The suggested value can be obtained by self-tuning, and can also be adjusted according to the actual situation.
(83) +7	The maximum rate of increase of the controlled system	Given by self-tuning
(33) +8	The lagged time of the controlled system	Given by self-tuning. Unit: s
(33) +9	The time constant of the controlled system	Given by self-tuning. Unit: s
(33) +10	Ideal closed-loop time constant	Given by self-tuning. Unit: s
(83) +11	Ideal closed-loop sampling time	Given by self-tuning. This parameter can be adjusted during the control process. Unit: s
(83) +12	Maximum temperature difference during setting	Given by self-tuning. (for your reference)
(83) +13	The temperature difference between the	Given by self-tuning. (for your reference)

PLC LX5V Series Programming Manual (V2.2)

	residual heat and temperature rise	
(53) +14	Heating time	Given by self-tuning. (for your reference)
(53) +15	Setting time	Given by self-tuning. (for your reference)
(53) +16	Self-tuning use space	Reserved for internal use
;		
(83) +27		
(53) +28	Current temperature difference	Used during control
(53) +29	Previous temperature difference	Used during control
(53) +30	The 1st operation flag bit	Used during control
(53) +31	Number of valid history outputs	Used during control
(53) +32	Historical output data	Used during control
!		
(53) +631		
(53) +632	Previous sampling time stamp	Reserved for internal use
(83) +633		

Error code

Error code	Content
4085 H	Read application instruction (S1), (S2), (S3) and (d) output results exceed the range of device.
4086 H	The devices specified in write application instruction (S3) and (d) exceed the range of the corresponding device.
4 D 86 H	Sampling time (Ts) < operation cycle
4 DA 1 H	Power limit boundary (s3+4), (s3+5) and (s3+6) exceed the range.
4 DA 2 H	System parameters (s3+7), (s3+8) and (s3+9) exceed the range.
$4 D A 3 H$	Control parameters (s3+10) and (s3+11) exceed the range.
4DA4H	The output upper limit is smaller than the lower limit

Example

12 String instructions

LEN/string length detection

LEN(P)

After detecting the length of the character string specified in (s), store it after the device number specified in (d).
The data from the device number designated in (s) to the device number of 00 H is treated as a character string.
-[LEN (s) (d)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	String or start number of the device storing the string	-	String	ANYSTRING_SINGLE
(d)	Store the device number of the detected character string length	-	Signed BIN 16 bit	ANY16

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		XY M S SM T(bit)			C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY KnM		KnS		T C	D R SD		LCHSCKHE			[D]	XXP
N	Parameter 1								\bullet	\bullet	-	\bullet	-	-	- -	-				\bullet	\bullet
LEN	Parameter 2									-	\bullet		-	$\bullet \cdot$	$\bullet \bullet$	\bullet				\bullet	\bullet

Features

After detecting the length of the character string specified in (s), store it after the device number specified in (d).
The data from the device number specified in (s) to the stored device number of 00 H is treated as a character string.

Error code

Error code	Content
4085 H	(s) The read address exceeds the device range
408 AH	(s) The length of the read string exceeds, and the continuous length of the string exceeds 400 characters
408 BH	(s) When reading a character string, the maximum range of the device is read, but 00H is not found and the end
4086 H	(d) When using offset, the offset address exceeds the device range

Example

For example, the above Circuit program
Use the asc instruction to write the string abcdef to the address starting from RO.
Then use the LEN instruction to determine the length. At this time, DO will display 6.

LEFT/Extract from the left side of the string

LEFT(P)

For the character string data stored after the device number specified in (s), the data of (n) characters starting from the left side of the character string (the beginning of the character string) is stored in the device specified in (d) After numbering.
-[LEFT (s) (d) (n)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	String or start number of the device storing the string	-	String	ANYSTRING_SINGLE
(d)	The start number of the device that stores the (n) character string from the left of (s)	-	String	ANYSTRING_SINGLE
(n)	Number of characters extracted	1 to 400	Signed BIN 16 bit	ANY16

Device used

Instruction	Parameter	Devices																			Offset modification	Pulse extension
		XYM S SMM T(bit)				$C(b i t)$	LC(bit)	HSC(bit)	D.b	$\mathrm{KnX} \times \mathrm{KnY}$		KnM KnS T			TCD	R SD LCHSCKHE					[D]	XXP
	Parameter 1									\bullet	\bullet	\bullet	\bullet	-	-		\bullet				\bullet	\bullet
LEFT	Parameter 2										\bullet	\bullet	\bullet	-	\bullet	-	\bullet				\bullet	-
	Parameter 3										\bullet	\bullet	\bullet	-	-	-	\bullet			$\bullet \cdot$	\bullet	\bullet

Features

For the character string data stored after the device number specified in (s), the data of (n) characters starting from the left side of the character string (the beginning of the character string) is stored in the device specified in (d) After numbering.

The character string specified in (s) is the data from the specified device to the position where " 00 H " is first detected in byte units. $(\mathrm{n})=7$:

The final NULL code $(00 \mathrm{H})$ representing the character string will be automatically appended to the end of the character string data. If the number of extracted characters is an odd number, " OOH " is stored in the upper byte of the device storing the final character. If the number of extracted characters is an even number, " 0000 H " is stored in the device after the device storing the final character.

When the number of characters specified in (n) is 0 , the NULL code $(00 \mathrm{H})$ is stored in (d).

N Note:

When handling character codes other than ASCII codes, pay attention to the following points.
(The number of characters is handled in byte units (8 bits). Therefore, like the shifted JIS code, the character code of 1 character is represented by 2 bytes, and the number of characters of 1 character is " 2 ".

When extracting a character string from a character string containing a character code representing one character in 2 bytes, such as the shift JIS code, the number of characters to be extracted should be considered in the unit of the character code of one character. If only 1 byte of the 2-byte character code is extracted, it will not be the expected character code, so be careful.

Error code

Error code	Content
4085 H	(s) The read address exceeds the device range
408 AH	(s) The length of the read string exceeds, and the continuous length of the string exceeds 400 characters
408 BH	(s) When reading a character string, the maximum range of the device is read, but 00H is not found and the end
4084 H	(n)<1 or (n)> string length
4086 H	(d) The write address exceeds the device range

Example

From the "abcdef" starting from DO, take out 5 characters from the left to the RO type. The character string of RO is "abcde".

| R0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | ab |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| R1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | cd |
| R2 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | e. |
| R3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | \ldots |

RIGHT/Extract from the right side of the string

RIGHT(P)

For the string data stored after the device number specified in (s), the data of (n) characters starting from the right side of the string (the end of the string) is stored in the device number specified in (d) after.
-[RIGHT (s) (d) (n)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	String or start number of the device storing the string	-	String	ANYSTRING_SINGLE
(d)	The start number of the device that stores the (n) character string from the right of (s)	-	String	ANYSTRING_SINGLE
(n)	Number of characters extracted	1 to 400	Signed BIN 16 bit	ANY16

Device used

Instruction	Parameter	Device																		Offset modification	Pulse expansion
		XYMS		SM	T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS	T C	DR		LC	HSC	KHE	[D]	XXP
	Parameter 1									\bullet	\bullet	\bullet	\bullet			\bullet					
RIGHT	Parameter 2										-	-	-		-	-					
	Parameter 3										-	\bullet	\bullet	-	-	-			\bullet		

Features

For the string data stored after the device number specified in (s), the data of (n) characters starting from the right side of the string (the end of the string) is stored in the device number specified in (d) after

The character string specified in (s) is the data from the specified device to the position where " 00 H " is first detected in byte units.
$(N)=5$:

The final NULL code $(00 \mathrm{H})$ representing the character string will be automatically appended to the end of the character string data. If the number of extracted characters is an odd number, " 00 H " is stored in the upper byte of the device storing the final character. If the number of extracted characters is an even number, " 0000 H " is stored in the device after the device storing the final character. When the number of characters specified in (n) is 0 , the NULL code $(00 \mathrm{H})$ is stored in (d)

* Note:

When handling character codes other than ASCII codes, pay attention to the following points.
(2The number of characters is handled in byte units (8 bits). Therefore, like the shifted JIS code, the character code of 1 character is represented by 2 bytes, and the number of characters of 1 character is " 2 ".
(When extracting a character string from a character string containing a character code representing one character in 2 bytes, such as the shift JIS code, the number of characters to be extracted should be considered in the unit of the character code of one character. If only 1 byte of the 2-byte character code is extracted, it will not be the expected character code, so be careful.

Error code

Error code	Content
4085 H	(s), (n) The read address exceeds the device range
408 AH	(s) The length of the read string exceeds, and the continuous length of the string exceeds 400 characters
408 BH	(s) When reading a character string, the maximum range of the device is read, but 00H is not found and the end
4084 H	(n)<1 or (n)> string length
4086 H	(d) The write address exceeds the device range

Example

Get 3 characters " 890 " from the right in the string " 1234567890 " and store them in R0

| RO | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 89 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| R 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0. |

Any extraction from MIDR/string

MIDR(P)

Store the data at any position in the character string data after the device number specified in (d).
-[MIDR (s1) (d) (s2)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	String or start number of the device storing the string	-	String	ANYSTRING_SINGLE
(d)	Start number of the device storing the character string data of the operation result	-	String	ANYSTRING_SINGLE
(s2)	The start number of the device that stores the start character position and the number of characters (s2)+0: the position of the starting character, (s2)+1: the number of characters is signed	-	Signed BIN 16 bit	ANY16_ARRAY

Device used

Instruction	Parameter	Devices																		Offset modification	Pulse extension
		X Y M S		T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	Kns		CD	R	SD	LC	HSC	HE	[D]	XXP
MIDR	Parameter 1								\bullet	\bullet	\bullet	-	-	- \bullet	-	\bullet				\bullet	\bullet
	Parameter 2									\bullet	\bullet	\bullet		-	-	\bullet				\bullet	\bullet
	Parameter 3								-	\bullet	\bullet	\bullet	$\bullet \cdot$	- \bullet	-	\bullet				\bullet	\bullet

Features

For the character string data stored after the device number specified in ($s 1$), the data of the character specified in ($s 2$) +1 starting from the specified position in (s 2) is stored to the device number specified in (d) and later .

b15	...	b8 b7	...							
(s1)	42H (B)	!	41H (A)			b15	...	b8 b7	...	b0
(s1) +1	44H (D)	!	43H (C)				46H (F)	!	45H (E)	
(s1) +2	46 H (F)	!	45H(E)		(d) +1		48H(H)	,	47H (G)	
				(1)	(d) +2		00H	'	49H (I)	
(s1) +3	48H (H)	,	47 H (G)	(1)				EFGHI"		
(s1) +4	4AH (J)	!	49H(I)	\bigcirc				EFGHI		
(s1) +5	00H	,	4BH (K)	(2)						
"ABCDEFGHIJK"										
(s2)	5									
(s2) +1	5									

(1) : The position of the 5th character (S2).
(2) : ASCII code (S2)+1 of the 5th character.

The character string specified in (s 1) is the data from the specified device to the position where " 00 H " is first detected in byte units.
The final NULL code $(00 \mathrm{H})$ representing the character string will be automatically appended to the end of the character string data.
If the number of extracted characters " $(\mathrm{s} 2)+1$ " is an odd number, " 00 H " is stored in the upper byte of the device storing the final character. If the number of extracted characters " $(\mathrm{s} 2)+1$ " is an even number, " 0000 H " is stored in the device after the device storing the final character.
$(s 2)$ If the number of characters specified in +1 is 0 , no processing is performed.
When the number of characters specified in (s2)+1 is -1 , the data up to the final character data specified in (s1) is stored in the device specified in (d) and later.

(1): The position of the 5th character (S2).

* Note:

When handling character codes other than ASCII codes, pay attention to the following points.

* The number of characters is handled in byte units (8 bits). Therefore, like the shifted JIS code, the character code of 1 character is represented by 2 bytes, and the number of characters of 1 character is " 2 ".
(4) When extracting a character string from a character string containing a character code representing one character in 2 bytes, such as the shift JIS code, the number of characters to be extracted should be considered in the unit of the character code of one character. If only 1 byte of the 2-byte character code is extracted, it will not be the expected character code, so be careful.

Error code

Error code	Content
4085 H	(s1), (s2) The read address exceeds the device range
408 AH	(s1) The length of the read string exceeds, and the continuous length of the string exceeds 400 characters
408 BH	(s1) When reading a character string, the maximum range of the device is read, but 00H is not found.
4084 H	(s2) When the value of +1 is -2 (including -2) or less. When the value of (s2) exceeds the number of characters in (s1). When the value of (s2) is negative. When the value of (s2)+1 exceeds the number of characters of (s1). When the value of (s2) and (s2) +1 after the addition operation exceeds the number of characters of (s1).
4086 H	(d) The write address exceeds the device range

Example

Get three characters " 234 " from the second character of the string " 123456 " into R0.

RO	0	1	0	0	1	1	0	0	1	1	0	0	1
1	1	0	0	23									
R1	0	0	1	0	1	1	0	0	0	0	0	0	0

\$MOV/ string transfer

\$MOV(P)

Transfer the character string data specified in (s) to the device number specified in (d) and later.
-[\$MOV (s) (d)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	Transmission string (maximum 255 characters) or the start number of the device storing the string	-	String	ANYSTRING_SINGLE
(d)	The start number of the device storing the transferred character string	-	String	ANYSTRING_SINGLE

Device used

Instruction	Parameter	Device																			Offset modification	Pulse expansion
		XY		SM	T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS	T C	D		SD	C	HSC	HE	[D]	XXP
	Parameter 1									\bullet	\bullet	\bullet	\bullet	\bullet	-	-	-				\bullet	-
	Parameter 2										\bullet	\bullet	\bullet	- -	-		\bullet				\bullet	\bullet

Features

Transfer the character string data specified in (s) to the device number specified in (d) and later. In the transmission of a character string, the character string enclosed by the "" (double quotation marks) specified in (s) or the character string starting from the device number to the device number storing 00 H is transmitted once.

Even if the device range (s) to $(s)+n$ storing the transferred character string data overlaps with the device range (d) to (d)+n storing the transferred character string data, it will be normal To process. For example, when the character string stored in D10 to D13 is transferred to D11 to D14, the situation is as follows.

(1): It directly becomes the character string before transmission.

When 00 H is stored in the low byte of $(\mathrm{s})+\mathrm{n}$, both the high byte and low byte of $(\mathrm{d})+\mathrm{n}$ will store 00 H .

(d) | | $\mathrm{b} 15 \quad \ldots$ | b8 | b7 $\quad \ldots$ |
| :---: | :---: | :---: | :---: |
| | $42 \mathrm{H}(\mathrm{B})$ | $41 \mathrm{H}(\mathrm{A})$ | |
| | \ldots | (2) | |

(d) +1
d) +2

(2): It directly becomes the character string before transmission.
(3): The upper byte automatically stores 00 H .

Error code

Error code	Content
4085 H	(s) The read address exceeds the device range
408 AH	(s) The length of the read string exceeds, and the continuous length of the string exceeds 400 characters
408 BH	(s) When reading a character string, the maximum range of the device is read, but 00 H is not found and the end
4086 H	(d) The write address exceeds the device range

Example

Copy the string "a b c de" in DO to RO.

| RO | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | ab |
| :--- |
| R1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | cd |
| R2 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | e. |

Arbitrary replacement in MIDW/string

MIDW(P)

For the string data stored after the device number specified in ($s 1$), the data of the character specified in ($s 2$) +1 is stored in the string data stored after the device number specified in (d) After the position specified in (s2).
-[MIDW (s1) (d) (s2)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	String or start number of the device storing the string	-	String	ANYSTRING_SINGLE
(d)	Start number of the device storing the character string data of the operation result	-	String	ANYSTRING_SINGLE
(s2)	The start number of the device that stores the start character position and the number of characters (s2)+0: the position of the starting character, (s2)+1: the number of characters is signed	-	Signed BIN 16 bit	ANY16_ARRAY

Device used

Instruction	Parameters	Device																			Offset modification	Pulse extension
		X Y	M S	SM	T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS	TCD	DR	SD	LCH	HSC	KHE		[D]	XXP
MIDW	Parameter 1									\bullet	-	\bullet			$\bullet \cdot$	-					\bullet	\bullet
	Parameter 2										\bullet	\bullet	-	$\bullet \cdot$	-	\bullet					-	\bullet
	Parameter 3									-	\bullet	-	\bullet	$\bullet \bullet$	-	-					\bullet	-

Features

For the string data stored after the device number specified in ($s 1$), the data of the character specified in ($s 2$) +1 is stored in the string data stored after the device number specified in (d) After the position specified in ($s 2$).

b15--------------b8b7----------------b0		Before execution	
$31 \mathrm{H}(1)$	$30 \mathrm{H}(0)$	42H(B)	41H(A)
$33 \mathrm{H}(3)$	$32 \mathrm{H}(2)$	44H(D)	43H(C)
$35 \mathrm{H}(5)$	$34 \mathrm{H}(4)$	$46 \mathrm{H}(\mathrm{F})$	45H(E)
37H(7)	$36 \mathrm{H}(6)$	$48 \mathrm{H}(\mathrm{H})$	47H(G)
00H	$38 \mathrm{H}(8)$	00H	49H(I)
3 (${ }^{\text {Positio }}$ chara	e left end in the stored in (D. and later	b15-	ion
6 Numb	acters from the left end	$42 \mathrm{H}(\mathrm{B})$	41H(A)
		$31 \mathrm{H}(1)$	$30 \mathrm{H}(0)$
		$33 \mathrm{H}(3)$	$32 \mathrm{H}(2)$
		$35 \mathrm{H}(5)$	$34 \mathrm{H}(4)$
		00H	49H(I)

- The character string specified in (s1) or (d) is the data from the specified device to the position where " 00 H " is first detected in byte units.
- The final NULL code $(00 \mathrm{H})$ representing the character string will be automatically appended to the end of the character string
data.
- If the number of characters specified in (s 2) +1 is 0 , no processing is performed.
- If the number of characters specified in (s2) +1 exceeds the last character of the character string data specified in (d), the data up to the last character of (d) is stored.

When the number of characters specified in (s2)+1 is -1 , the data up to the final character data specified in ($s 1$) is stored in the device specified in (d) and later.

* Note:

- When handling character codes other than ASCII codes, pay attention to the following points.
- The number of characters is handled in byte units (8 bits). Therefore, like the shifted JIS code, the character code of 1 character is represented by 2 bytes, and the number of characters of 1 character is " 2 ".
- When extracting a character string from a character string containing a character code representing one character in 2 bytes, such as the shift JIS code, the number of characters to be extracted should be considered in the unit of the character code of one character. If only 1 byte of the 2-byte character code is extracted, it will not be the expected character code, so be careful.

Error code

Error code	Content			
4085 H	(s1) (s2) (d) The read address exceeds the device range			
408 AH	(s1) (d) The length of the read string exceeds, and the continuous length of the string exceeds 400 characters	,	408 BH	(s1) (d) When reading a character string, the maximum range of the device is read, but 00H is not found.
:---:	:---			
4084 H	When the value of (s2) exceeds the number of characters in (d). When the value of (s2) is negative. When the value of (s2)+1 exceeds the number of characters of (s1).			
4086 H	(d) The write address exceeds the device range			

Example

Replace the three-character-length characters starting with the second character in the character string "q wery" stored in R0 with the first three characters in D20.

The result of R0 is "q123y".

RO	1	0	0	0	1	1	1	0	1	0	0	0	1	1	0	0	q1
R1	0	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	23
R2	1	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	y.

STR/BIN 16-bit data \rightarrow character string conversion

STR(P)

The BIN 16-bit data specified in (s2) is converted into a character string after a decimal point is added to the position specified in (s1), and stored in the device number specified in (d) or later.
-[STR (s1) (s2) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	The start number of the device that stores the number of digits of the converted value	-	Signed BIN 16 bit	ANY16_S_ARRAY
(s2)	Converted BIN data	-32768 to +32767	Signed BIN 16 bit	ANY16_S
(d)	Start number of the device storing the converted character string	-	String	ANYSTRING_SINGLE

Device used

Instruction	Parameters	Device																			Offset modification	Pulse extension
		XYM S		SM	T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS	T	CD	R SD	LC	HSC		H E	[D]	XXP
	Parameter 1									\bullet	-	\bullet	-	-		- -					\bullet	\bullet
STR	Parameter 2									\bullet	\bullet	\bullet	-	-	-	- -			-	\bullet	\bullet	\bullet
	Parameter 3													\bullet -		$\bullet \bullet$					-	-

Features

The BIN 16-bit data specified in (s2) is converted into a character string after a decimal point is added to the position specified in (s1), and stored in the device number specified in (d) or later.

All digits that can be specified in (s1) are 2 to 8 digits.
The number of decimal places that can be specified in (s1)+1 is 0 to 5 digits. However, the setting should satisfy the condition that the number of decimal places \leq (all digits-3).

The converted character string data will be stored in the device numbers after (d) as follows.

- In the sign, BIN 16-bit data will store 20H (blank) when it is positive, and 2DH (-) when it is negative.
- When the number of decimal places is set to other than $0,2 \mathrm{EH}($.$) is automatically stored in the specified digit +1$ digit. When the decimal place is $0,2 \mathrm{EH}($.$) is not stored.$

(1): Number of decimal places
(2): Automatically attach

If the value of the decimal place is greater than the number of digits of the BIN 16 -bit data, 0 is automatically appended and converted to "0.***" right-aligned.

$\begin{aligned} & (\mathrm{s} 1) \\ & (\mathrm{s} 1)+1 \end{aligned}$	6		$30 \mathrm{H}(0)$	20H(space)
	3	0.012	$30 \mathrm{H}(0)$	2EH(.)
BIN16		\wedge	$32 \mathrm{H}(2)$	$31 \mathrm{H}(1)$
	12	(1)	OOH	00H
		Automatically attach		

(1): Automatically attach

In the value of all digits, excluding the sign, and if the number of digits after the decimal point is greater than the number of BIN 16-bit data, 20 H (blank) is stored between the sign and the value. If the digit of BIN 16-bit data is larger, it will be in error status.

$\begin{aligned} & (\mathrm{s} 1) \\ & (\mathrm{s} 1)+1 \end{aligned}$			20H(space)	20H(-)
	8		20H(space)	20H(space)
	1		$32 \mathrm{H}(2)$	$31 \mathrm{H}(1)$
BIN16	-123		$33 \mathrm{H}(3)$	2EH(.)
			OOH	OOH

(1): Change to 20 H (SP).

00 H is automatically stored at the end of the converted character string.

- When the total digits are even digits, " 0000 H " is stored in the device after the device storing the final character. In the case of an odd number of digits, " 00 H " is stored in the upper byte (8 bits) of the device storing the final character.

Error code

Error code	Content
4085H	(s1), (s2) The read address exceeds the device range
4084H	(s1) or ($s 1+1$) parameter setting value is out of range. E.g: 1. The value of $(s 1)$ is not in the range of $2-8$ 2. The value of $(s 1+1)$ is not in the range of $0-5$ 3. The value of $(s 1+1)$ is greater than the value of $(s 1)$ minus 3 4. When ($s 1+1$) is 0 , the number of digits specified in $(s 1)$ is less than the number of BIN 16 -bit data specified in (s 2) +1 . When $(s 1+1)$ is not 0 , the number of digits specified in ($s 1$) is less than the number of BIN 16-bit data specified in $(s 2)+2$. (The number of digits of (s1) <the number of BIN 16-bit data that does not contain a sign of ($s 2$) + the number of signs (+ or -) + the number of decimal points (.))
4086H	(d) When using offset, the offset address exceeds the device range

Example

SM102			
	${ }^{\text {MOV }}$	K12345	R0
	[MOV	K6	D0
	[MOV	ко	D1
	D0	R0	R10

After M8 is turned ON, according to the setting of all digits, 6 decimal places and 0 digits, it is converted into a character string "12345" (with a space before 1)

R10	0	0	0	0	0	1	0	0	1	0	0	0	1	1	0	0	1
R11	0	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	23
R12	0	0	1	0	1	1	0	0	1	0	1	0	1	1	0	0	45

DSTR/BIN 32-bit data \rightarrow string conversion

DSTR(P)

The BIN 32-bit data specified in (s2) is converted into a character string after a decimal point is added to the position specified in (s1), and stored in the device number specified in (d) or later.
-[DSTR (s1) (s2) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	The start number of the device that stores the number of digits of the converted value	-	Signed BIN 16 bit	ANY16_S_ARRAY
(s2)	Converted BIN data	-2147483648 to 2147483647	Signed BIN 32 bit	ANY32_S
(d)	Start number of the device storing the converted character string	-	String	ANYSTRING_SINGLE

Device used

Instruction	Parameters	Device																			Offset modification	Pulse extension
		X Y	M S	SM	T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS	T	CD	R SD	LC	HSC	K	HE	[D]	XXP
	Parameter 1									\bullet	\bullet	\bullet	\bullet	-	-	- -					\bullet	-
DSTR	Parameter 2									\bullet	\bullet	\bullet	\bullet	\bullet	-	- -	-	\bullet	\bullet	-	\bullet	\bullet
	Parameter 3														-	- -					\bullet	\bullet

Features

The BIN 32-bit data specified in (s2) is converted into a character string after a decimal point is added to the position specified in (s1), and stored in the device number specified in (d) or later. -654.321 is specified in S2.

All digits that can be specified in (s1) are 2 to 13 digits.
The number of decimal places that can be specified in ($s 1$) +1 is 0 to 10 digits. However, the setting should satisfy the condition that the number of decimal places \leq (all digits-3).

The converted character string data will be stored in the device numbers after (d) as follows.

- In the sign, when the BIN 32-bit data is positive, 20H (blank) is stored, and when it is negative, 2DH (-) is stored.
- When the number of decimal places is set to other than $0,2 \mathrm{EH}($.$) is automatically stored in the specified digit +1$ digit. When the decimal place is $0,2 \mathrm{EH}($.$) is not stored.$

(1) : Number of decimal places
(2): Automatically attach
- If the value of the decimal place is greater than the number of digits in the BIN 32-bit data, 0 is automatically added and converted to "0.***" right-justified.

$30 \mathrm{H}(0)$	$2 \mathrm{HH}($ space $)$
$30 \mathrm{H}(0)$	$2 \mathrm{EH}()$.
$30 \mathrm{H}(0)$	$30 \mathrm{H}(0)$
$30 \mathrm{H}(0)$	$30 \mathrm{H}(0)$
$34 \mathrm{H}(4)$	$35 \mathrm{H}(5)$
$32 \mathrm{H}(2)$	$33 \mathrm{H}(3)$
OOH	$31 \mathrm{H}(1)$

Automatically attach
lly attach

- If the sign is excluded from the value of all digits, and the number of digits after the decimal point is greater than the number of BIN 32-bit data, 20 H (blank) is stored between the sign and the value. If the digit of BIN 16-bit data is larger, it will be in error status.

$\begin{aligned} & (\mathrm{s} 1) \\ & (\mathrm{s} 1)+1 \end{aligned}$			20H(space)	2DH(-)
			20H(space)	20 H (space)
	13)		20H(space)	20H(space)
			$34 \mathrm{H}(4)$	$35 \mathrm{H}(5)$
	$2\}$	\longrightarrow - ¢unue 5432.10	$32 \mathrm{H}(2)$	$33 \mathrm{H}(3)$
BIN32	-543210		$31 \mathrm{H}(1)$	2 EH (.)
		(1)	OOH	$3 \mathrm{OH}(0)$
	turn to $20 \mathrm{H}(\mathrm{SP})$			

(1): Change to 20H (SP)

- 00 H is automatically stored at the end of the converted character string.
- When the total digits are even digits, " 0000 H " is stored in the device after the device storing the final character. In the case of an odd number of digits, " 00 H " is stored in the upper byte (8 bits) of the device storing the final character.

Error code

Error code	Content
4085 H	(s1), (s2) The read address exceeds the device range
4084 H	(s1) or (s1+1) parameter setting value is out of range. E.g: 1. The value of (s1) is not in the range of 2 to 13. 2. The value of (s1+1) is not in the range of 0 to 10.

	3. The value of (s1+1) is greater than the value of (S1) minus 3. 4. When (s1+1) is 0, the number of digits specified in (s1) is less than the number of BIN 16-bit data specified in $(s 2)+1$. When (s1+1) is not 0, the number of digits specified in (s1) is less than the number of BIN 16-bit data specified in $(s 2)+2$. (The number of digits of (s1) <the number of BIN 16-bit data that does not contain a sign of (s2) + the number of signs (+ or -) + the number of decimal points (.))
4086 H	(d) When using offset, the offset address exceeds the device range.

xample

As shown in the example
We need to convert 123456 into a floating point string with 9 lengths after the decimal point and 3 lengths,
The result of the conversion should be 123.456. The previous value will have two spaces to supplement the insufficient number.

R10	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	
R11	1	0	0	0	1	1	0	0	0	1	0	0	1	1	0	0	12
R12	1	1	0	0	1	1	0	0	0	1	1	1	0	1	0	0	3.
R13	0	0	1	0	1	1	0	0	1	0	1	0	1	1	0	0	45
R14	0	1	1	0	1	1	0	0	0	0	0	0	0	0	0	0	6.

\$+/ Combination of strings

\$+(P)

Connect the string data stored after the device number specified in ($s 2$) to the string data stored after the device number specified in (s1), and store it after the device number specified in (d).
-[\$+ (s1) (s2) (d)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	Connection data or the start number of the device storing the data or a directly specified character string	-	String	ANYSTRING_SINGLE
(s2)	The connected data or the start number of the device storing the connected data or the directly specified character string	-	String	ANYSTRING_SINGLE
(d)	Start number of the device storing the connection result	-	String	ANYSTRING_SINGLE

Device used

Instruction	Parameters	Device																			Offset modification	Pulse extension
		XY	M S	SM	T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	Kns	TC	DR	RS	LC	HSC		HE	[D]	XXP
	Parameter 1									\bullet	\bullet	\bullet	-			-					\bullet	-
\$+	Parameter 2									\bullet	-	-	-		-	\bullet					\bullet	\bullet
	Parameter 3										-	\bullet	-	- \cdot	-	\bullet					\bullet	\bullet

Features

Connect the string data stored after the device number specified in ($s 2$) to the string data stored after the device number specified in (s 1), and store it after the device number specified in (d).
The character strings of ($s 1$) and ($s 2$) start with the specified device number until the device number of 00 H is stored.

	b8 b7	
(s1)	46H (F)	48H(H)
(s1) +1	2DH (-)	41 H (A)
(s1) +2		

	b15 $\ldots \quad$ b8	b7 $\ldots \quad$ b0
(d)	$46 \mathrm{H}(\mathrm{F})$	$48 \mathrm{H}(\mathrm{H})$
	$2 \mathrm{DH}(-)$	$41 \mathrm{H}(\mathrm{A})$
(d) +1		
(d) +2	$35 \mathrm{H}(5)$	$31 \mathrm{H}(1)$
(d) +3	$39 \mathrm{H}(9)$	$33 \mathrm{H}(3)$
(d) +4	00 H	$41 \mathrm{H}(\mathrm{A})$

When merging character strings, 00 H indicating the end of the character string specified in (s 1) is ignored, and the character string specified in ($s 2$) is connected at the final character of ($s 1$).

If the character string is merged, 00 H will be automatically appended at the end. If the number of characters after connection is an odd number, 00 H is stored in the upper byte of the device that stores the final character, and if the number of characters after connection is an even number, the device after the device that stores the final character is stored 0000 H will be stored.

Error code

Error code	Content
4085 H	(s1) or (s2) read address out of device range
408 AH	(s1) or (s2) The length of the read string exceeds, and the continuous length of the string exceeds 400 characters
408 BH	(s1) or (s2) When reading a character string, the maximum range of the device is read, but 00H is not found.
4086 H	(d) The write address exceeds the device range

Example

	SM102				
0		[ASC	12345	D0	ง
		[ASC	abcde	R0	
18	M0	D0	R0	R200	f

The result of combining the string "12345" and the string "abcde" is "12345abcde"

| R200 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 12 |
| :--- |
| R201 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 34 |
| R202 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 5a |
| R203 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | bc |
| R204 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | de |

INSTR/string search

INSTR(P)
Starting from the left (s3) character of the string data stored after the device number specified in (s2), search for the string data stored after the device number specified in (s1), and store the search result in In the device specified in (d).
-[INSTR (s1) (s2) (d) (s3)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s1)	Search string or the start number of the device storing the search string	-	String	ANYSTRING_SINGLE
(s2)	The searched character string or the start number of the device storing the searched character string	-	String	ANYSTRING_SINGLE
(d)	Start number of the device storing the search result	-	Signed BIN 16 bit	ANY16
(s3)	Search start position	1 to 400	Signed BIN 16 bit	ANY16

Device used

Features

Starting from the left (s3) character of the string data stored after the device number specified in (s2), search for the string data stored after the device number specified in (s1), and store the search result in In the device specified in (d). The search result will store the first character from the start character of the string data specified in (s2).

	b15	...	b8 b7	...	b0	$\leftarrow(1)$	$\begin{aligned} & (\mathrm{s} 1) \\ & (\mathrm{s} 1)+1 \\ & (\mathrm{~s} 1)+2 \end{aligned}$	b15	...	b8 b7	...	b0
(s2)		42H (B)		41H(A)					46H(F)	,	45H (E)	
(s2) +1		44H (D)	!	43H(C)					48H(H)	'	47 H (G)	
(s2) +2		46H(F)	,	45H(E)						'	00H	
(s2) +3		48H(H)		47H(G)						"EFGH"		
(s2) +4		4AH(J)		49H(I)						\square		
(s2) +5		00H	!	4BH(K)								
	"ABCDEFGHIJK"									,		
	(s3)	3							(d)	5		

(1): Search start position (S3): 3rd character
(2): The fifth character from the start character

- If there is no matching character string data, 0 is stored in (d).
- If the search start position ($s 3$) is " 0 ", no processing is performed.
- The searched character string (s1) can be directly specified.

(1): Search start position (s3): 3rd character
(2): The fifth character from the start character

Error code

Error code	Content
4085 H	$(\mathrm{s} 1),(\mathrm{s} 2),(\mathrm{s} 3)$ The read address exceeds the device range
408 AH	(s1), (s2) The length of the read string exceeds, and the continuous length of the string exceeds 400 characters
408 BH	(s1), (s2) When reading a character string, the maximum range of the device is read, but 00H is not found.
4086 H	(d) The write address exceeds the device range
4084 H	(s3) <0 or (s3)>=string length

Example

Search for the string "ef" in the continuous string "abcdefg" from the first to the fifth position.

ASC/ASCII data input

ASC
A command to convert a character string of half-width/English numbers into ASCII code.
Used to select and display multiple messages on the external display.
$-[\operatorname{ASC}(\mathrm{s})(\mathrm{d})]$
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	32-character half-width English numbers input from the computer	-	String (ASCI code only)	ANY_ASC
(d)	Start word device number for storing ASCII data	-	BIN16 bit	ANY16_S

Device used

Instruction	Parameters	Device																				Offset modification	Pulse extension
			M S	SM	T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS	T	CD	R	SD	LC	HSC	K H	E	[D]	XXP
	Parameter 1																						
	Parameter 2													\bullet	- -	-	-					\bullet	

Features

1. 16-bit arithmetic (ASC)

After converting the half-width, English, and numeric character strings specified in (S) into ASCII codes, they are transferred to (D) in sequence.

- Process A to Z, 0 to 9, and half-width characters of Signs in (S). (Full-width character strings are not processed.)When programming with a programming tool, enter a character string.
- The converted ASCII code is stored in (D) every 2 characters $/ 1$ word in the order of low 8 bits and high 8 bits.

Extensions

After SM161 is turned ON, the extended function becomes effective. At this time, the half-width/alphanumeric character string specified in S is converted into $A S C I I$ code, and then it is transmitted to the lower 8 bits (1 byte) of D in sequence.

(Note:

1. Number of occupied points of the device
1) When the extended function is OFF

- D occupies the number of characters $\div 2$ points (if not evenly divisible, the decimal point is rounded up.)

2) When the extended function is ON
-The number of points occupied by D is the same as the number occupied by characters.
2. When using etc.

The extended function flag SM161 is a flag bit common to other instructions.
When using the above instructions and ASC instructions, please note that the SM161 ON or OFF program is written before the ASC instruction so as not to affect it.

Error code

Error code	Content
4085 H	The output result of reading application instruction(s) exceeds the device range
4086 H	(D) The output result exceeds the device range in writing application instructions

Example

1. Procedure

When X20 = ON, the assignment of D200 to D203:

If the special register SM161 is set to ON, each ASCII character occupies a 16-bit variable after conversion, as shown in the figure below, the high byte of each variable is filled with 0 (hexadecimal):

	D•		S
	High 8 bits	Low 8 bits	String
(D.)	00	41	A
(D.) +1	00	42	B
(D.) +2	00	43	C
(D. +3	00	44	D
(D. +4	00	45	E
(D. +5	00	46	F
(D. +6	00	47	G
(D. +7	00	48	H

13 step ladder diagram instruction

13.1 STL/RET step ladder diagram instruction

STL: step ladder diagram starts
RET: step ladder diagram ends

Content, range and data type

Parameter	Content	Range	Data type	Data type(Label)
(d)	State assigns the number of destination step relay	0 to 4,095	bit	ANY_BOOL

Device used

Instruction	Parameter	Device																			Offset modification	Pulse expansion
			M S	SM	T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS	TC	CDR	RSD	LC	HSC	KH		[D]	XXP
STL	Parameter 1		\bullet																			

Features
(1) Programs that use step ladder diagram are based on the mechanical actions, and assign step relay S according to each process. It acts as a loop connected in the state contact (STL contact), and carries on the sequential control programming of input condition and output control.
(2) In step ladder diagram, consider step relay S as a control process and carries on the sequential control programming of input condition and output control. As the process operates, the previous process would be not executed. Therefore, the mechanical control could be performed by the simple sequential control of each process.
(3) For a series of step ladder diagram, start with the initialization state, and program in the order of the states to be transferred.

Step ladder diagram exhibits relay ladder program, you could use state to program according to the flow of mechanical control. It could be thought of that state and relay are the same, which consist of drive coil and contact(STL contact).

Coil drives use SET instruction and OUT instruction, and contacts use STL instruction.
The internal loop actions connect to the status are as follows.

Internal loop action ON execution	If the status is ON, the loop that connected to this outputs actions by STL.
OFF execution	If the condition set in the transition of the state (transition condition) is satisfied, the next state is set to ON, and the state previous ON is turned OFF(reset). (Transition action) During state transition, only one operation cycle will both states be ON at the same time. After the transition, the state before the transition is turned OFF(reset) in the next operation cycle. Regardless (one operation cycle) of the state of the contact before the drive command, the drive instruction connected to the bus in the OFF state is only executed when it is OFF for one operation cycle (the same action as when the contact is OFF). However, when the transition state is used by the contact instruction, the contact image is turned OFF and executed after the transition condition is satisfied.
No execution	After the next operation cycle that after OFF is executed, the action of OFF execution of the instruction is not performed. (jump state)

The sequence chart of the state (internal loop)execution state is as below.

Each state has three functions of drive processing on the load, specifying the transition target, and specifying its transition conditions. As shown below, execute the drive processing on the load first, and then execute the sequential execution of the transfer processing. In the state without load, no drive processing is required

Step ladder programs execute the following actions

(1) It is recommended that contacts be programmed in the output drive.
(2) The output coil could be programmed repeatedly in different states.
3) The OUT and SET instructions of stepping relay automatically reset the state before the transfer.

4 It is not recommended to use the same stepping relay (S) number repeatedly
Pointers(P) cannot be configured immediately after STL instruction. If configured, a program error occurs.

Key points

The action state of stepping relay set to be saved after power-off is backed up by the non-volatile memory. These stepping relays are used when a power failure occurs in the middle of the mechanical operation, and when the power is turned on again and you want to continue the operation from there. Besides, since these stepping relays keep operating even from RUN to STOP, when RUN is executed again, the operation will be restarted from the state before STOP.

1) STL instruction can not be used in Interrupt routine, event routine and subroutine.
2) When using STK instruction in interrupt routine, please do not use SET instruction or the driving state S of the OUT instruction.
(3) It is not that the use of jump instructions (CJ/CJP) in the state is prohibited. It is recommended to not use it as much as possible because it will cause complex actions.

3) You can jump at will from the outside of the STL to the outside.
4) From the outside of the STL to the inside of the STL. Jumps that are unrelated to the action of the STL. Even if SO is OFF, SO is considered ON after P 1
5) From the inside of the STL to the inside of the STL. It could not jump when SO is OFF
6) The ladder diagram after the jump is regarded as ON and operates regardless of the ON/OFF of S10, and the first RET is ignored.
7) the inside of the STL to the outside of the STL. It could not jump when $\mathrm{S} 10=\mathrm{OFF}$. When $\mathrm{S} 10=\mathrm{ON}$, it can jump, but RET becomes invalid.

* Note:The pointer P could be set to the first instruction in STL without contacts, so the first instruction is regarded as irrelevant to the STL action below.

Device used

Device	Name	Content
SM240	Transfer prohibited	If SM240 is set ON, all the transfers between the states are prohibited.
SM246	STL operation	If SM247 and stepping relay (device S) are both ON, SM246 will be ON automatically.
SM247	STL valid monitoring	If SM247 is set to ON, the number of stepping relay in operating in stepping relay would be stored in SD240 to SD247 from least to most.
SD240 to SD247	ON stepping relay number	The number of the stepping relay to be ON is stored in SD240 to SD247 (up to 8)from least to most.

* Note:

Stepping relay(S) without setting lock is cleared by turning the power ON to OFF and RUN to STOP. If the power is turned ON to OFF and RUN to STOP while the status is valid, the process cannot be restarted from the middle.

Error code

No errors.

Program

Open M2, state relay S1is set to ON, the programs in STL S1 are executed normally.

Open M4, if S1 is ON, the state $\mathrm{S} 11 / \mathrm{S} 12$ can be selected for transition according to the OFF/ON of M7, and the state S1
can be reset.

When M7 is OFF, transfer to S11

When M7 is ON, transfer to S12

13.2 IST/Initialization state

In the program that using stepping ladder diagram, the initialization state and special relays are automatically controlled.

Stepping ladder diagram program

Content, range and data type

Parameter	Content	Range	Data type	Data type(label)
(s)	Start bit device number of the run mode switch	--	bit	ANYBIT_ARRAY
(element number: 8)				
(d1)	The minimum state number of the useful state in automatic mode ((d1)<(d2))	--	bit	ANY_BOOL
(d2)	The maximum state number of the useful state in automatic mode ((d1)<(d2))	--	bit	ANY_BOOL
EN	Execution condition	--	bit	BOOL
ENO	Execution result	--	bit	BOOL

Device used

Instruction	Parameter	Device																		Offset modification	Pulse expansion
		X Y	M	S SM	T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS	TC	D R	SD	LC	HSC	KHE	[D]	XXP
IST	(s)	- -	-	\bullet					\bullet												
	(d1)		-	\bullet																	
	(d2)		-	\bullet																	

Only device S could be used.

Features

(1) IST

1) Specify the start input of run mode in (s).
2) The switch for selecting the run mode occupies 8 points from the start bit device.
3) The device specified by the switch for selecting the run mode.The switch functions in the following table and X20 are separately assigned to the devices specified by the switch for selecting the run mode. Under the circumstances, to prevent X20 to X 24 from being ON at the same time, a rotary switch must be used. Switches that are not in use need no wiring. However, these switches cannot be used for other purposes because they are occupied by IST instructions,

Source address	Device number (example)	Switch function	
(s)	X20	Individual run	Uses each button to turn the each load on or off.
(s)+1	X21	Origin reset	Press the origin reset button to automatically return the machine to the origin.
(s)+2	X22	Stepping	Each time the start button is pressed, it advances one process.
(s)+3	X23	If the start button is pressed at the origin, it will stop at the origin after executing one cycle of automatic operation. If the stop button is pressed in the middle, the process will be stopped, and if the start button is pressed again, the operation will continue from there, and then automatically stop at the origin.	

PLC LX5V Series Programming Manual (V2.2)

$(s)+4$	X24	continuous run	If the start button is pressed at the origin position, continuous repeated run starts. If the stop button is pressed, the run will stop after reaching the origin.
$(s)+5$	X25	Start origin reset	Uses each button to turn the each load on or off.
$(s)+6$	X26	Start automatically	Start stepping, cycle run once, continuous run
$(s)+7$	X27	Stop	Stop run

4) he minimum state number of the useful state in (d1).(automatic mode)
5) The maximum state number of the useful state in (d2).(automatic mode)
6) When the instructions are When the instruction input is ON , the following devices are automatically switched and controlled. It does not change when the instruction input is OFF.

Device number	Content		ON/OFF condition
SM240	Transfer prohibited	ON condition	Always ON during individual run Always ON Except that when the start button is pressed during stepping When the stop button is pressed during origin reset and cycle run once.
		OFF condition	When the start button is pressed during stepping. After the stop button is pressed during origin reset and cycle run once.
SM241	Start transfer	ON condition	When the start button is pressed during origin reset and cycle run once. After the start button is pressed during continuous run
		OFF condition	When it is from RUN to STOP Always ON during individual run and origin reset After the stop button is pressed during continuous run
SM242	Start pulse	ON condition	Only at the moment when the start button is pressed
		OFF condition	Except when it is ON
SM243	Origin reset completion	ON condition	When the origin reset is completed (user program)
		OFF condition	When it is from RUN to STOP When the origin reset is not completed
SM244	Origin condition	ON condition	When the origin condition is satisfied (user program)
		OFF condition	When it is from RUN to STOP When origin reset is not completed
SM245	All the output reset prohibited	ON condition	When not executing all the output resets (user program)
		OFF condition	When executing all the output resets (user program)
SM246	STL state ON	ON condition	When STL monitoring valid is ON and any of the stepping relay(device S) is ON
		OFF condition	When STL monitoring valid is OFF, or when STL monitoring valid is ON and all the stepping relays(device S) are ON
SM247	STL monitoring valid	ON condition	When issuing IST instruction
		OFF condition	When stepping ladder diagram ends(user program)

Device number	Content		ON/OFF condition	
SO	Initialization state of individual run	ON condition	When it is individual mode	
		OFF condition	Except the individual mode	
S1	Initialization state of origin state	ON condition	When it is origin reset mode	
		OFF condition	Except the origin reset mode	

PLC LX5V Series Programming Manual (V2.2)

S2	Initialization state of automatic run	ON condition	When it is automatic run mode
		OFF condition	Except the automatic run mode

7) Do not program the following states as normal states.

8) When origin reset completion(SM243) is not $O N$, if switching between individual run(X 20), origin reset $(\mathrm{X} 21$) and automatic run($\mathrm{X} 22, X 23, \mathrm{X} 24$), then all the output would be OFF. Automatic operation could be restarted after origin reset completion.

N Note:

(1) Mode selection switches don't need to be all used. Unused switches should be set to empty (cannot be used for other purposes). It is necessary to write the program of the IST instruction before a series of STL loops such as states S0 to S2.
2) S10 to S19 should be used for the state of the origin reset operation. In the final state of the origin reset operation, self-reset should be performed after SM243 is set
(3) Only one IST instruction can be written in the program.

(2) IST instruction equivalent loop

1) The details of the special relay (SM) and initialization state (SO to S 9) that are automatically controlled by the IST instruction are shown in the following equivalent circuit. (Please read it as a reference.) This equivalent circuit could not be programmed

2) If the mode is switched between each, origin reset and automatic, when the machine is outside the origin position, all the outputs (output (Y) not driven by state and output (Y) driven by status by OUT and SET instructions) and the old state are reset
in batches. The SM245 drive does not reset all outputs

During the operation of S2, even if switching between automatic and origin reset, the state and the out except the initialization state would not be reset.
(3) The example of importing IST instruction(workpiece transfer equipment)

Run mode

Run mode		
Manual	Individual run	Uses each button to turn the each load on or off.
	Origin reset	Press the origin reset button to automatically return the machine to the origin.
	Cycle once	Each time the start button is pressed, it advances one process.
	If the start button is pressed at the origin, it will stop at the origin after executing one cycle of automatic	
If the button is pressed in the middle, the process will be stopped, and if the start button is pressed		
again, the operation will continue from there, and then automatically stop at the origin.		

Transfer equipment

1) To use IST instructions, mode inputs need to be assigned consecutive number inputs as shown below. When the numbers are not consecutive or a part of the mode is omitted, use the auxiliary relay to change the arrangement as shown in the figure below, and use it as the start input for mode specification.

Input device	X20	X21	X22	X23	X24	X25	X26	X27
Assignment	Individual run	Origin reset	Stepping	Cycle run once	Continuous run	Origin reset start	Automatic start	Stop

In this example, M0 is used as the start input for mode specification.

SM 100	IST	M0	S20	S29
RUN monitoring				

2) The special relay (SM) used in the IST instruction has different classifications. One is that the instruction itself is automatically controlled according to the situation and the other needs to be controlled by the program according to the preparation for operation and the purpose of control.

Special relay	Content	Remark
SM240 (Transfer prohibited)	Once the special relay is in operation, all the state transfers are prohibited. Individual: SM240 continues operating. Origin reset and cycle once: After pressing the stop button, the operation is held until the start button is pressed. Stepping: SM240 continues operating, but only when the start button is pressed, it does not operate and the transfer is executed. When switching STOP to RUN, the operation of programmable controller is held, and unlocked when the start button is pressed. Even when the transfer state is prohibited, the output in the state continues the origin operation.	IST instructions execute automatic control
SM241 (Start transfer)	An auxiliary relay as a transition condition from the initialization state S 2 to the next state. Individual and origin reset: No operation. Stepping and cycle once: Only operates when the start button is pressed. Continuous: The operation is held when the start button is pressed, and unlocked after pressing the stop button.	
SM242(Start pulse)	Only operates at the moment of pressing the start button.	
SM247 (STL monitoring valid)	After using the IST instruction, set SM247 to ON.When SM247 turns ON, the STL monitoring becomes valid, and the status numbers (S0 to S899) in operation are stored in the special registers SD240 to SD247 in ascending order. Therefore, a maximum of eight operation states number can be monitored Besides, if any of there states is in operation, special relay SM246 also operates.	
SM243 (Origin reset completion)	In origin reset mode, when the machine returns to the origin, operates the special relay (SM) with the user program.	Driven by sequential control program
SM244 (Origin condition)	The special relay should be driven after detecting the origin condition of the machine. It is valid signal in all the modes.	
SM245 (All the output reset prohibited)	If switching between individual run, origin reset and automatic mode, when the machine is not in the origin, reset all the outputs and operation states. But if SM245 is driven first, then only the operation state is reset.	

Program

3) When the machine is running, it could switch freely in "Automatic" mode (stepping/cycle once/continuous). In this case, to be safe, the switched mode becomes effective only after all outputs are reset once. (When SM245 (all the output reset prohibited) is set to ON , it will not be reset)

4) No programming is required if there is no individual run mode.

5) No programming is required if there is no origin reset mode. But before automatic run, You need to reset the origin first to complete the SM243 set once

Initialization state of origin reset

Release
Unlock the fall

Rise

Unlock shift right

Shift left

Origin reset cpmletion

The Operation of origin Reset must use state S10 to S19, after driving SM 243 in the final state, self-reset should be executed.
6) Automatic run (stepping/cycle once/continuous)

Error code

Error code	Content
4085 H	When the device number specified by (d1) and (d2) is in the following case. (d1)>(d2)
	When the device specified in (s) couldn't reserve eight points.

14 Ethernet communication

14.1 Ethernet overview

IP address

IP address consists of network address and host address, and distinguished by subnet mask. If programming device (such as PC) use network card to connect to LAN, the programming device and PLC must be in the same subnet. You can specify the subnet of a device by combining an IP address with a subnet mask.

The network address could be calculated by performing logic and operation between IP address and subnet mask. If the addresses are in the same network, it means that communication is possible.

Number	Network device 1			Network device 2			Network
1	IP	Subnet mask	Network address	IP	Subnet mask	Network address	Yes
2	192.168 .0 .1	255.255 .255 .0	192.168 .0 .0	192.168 .0 .10	255.255 .255 .0	192.168 .0 .0	Ye
3	192.168 .0 .1	255.255 .255 .1	192.168 .0 .1	192.168 .0 .10	255.255 .255 .1	192.168 .0 .0	No

Set PC network address

(1) Click "Control panel" \rightarrow "Network and Internet" \rightarrow "Network and sharing center".

(2) Click "Ethernet" \rightarrow "Properties" \rightarrow "Internet protocol version 4".
(3) Set the IP address and subnet mask on the same network address as the PLC. The IP address that has been used in LAN could not be set. If the IP of PLC is 192.168.8.8, and the subnet mask is 255.255 .255 .0 . The IP address as shown below could be set to connect PC to PLC.

Test the network connection status

Test the connection status between PC and PLC by ping command.
(1) Press "WIN" and "R" keys, and input "cmd".

(2) If the IP address of PLC is 192.168.8.8.

1) Input "ping 192.168.8.8", and enter. If it display " 100% loss", it means that PLC could be connected.

2) Input "ping 192.168.8.8", and enter. If it display " 0% loss", it means that it could be connected to PLC.

3) The command "ping network device IP" could only be use four times. To ping network devices continuously, run "ping network device ip-t" command, it is shown as below.

앤 Administrator: C:\Windows \backslash system32 $\backslash \mathrm{cmd}$.exe - ping 192.168.8.8-t

PLC Editor2 connect to PLC with Ethernet

(1) Transfer settings \rightarrow Ethernet configuration \rightarrow Input IP address. Note: The address of NIC must be on the same network segment as that of the PLC.)

(2) Click "Communication test" to comfirm the communication.

(3) After successful connection, PLC is able to operate.

PLC Editor2 Ethernet search funtion

(1) Transfer settings \rightarrow NIC comfiguration \rightarrow Device search. (Note: The address of NIC must be on the same network segment as that of the PLC.)

(1) The search interface is as below. Click search to display the PLC devices in the LAN, and select the corresponding device and click OK to communicate.

(2) The IP address of one is filled in automatically.

14.2 Ethernet configuration

Hardware interface

The LX5V is equipped with standard Ethernet ports (1 channel RJ45 port) and supports Modbus TCP communication protocol. RJ45 specification

Contents	
	10Mbps: 10BASE-T
Transmission speed	100Mbps: 100BASE-TX
	10Mbps/100Mbps self-adaptive interfece
Modulation	Basband
Topology	Starlike
Transmission medium	Class 5 or above twisted pairs or shielded twisted pairs with aluminum foil and woven mesh
Transmission distance	The distance between nodes: 100m or less
Linking number	8

Total numbers of links supported

When LX5V-N series PLC is powered on, ModbusTCP server monitor is automatically enabled by default. 2 to 8 ModbusTCP clients are supported, and the port number is 502. (PLC host computer upload and download, monitor and HMI communication protocol are supported by the ModbusTCP server.)

The number of configurable links is 6 . The free configurations of TCP server free protocol, TCP client free protocol, ModbusTCP server and ModbusTCP client are supported.

Communicaition protocol	Maximum links supported
ModbusTCP server	8
ModbusTCP client	6
Free TCP server	6
Free TCP client	6

IP address settings

(1) Set by programming software

Project manager \rightarrow Parameter \rightarrow PLC parameters \rightarrow Ethernet configuration. Download selected parameters through PLC after modification. The download takes effect after STOP->RUN is complete.

Note: The maximum link supported of ModbusTCP servers is used to set the maximum number of external ModbusTCP clients that could connect to PLC simultaneously. The range is from 2 to 8 .

(2) Set by special device.

Write IP address, subnet mask, and default gateway in SD2680 to SD2691.
SM2680 is set to ON, static IP function is enable. (Note: DHCP function is not supported by LX5V currently.)
SM2683 is set to ON, IP identification could be modified.
New IP address takes effect when STOP->RUN or after power-on again.

SM number	Name	Contents	R/W	SD number	Name
SM2680	Static set IP switch	ON: Static set OFF: Automatically configurate IP address by router DHCP, and could not be modify IP. When STOP->RUN takes effect.	R/W	SD2680	The 1st byte of IP
address					

SM2688				SD2688	The 1st byte of default gateway
SM2689				SD2689	The 2nd byte of default gateway
SM2690				SD2690	The 3rd byte of default gateway
SM2691				SD2691	The 4th byte of
default gateway					

TCP protocol

TCP protocol, short for Transport Control Protocol, is Is a connection-oriented and reliable transport layer protocol.
Connection-oriented means that a normal TCP transmission need to be completed by establishing a specific virtual circuit connection between TCP client and TCP server. To transfer data over TCP, a connection must be established between hosts at both ends.

UDP protocol

UDP protocol, short for User Datagram Protocol, is a connectionless transport layer protocol. There is no guarantee of data order, a risk of data loss. It provides a simple and unreliable information transfer service for transactions and is Mainly used in data broadcasting.

Socket

When the application layer communicates data over the transport layer, TCP encounters the problem of providing concurrent services to multiple application processes at the same time. Multiple TCP connections or multiple application processes may require data to be transmitted over the same TCP protocol port. To distinguish between different application processes and connections, many computer operating systems provide interfaces called sockets for applications to interact with the TCP/IP protocol.

To generate a socket, there are three main parameters: the IP address of the destination of the communication, the transport layer protocol used (TCP or UDP) used, and the port number used. By combining these three parameters and binding to a socket, the application layer and the transport layer can distinguish communication from different application processes or network connections through the socket interface, realizing concurrent services for data transmission.

Establish an Ethernet link by socket

At least one pair of sockets is required to establish a socket link.
For TCP, the two sockets, one running on the TCP client and the other running on the TCP server. The connection process between sockets is divided into three steps: server monitor, client request, connection confirmation, also known as the three-way handshake.

Server monitor: After the server socket is enabled, it does not locate the specific client socket, but is in a state of waiting for the connection, monitoring the network status in real time, and waiting for the client's connection request.

Client request: Refers to a connection request made by a client-side socket, and the target of the connection is the server-side socket. To do this, the client-side socket must first describe the socket of the server to which it is connecting, indicate the address and port number of the server-side socket, and then make a connection request to the server-side socket

Connection confirmation: Refers to when the server-side socket listens to or receives a connection request from the client socket, it responds to the client socket request, establishes a new thread, sends the description of the server-side socket to the client. Once the client confirms this description, the connection is established. The server-side socket continues to listen and continues to receive connection requests from other client-side sockets.

In order to simplify the complexity of ladder programming, sockets have been partially simplified:
For TCP clients, merge socket() and connect() into SOCOOPEN instructions. After this function is enabled, automatically connect to the TCP server.

For TCP server, merge socket(), bind(), listen(), and accept() into SOCOOPEN instructions. After this function is enabled, automatically listen to server connection. If the server is successfully connected, the corresponding position is marked and the IP address and port information of the server are displayed.

For UDP, there is no concept of client and server. Creating a UDP socket only requires local address information and remote address information, without connection operations. Communication could be made when the address information of the local socket and the remote socket could be matched, that is, the remote address of the local socket is the same as the local address of the remote socket, and the local address of the local socket is the same as the remote address of the remote socket. For UDP connections, the connection could be established immediately by calling the SOCOPEN instruction.

LX5V-N socket configuration instructions

LX5V socket could be configured in Project manager \rightarrow Extended function \rightarrow Ethernet, right click to create socket configuration, as shown below.

Socket ID: The number of the socket ranges from KO to K5, and a total of six are supported. The socket is used to specify links, and each ID could be used for one link and could not be defined repeatedly.

Communication protocol: TCP protocol and UDP protocol are supported.

Operating mode: For TCP, client and server could be selected. For UDP, this is meaningless.

Local port:

For TCP client mode, the local port would be automatically allocated by PLC without setting.
For TCP server mode, the local port ranges from 1 to 65535 . Port 502 is used for internal ModbusTCP and can not be set to port 502 . For UDP mode, the local port ranges from 1 to 65535 . Port 1092 is used for scanning protocol of Wecon and can not be set to port 1092.

Destination IP: It is valid in TCP client mode or UDP mode, and specify the IP of opposite end device to be linked.
Destination port: It is valid in TCP client mode or UDP mode, and specify the port number of opposite end device to be linked.
Receive timeout period(10ms): After the PLC sends the data, If the response of the opposite end device exceeds the timeout period, it is considered that the network has an abnormality and sets the wrong flag.

TCP keep-alive mechanism: When using the TCP protocol for communication, if the communication line is idle in most cases, there is only a small amount of data to be sent and received, but it is necessary to keep the link open continuously, or disconnect in time in the case of a drop, crash or forced end of the process at the other end of the communication, the keep-alive mechanism can be used to communicate.

When the keep-alive function is turned on, after the two parties stop communicating for 5 seconds, the TCP connection that opens the keep-alive function will send a survival confirmation message to the other party. If the other party responds, it means that the other party is alive and online. The connection is normal, and the survival confirmation message is sent again after 5 seconds to continue to confirm. If the other party does not confirm the survival, it means that the other party has a problem, the end that opens the keep-alive will continue to send it a survival confirmation message after 5 seconds. When the opposite end does not respond for 9 consecutive times, it means that the opposite end communication is abnormal, and the end that opens the keep-alive will actively disconnect.

14.3 Ethernet instruction

SOCOPEN/Create a socket link

Create socket link specified by (s), and update the data information of this socket link to (d1) and the status information to (d2).
-[SOCOPEN
(s) (d1)
(d2)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	Socket ID	0 to 5	Signed BIN 16 bit	ANY16
(d1)	The start device that stores the data information of socket links	-	Signed BIN 16 bit	ANY_ELEMENTARY
(d2)	The start device that stores the status information of socket links	-	Bit	ANY_BOOL

Device used

Instruction	Parameter	Devices																				Offset modification	Pulse extension
		XYM S SM			T(bit)	C(bit)	LC(bit)	HSC(bit)	D.b	KnX KnY		KnM	KnS ${ }^{\text {T }}$		TCD	R SD		LCHSCKHE				[D]	$\begin{array}{\|c\|} \hline \text { extension } \\ \hline \mathrm{XXP} \\ \hline \end{array}$
	Parameter 1																			$\bullet \bullet$			
SOCOPEN	Parameter 2													-	-	-	-						
	Parameter 3	\bullet	- -	\bullet					\bullet														

Features

* Create the socket link specified in (s) and update the link information in (d1) and (d2).
(2) When the instruction is turned on, the devices specified in (d1) and (d2) will be used in other Ethernet instructions using the same socket ID. (SOCSEND, SOCRECV, SOCCLOSE, SOCMTCP)
(d1) Specifies the following information (a total of 14 word devices):

Device	Function
$(d 1)$	Local port number
$(d 1+1)$	The 1st segment of the destination IP
$(d 1+2)$	The 2nd segment of the destination IP
$(d 1+3)$	The 3rd segment of the destination IP
$(d 1+4)$	The 4th segment of the destination IP
$(d 1+5)$	Destination port number
$(d 1+6)$	Receive timeout period(10ms)
$(d 1+7)$	Actual receiving length (byte)
$(d 1+8)$	Current link error code
$(d 1+9)$	Numbers of communication errors high bit
$(d 1+10)$	Numbers of communication errors low bit
$(d 1+11)$	Reserved
$(d 1+12)$	Reserved
$(d 1+13)$	Reserved

(d2) Specifies the following information (a total of 14 bit devices):

Device	ON status	OFF status
$(\mathrm{d} 2)$	Connecting	The connection is not turned on
$(\mathrm{d} 2+1)$	Connection completed	Connecting or not connected
$(\mathrm{d} 2+2)$	Sending data(used by SOCSEND instruction)	Data is not sent or data sending is complete
$(\mathrm{d} 2+3)$	Data sending completed(used by SOCSEND instruction)	The instruction is not started or being sent.

PLC LX5V Series Programming Manual (V2.2)

$(\mathrm{d} 2+4)$	Receiving data(used by SOCRECV instruction)	No data or receiving is completed
$(\mathrm{d} 2+5)$	Data receiving completed(used by SOCRECV instruction)	The instruction is not started or received
$(\mathrm{d} 2+6)$	Connection is closing	The instruction is not started or is receiving
$(\mathrm{d} 2+7)$	Connection close completed	The instruction is not started or close is complete
$(\mathrm{d} 2+8)$	Communication completed(used by SOCMTCP instruction)	In communication
$(\mathrm{d} 2+9)$	Connection error	No error in connection
$(\mathrm{d} 2+10)$	Reserved	Reserved
$(\mathrm{d} 2+11)$	Reserved	Reserved
$(\mathrm{d} 2+12)$	Reserved	Reserved
$(\mathrm{d} 2+13)$	Reserved	

Features

Local port number:

Establish a TCP client: PLC automatically allocates the local communication port, ranging from 49152 to 65535 . The port number is automatically incremented by 1 each time it is turned on.

Establish a TCP server: specified by Ethernet socket configuration of the host computer.
Establish a UDP connection: specified by Ethernet socket configuration of the host computer.

Destination IP:

Establish a TCP client: The destination address is specified by Ethernet socket configuration of the host computer.
Establish a TCP server: After the remote client connection is successful, display the IP address of the remote connection.
Establish a UDP connection: The destination address is specified by Ethernet socket configuration of the host computer.

Destination port number:

Establish a TCP client: The destination port number is specified by Ethernet socket configuration of the host computer.
Establish a TCP server: After the remote client connection is successful, display the port number of the remote connection.
Establish a UDP connection: The destination port number is specified by Ethernet socket configuration of the host computer.
Receive timeout period(10ms): specified by Ethernet socket configuration of the host computer.
Actual receiving length: This parameter is valid only when the SOCRECV instruction is used. It indicates the number of bytes received after the instruction is enabled.

Current link error code: Display the current error information. For details, Refer to Ethernet error code List.
Numbers of communication errors: total number of communication errors after successful connection (double word).
Error codes

Error code	Content
4085 H	The device specified in application instruction (d1) and (d2) exceeds the corresponding device range.
5080 H	The specified socket is already connected and cannot be opened again.
5082 H	The socket used by parameter 1 exceeds the range of 0 to 5.
5083 H	Failed to establish TCP server.
5084 H	Failed to create links.
5086 H	The specified (d) is not configured socket or the socket is not enabled.
5089 H	502 port could not be used on the TCP server because the 502 port is enabled by default.

SOCCLOSE/Close socket link

Close socket link specified by (s).
-[SOCCLOSE (s)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
(s)	Socket ID	0 to 5	Signed BIN 16 bit	ANY16

Device used

Instruction	Parameter	Devices																	Offset modification	Pulse extension
		XYM S SM T(bit)			C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS	TCD	CR	R SD	LC	HSC	KHE	[D]	XXP
SOCCLOSE	Parameter 1																	$\bullet \bullet$		

Features

(Close the socket link specified in (s).
When the TCP server is closed, the reset request will be sent to the remote client. At the moment, in bit device specified by SOCOPEN, the status of connection closure will be set. The socket is not actually released until the connection closure state is set and the next connection is opened

Q If the socket specified by (s) is not connected to the remote end, it cannot be closed and the instruction error occurs.

Error codes

Error code	Content
5081 H	The socket specified by is not connected, and could not be closed
5082 H	The data specified in (s) exceeds the range of 0 to 5

SOCSEND/Ethernet free-form communication sending

Send the data in (s 2) to the socket link specified by ($s 1$) at the length specified by (S3).
-[SOCSEND (s1) (s2) (s3)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
$(s 1)$	Socket ID	0 to 5	Signed BIN 16 bit	ANY16
$(s 2)$	The start device that send the data	-	Signed BIN 16 bit	ANY_ELEMENTARY
$(s 3)$	Sent length	1 to 256	Bit	ANY16

Device used

Instruction	Parameter	Devices																			Offset modification	Pulse extension
		XYM S SM T(bit)			C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS		C		R	SD		HSC	KHE	[D]	XXP
	Parameter 1																			- \bullet		
SOCSEND	Parameter 2												-			-	-					
	Parameter 3												\bullet	-	\bullet	-	\bullet			\bullet -		

Features

*Send the data specified in (s2) from the socket connected to (s1), and the length is (s3).

* According to the devices specified by SOCOPEN, the information such as the sending status and the total sending length could be queried. For details, refer to the SOCOPEN instruction.

Q It must be used with the SOCOPEN instruction, and data can only be sent after a full link has been established.

Error codes

Error code	Content
4084 H	The data in (s3) exceeds the specified range.
5081 H	The socket specified by is not connected, and could not be sent.
5082 H	The data specified in (s) exceeds the range of 0 to 5.

SOCRECV/Ethernet free-form communication reveiving

Receive the data from the socket link in (s1) and store in the start device of (s2) at the length of (S3).
-[SOCRECV (s1) (S2) (S3)]
Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
$(\mathrm{s} 1)$	Socket ID	0 to 5	Signed BIN 16 bit	ANY16
$(s 2)$	The start device that receive the data	-	Signed BIN 16 bit	ANY_ELEMENTARY
$(s 3)$	Receive length	1 to 256	Bit	ANY16

Device used

Instruction	Parameter	Devices																				Offset modification	Pulse extension
		X Y M SSM T(bit)				C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY	KnM	KnS		C	DR	R	SD		HSC	KHE	[D]	XXP
	Parameter 1																				$\bullet \bullet$		
SOCRECV	Parameter 2													-			-	\bullet					
	Parameter 3													-	\bullet	\bullet	-	\bullet			$\bullet \bullet$		

Features

(Receive the data from the socket link in (s1) and store in the start device of (s2) at the length of (S3).

* According to the devices specified by SOCOPEN, the information such as the sending status and the total sending length could be queried. For details, refer to the SOCOPEN instruction.

Q It must be used with the SOCOPEN instrcution, and data can only be sent after a full link has been established.
When used with SOCSEND, it could not be opened at the same time.

Error codes

Error code	Content
4084 H	The data in (s3) exceeds the specified range.
5081 H	The socket specified by is not connected, and could not be sent.
5082 H	The data specified in (s) exceeds the range of 0 to 5.
5087 H	Receiving data timeout

SOCMTCP/Ethernet ModbusTCP communication

Ethernet ModbusTCP client communication instruction
-[SOCMTCP
(s1) (s2)
(s3) (s4)
(s5)]

Content, range and data type

Parameter	Content	Range	Data type	Data type (label)
$(s 1)$	Socket ID	0 to 5	Signed BIN 16 bit	ANY16
$(s 2)$	High byte is station number, low byte is function code	-	Signed BIN 16 bit	ANY_ELEMENTARY
$(s 3)$	The Modbus address that need communication	1 to 256	Unsigned BIN 16 bit	ANY16
$(s 4)$	Sent length or received length		Signed BIN 16 bit	ANY16
$(s 5)$	Sent or received start device		Signed BIN 16 bit	ANY_ELEMENTARY

Device used

Instruction	Parameter	Devices																Offset modification	Pulse extension
		X Y M S SM T ${ }_{\text {(bit }}$			C(bit)	LC(bit)	HSC(bit)	D.b	KnX	KnY		Kns	T	DR	SD	LC	SCKHE	[D]	XXP
	Parameter 1																$\bullet \bullet$		
	Parameter 2												-	- -	\bullet		- \cdot		
SOCMTCP	Parameter 3												-	$\bullet \cdot$	\bullet		- \bullet		
	Parameter 4												- -	-	\bullet		- \cdot		
	Parameter 5													-	-				

Features

(s1) specify the socket link. The other parameters are compatible with RS instruction Modbus master protocol.
(s2) high byte is station number. For ModbusTCP, the station number could be set at will.
Q (s2) low byte is function code. For details, refer to 10.7.2 Modbus protocol description.
(s3) Modbus communication address, ModbusTCP server address that needs to be read or written.
Q (s4): the length read or written by Modbus.
(s 5): the start device that Modbus receive read data or or store written data.
Q It must be used with the SOCOPEN instruction, and data can only be sent after a full link has been established.
This instruction can only be used when a TCP client socket link is established.
*The communication completion information and the number of received and transmitted could be viewed in the soft devices specified in the SOCOPEN instruction.

Error codes

Error code	Content
5081 H	The socket specified by is not connected, and could not communicate.
5082 H	The data specified in (s1) exceeds the range of 0 to 5.
5086 H	The socket specified by (s1) is not configured in the host computer or enabled.
5088 H	The SOCMTCP instruction only supports TCP client mode.

14.4 Ethernet applications

Data exchange between two PLCs through ModbusTCP

Parameters	PLC No.1	PLC No.2
Port number	Free internal distribution	502
IP address	192.168 .8 .10	192.168 .8 .8
Protocol type	ModbusTCP client	ModbusTCP server

The socket configuration of PLC No. 1

Ladder diagram logic: Automatically connect socket 0 after power on 1s. Read the 0 address length 20 of PLC No. 2 to D100 to D119 after the link is successful, and set the value of D100 to D119 to address 100 of PLC No. 2 after the communication is successful. Close the link when communicate successfully again, and wait 1 s to re-connect after closing successfully. Repeat the actions above.

The ladder diagram of PLC No. 1

As a ModbusTCP server, PLC No. 2 does not need to write instructions. (Open two links by default, and could be modified in [PLC parameters] \rightarrow [Ethernet settings]. A maximum of eight links are supported.)

Data exchange between two PLCs through Free TCP

Parameters	PLC No.1	PLC No.2
Port number	Free internal distribution	520
IP address	192.168 .8 .10	192.168 .8 .8
Protocol type	Free TCP client	Free TCP server

The IP setting of PLC No. 1
[Project manager $] \rightarrow$ [Parameter $] \rightarrow$ [PLC parameter $] \rightarrow$ [Ethernet settings $]$

The socket comfiguration of PLC No. 1
[Project manager $] \rightarrow$ EExtended function $] \rightarrow[$ Ethernet $]$, and right click to create.

[1]TCPClient side:192.168.8.8:520-Ethernet configuration		
Parameter	Value	
Whether to enable	True	
socket ID	1	
Communication protocol	TCP	
Operating mode	Client side	
Local port	0	
Target IP	192.168 .8 .8	
Target port	520	
Receive timeout (10ms)	50	
TCP keep-alive mechanism	Close	

The ladder diagram of PLC No. 1
Ladder diagram logic: Automatically connect socket one after power on. Send character string "hello word" initiatively to PLC No. 2 after connecting successfully.
After receiving "hello word" and verifying it correctly, PLC No. 2 would reply "abcdefghijklmnopqrstuvwxyz". If PLC No. 1 receives the reply of PLC No.2, the link closed.

The socket configuration of PLC No. 2
[Project manager $] \rightarrow$ [Parameter $] \rightarrow$ [PLC parameter $] \rightarrow$ [Ethernet settings $]$

The socket comfiguration of PLC No. 2
[Project manager $] \rightarrow$ [Extended function $] \rightarrow$ [Ethernet $]$, and right click to create.

New-Ethernet configuration		
Parameter	Value	
Whether to enable	True	
socket ID	TCP	
Communication protocol	Server	
Operating mode	520	
Local port	0.0 .0 .0	
Target IP	0	
Target port	50	
Receive timeout (10ms)	Close	
TCP keep-alive mechanism		

The ladder diagram of PLC No. 2

Ladder diagram logic: Automatically open the monitor server link of socket one after power on. The data sent by the client is continuously read after connecting successfully. After receiving "hello word", PLC No. 2 would reply "abcdefghijklmnopqrstuvwxyz".

Data exchange between two PLCs through Free UDP

Parameters	PLC No.1	PLC No.2
Port number	666	666
IP address	192.168 .8 .10	192.168 .8 .8
Protocol type	Free UDP	Free UDP

The IP setting of PLC No. 1

The socket configuration of PLC No. 1

New-Ethernet configuration	Value
Parameter	True
Whether to enable	0
socket ID	UDP
Communication protocol	Client side
Operating mode	666
Local port	192.168 .8 .10
Target IP	666
Target port	500
Receive timeout (10ms)	Close
TCP keep-alive mechanism	

The ladder diagram of PLC No. 1
Ladder diagram logic: After setting the NIC state bit, establish UDP socket. After the link is established successful, send a data of 20 bytes that start from D100 to 192.168.8.10: 666. After the data is sent successfully, wait for the reply data of the other party. After
the reply succeeds, continues the process, and so on

The IP address configuration of PLC No. 2

The socket configuration of PLC No. 2

The ladder diagram of PLC No. 2
Ladder diagram logic: After setting the NIC state bit, establish UDP socket. After the link is established successful, send a data of 20 bytes that start from D300 to 192.168.8.10: 666. After the data is sent successfully, wait for the reply data of the other party, and so on.

14.5 List of special device related to Ethernet

SM number	Name	Content	R/W	Power down retentive
SM2681	Display current network information	Refresh current IP gateway subnet mask after ON. Turn OFF after the fresh is complete.	R/W	\times
SM2682	Display current MAC information	Refresh current MAC after ON. Turn OFF after the fresh is complete.	R/W	\times
SM2683	The modification flag of IP, subnet mask and gateway	ON: Modifiable OFF: Unmodifiable (After setting to ON, modify when stop->run, and turn OFF automatically after the modification)	R/W	\checkmark
SM2684	The connecting status of NIC	ON: The network is connected OFF: The network is not connected. Please check whether the network cable is connected.	R	\checkmark
SM2692	MAC address modification flag	ON: Modifiable OFF: Unmodifiable (After setting to ON, modify when stop->run, and automatically turn OFF after the modification)	R/W	\checkmark
SM2700	ModbusTCP keep-alive mechanism	ON: open OFF: close (default)	R/W	\checkmark
SM2701	ModbusTCP server force close	ON: open OFF: close (default) (After enabling, automatically changes to OFF After it is successfully turned OFF)	R/W	\times
SM2710	Ethernet error flag	ON: Ethernet error. Please check SD2710 and SD2711 OFF: No Ethernet error.	R	\times
SM2740	ModbusTCP server connection status 1	ON: The client is connected OFF: The client is not connected	R	\times
SM2760	ModbusTCP server connection status 2	ON: The client is connected OFF: The client is not connected	R	\times
SM2780	ModbusTCP server connection status 3	ON: The client is connected OFF: The client is not connected	R	\times
SM2800	ModbusTCP server connection status 4	ON: The client is connected OFF: The client is not connected	R	\times
SM2820	ModbusTCP server connection status 5	ON: The client is connected OFF: The client is not connected	R	\times
SM2840	ModbusTCP server connection status 6	ON: The client is connected OFF: The client is not connected	R	\times
SM2860	ModbusTCP server connection status 7	ON: The client is connected	R	\times

		OFF: The client is not connected		
SM2880	ModbusTCP server connection status 8	ON: The client is connected	OFF: The client is not connected	R
		\times		

SD number	Name	Content	R/W	Power down retentive
SD2680	The 1st byte of IP address	Local IP address	R/W	V
SD2681	The 2 nd byte of IP address		R/W	\checkmark
SD2682	The 3rd byte of IP address		R/W	V
SD2683	The 4th byte of IP address		R/W	\checkmark
SD2684	The 1st byte of subnet mask	Local subnet mask	R/W	\checkmark
SD2685	The 2nd byte of subnet mask		R/W	\checkmark
SD2686	The 3rd byte of subnet mask		R/W	\checkmark
SD2687	The 4th byte of subnet mask		R/W	\checkmark
SD2688	The 1st byte of default gateway	Local default gateway	R/W	V
SD2689	The 2nd byte of default gateway		R/W	V
SD2690	The 3rd byte of default gateway		R/W	\checkmark
SD2691	The 4th byte of default gateway		R/W	\checkmark
SD2692	The 1st byte of MAC	Local MAC address	R/W	V
SD2693	The 2nd byte of MAC		R/W	\checkmark
SD2694	The 3rd byte of MAC		R/W	\checkmark
SD2695	The 4th byte of MAC		R/W	\checkmark
SD2696	The 5th byte of MAC		R/W	\checkmark
SD2697	The 6th byte of MAC		R/W	\checkmark
SD2700	Communication speed display	0: 100Mbps/Half-duplex 1: 100Mbps/Full-duplex 2: 10Mbps/Half-duplex 3: 10Mbps/Full-duplex	R	\times
SD2702	Maximum link number supported by ModbusTCP server	Maximum link number of simultaneous client links supported by local ModbusTCP server	R/W	\times
SD2703	The number of links of ModbusTCP	The number of links of local ModbusTCP	R	\times
SD2710	Error code	Ehternet error code	R	\times
SD2711	The socket ID of current error	-1: default ModbusTCP server 0 to 5: Custom socket error	R	\times
SD2720	Input low bit of number of ping request	The number of external input ping command	R	\times
SD2721	Input high bit of number of ping request		R	\times
SD2722	Input low bit of number of ping response	The number of replies after receiving external ping command	R	\times
SD2723	Input high bit of number of ping response		R	\times
SD2724	Input low bit of number of ping request	The number of sending ping command	R	\times
SD2725	Input high bit of number of ping request		R	\times
SD2726	Input low bit of number of ping response	The number of replies after receiving external	R	\times

PLC LX5V Series Programming Manual (V2.2)

SD2727	Input high bit of number of ping response	ping command sent	R	\times
SD2728	The number of arp pack sent	Count of the number of arp packets sent	R	\times
SD2729	The number of arp pack received	The number of arp pack received	R	\times
SD2730	The number of IP pack sent	The number of IP pack sent	R	\times
SD2731	The number of IP pack received	The number of IP pack received	R	\times
SD2732	The number of TCP pack sent	The number of TCP pack sent	R	\times
SD2733	The number of TCP pack received	The number of TCP pack received	R	\times
SD2734	The number of UDP pack sent	The number of UDP pack sent	R	\times
SD2735	The number of UDP pack received	The number of UDP pack received	R	\times
SD2740	Connection one Local port number	The first ModbusTCP client to connect the connection information and error information of this PLC.	R	\times
SD2741	Connection one The 1st byte of IP address		R	\times
SD2742	Connection one The 2nd byte of IP address		R	\times
SD2743	Connection one The 3rd byte of IP address		R	\times
SD2744	Connection one The 4th byte of IP address		R	\times
SD2745	Connection one Opposite end port number		R	\times
SD2746	Reserved		R	\times
SD2747	Reserved			
SD2748	Connection one Error code		R	\times
SD2749	Connection one Error communication times low word		R	\times
SD2750	Connection one Error communication times high word		R	\times
SD2760	Connection two Local port number	The second ModbusTCP client to connect the connection information and error information of this PLC.	R	\times
SD2761	Connection two The 1st byte of IP address		R	\times
SD2762	Connection two The 2nd byte of IP address		R	\times
SD2763	Connection two The 3rd byte of IP address		R	\times
SD2764	Connection two The 4th byte of IP address		R	\times
SD2765	Connection two Opposite end port number		R	\times
SD2766	Reserved		R	\times
SD2767	Reserved			
SD2768	Connection two Error code		R	\times
SD2769	Connection two Error communication times low word		R	\times
SD2770	Connection two Error communication times high word		R	\times
SD2780	Connection three Local port number	The third ModbusTCP client to connect the connection information and error information of this PLC.	R	\times
SD2781	Connection three The 1st byte of IP address		R	\times
SD2782	Connection three The 2nd byte of IP address		R	\times
SD2783	Connection three The 3rd byte of IP address		R	\times
SD2784	Connection three The 4th byte of IP address		R	\times

SD2785	Connection three Opposite end port number		R	\times
SD2786	Reserved		R	\times
SD2787	Reserved			
SD2788	Connection three Error code		R	\times
SD2789	Connection three Error communication times low word		R	\times
SD2780	Connection three Error communication times high word		R	\times
SD2800	Connection four Local port number	The forth ModbusTCP client to connect the connection information and error information of this PLC.	R	\times
SD2801	Connection four The 1st byte of IP address		R	\times
SD2802	Connection four The 2nd byte of IP address		R	\times
SD2803	Connection four The 3rd byte of IP address		R	\times
SD2804	Connection four The 4th byte of IP address		R	\times
SD2805	Connection four Opposite end port number		R	\times
SD2806	Reserved		R	\times
SD2807	Reserved			
SD2808	Connection four Error code		R	\times
SD2809	Connection four Error communication times low word		R	\times
SD2810	Connection four Error communication times high word		R	\times
SD2820	Connection five Local port number	The fifth ModbusTCP client to connect the connection information and error information of this PLC.	R	\times
SD2821	Connection five The 1st byte of IP address		R	\times
SD2822	Connection five The 2nd byte of IP address		R	\times
SD2823	Connection five The 3rd byte of IP address		R	\times
SD2824	Connection five The 4th byte of IP address		R	\times
SD2825	Connection five Opposite end port number		R	\times
SD2826	Reserved		R	\times
SD2827	Reserved			
SD2828	Connection five Error code		R	\times
SD2829	Connection five Error communication times low word		R	\times
SD2830	Connection five Error communication times high word		R	\times
SD2840	Connection six Local port number	The sixth ModbusTCP client to connect the connection information and error information of this PLC.	R	\times
SD2841	Connection six The 1st byte of IP address		R	\times
SD2842	Connection six The 2nd byte of IP address		R	\times
SD2843	Connection six The 3rd byte of IP address		R	\times
SD2844	Connection six The 4th byte of IP address		R	\times
SD2845	Connection six Opposite end port number		R	\times
SD2846	Reserved		R	\times

SD2847	Reserved			
SD2848	Connection six Error code		R	\times
SD2849	Connection six Error communication times low word		R	\times
SD2850	Connection six Error communication times high word		R	\times
SD2860	Connection seven Local port number	The seventh ModbusTCP client to connect the connection information and error information of this PLC.	R	\times
SD2861	Connection seven The 1st byte of IP address		R	\times
SD2862	Connection seven The 2nd byte of IP address		R	\times
SD2863	Connection seven The 3rd byte of IP address		R	\times
SD2864	Connection seven The 4th byte of IP address		R	\times
SD2865	Connection seven Opposite end port number		R	\times
SD2866	Reserved		R	\times
SD2867	Reserved			
SD2868	Connection seven Error code		R	\times
SD2869	Connection seven Error communication times low word		R	\times
SD2870	Connection seven Error communication times high word		R	\times
SD2880	Connection eight Local port number	The eighth ModbusTCP client to connect the connection information and error information of this PLC.	R	\times
SD2881	Connection eight The 1st byte of IP address		R	\times
SD2882	Connection eight The 2nd byte of IP address		R	\times
SD2883	Connection eight The 3rd byte of IP address		R	\times
SD2884	Connection eight The 4th byte of IP address		R	\times
SD2885	Connection eight Opposite end port number		R	\times
SD2866	Reserved			
SD2867	Reserved		R	\times
SD2888	Connection eight Error code		R	\times
SD2889	Connection eight Error communication times low word		R	\times
SD2890	Connection eight Error communication times high word		R	\times

14.6 Ethernet error codes table

Operational error

Error code	Description	Action	Processing scheme	Test time
3680	Ethernet data reception error	Continue to run	Check the environment for interference.	When the instruction is executed
3681	Ethernet data reception timeout	Continue to run	Check whether the network cable is loose. Check whether the network opposite end is faulty and cannot send data. Check whether the network opposite end is not responding in time and the data is too late. For this reason, try increasing the receive timeout in the socket configuration.	When the instruction is executed
3684	ModbusTCP station number configuration error	Continue to run	Check the setting of slave station number. Check whether there is a problem with the receiving and sending mechanism of the slave station.	When the instruction is executed
3685	ModbusTCP send buffer overflow	Continue to run	Contact the technician for the error	When the instruction is executed
3686	ModbusTCP function code error	Continue to run	Check whether the function code set is supported by the PLC.	When the instruction is executed
3687	ModbusTCP address error	Continue to run	Check whether the slave station has the address. (Please refer to Modbus abnormality 02)	When the instruction is executed
3688	ModbusTCP length error	Continue to run	Check whether the communication length exceeds the range of Modbus.	When the instruction is executed
3689	ModbusTCP data error	Continue to run	Check whether the parameter of instruction is incorrect. Check whether the value set is supported by slave. (Please refer to Modbus abnormality 03)	When the instruction is executed
368A	ModbusTCP slave station is busy	Continue to run	Slave returns message: Slave is busy. (Please refer to Modbus abnormality 06)	When the instruction is executed
368B	ModbusTCP slave station does not support function code	Continue to run	Check whether the function code is supported by slave. (Please refer to Modbus abnormality 01)	When the instruction is executed
368C	ModbusTCP slave station fault	Continue to run	Slave returns message: Slave is faulty. (Please refer to Modbus abnormality 04)	When the instruction is executed
368D	ModbusTCP slave station confirmation	Continue to run	Slave returns message: Slave confirmation. (Please refer to Modbus abnormality 05)	When the instruction is executed
368E	ModbusTCP protocol currently does not support this instruction	Continue to run	RS instruction could not be used when set to slave protocol. Please change protocol or close the contact before the RS instruction.	When the instruction is executed

368F	Network port sending timeout	Continue to run	Contact the technician for the error.	When the instruction is executed
3690	Receiving cache overflow	Continue to run	Check whether the other device has been sending data.	When the instruction is executed
36A0	ModbusTCP unavailable gateway	Continue to run	Slave returns message: Unavailable gateway. (Please refer to Modbus abnormality OA)	When the instruction is executed
36A1	ModbusTCP No response was received from the target device. Generally it means that the device is not on the network.	Continue to run	Slave returns message: The device is not on the network. (Please refer to Modbus abnormality OB)	When the instruction is executed
36C0	ModbusTCP transaction identifier error	Continue to run	Check whether the network is congested and data cannot be received.	When the instruction is executed
36C1	ModbusTCP The server is full of available links	Continue to run	Check whether SD2702 and SD2703 have too many clients to link.	When the instruction is executed
36C8	The Ethernet protocol stack is running out of space	Continue to run	Contact the technician for the error.	When the instruction is executed
36C9	The number of links exceeded the limit	Continue to run	Check whether the total number of links exceeds the limit.	When the instruction is executed
36CA	The last sending is not complete	Continue to run	Use the send completion flag to judge the current send is complete before sending the next one.	When the instruction is executed
36CB	TCP abnormal write	Continue to run	Use flag bit device to judge whether the connection is normal. If not, not data is sent. For example, after the closing flag is set, no data is sent.	When the instruction is executed
36CC	TCP abnormal output	Continue to run	Contact the technician for the error.	When the instruction is executed
36CD	The IP address has been used	Continue to run	Check whether a connection using the same address information exists.	When the instruction is executed
36CE	The server receiving link error	Continue to run	Contact the technician for the error.	When the instruction is executed
36CF	TCP receiving buffer overflow	Continue to run	Contact the technician for the error.	When the instruction is executed
36D0	TCP connection failed	Continue to run	The TCP client may be enabled when the network cable is not connected.	When the instruction is executed
36D1	Abnormal when closing the link initiative	Continue to run	Contact the technician for the error.	When the instruction is executed
36D2	An abnormal shutdown occurred inside the protocol stack	Continue to run	It may be closed because of no response for a long time. Check whether the opposite end is online, and whether it could be pinged.	When the instruction is executed
36D3	Initiate an RST link on the opposite end	Continue to run	(1) Check whether the opposite end initiates an rmal shutdown. 2) As a client, the number of links on the site end is full or the port on the opposite end is pened.	When the instruction is executed

36D4	A single-ended shutdown of the protocol stack occurs	Continue to run	Contact the technician for the error.	When the instruction is executed
36D5	There is an IP address conflict	Continue to run	There are the same IP devices in the LAN, please change the IP address.	When the instruction is executed
36D6	There is an MAC address conflict	Continue to run	There are the same MAC devices in the LAN, please change the MAC address.	When the instruction is executed
$36 \mathrm{D7}$	TCP sending buffer overflow	Continue to run	Contact the technician for the error.	When the instruction is executed
36D8	UDP abnormal connection	Continue to run	IP address and port number may have been used.	When the instruction is executed
36D9	UDP sending buffer overflow	Continue to run	Contact the technician for the error.	When the instruction is executed
36DA	UDP insufficient memory space when sending	Continue to run	Contact the technician for the error.	When the instruction is executed
36DB	UDP failed to send	Continue to run	Contact the technician for the error.	When the instruction is executed
36DC	UDP memory release failure	Continue to run	Contact the technician for the error.	When the instruction is executed
36DD	UDP receiving buffer overflow	Continue to run	The data length that UDP received exceeds the limit value 512.	When the instruction is executed
4084	The data input in the application instruction exceeds the specified range.	Continue to run	Modify application instruction parameter.	When the application instruction is executed
4085	The output result in the read application instruction exceeds the device range.	Continue to run	Modify application instruction parameter.	When the application instruction is executed
4086	The output result in the read application instruction exceeds the device range.	Continue to run	Modify application instruction parameter.	When the application instruction is executed
5080	The Ethernet socket is already linked and could not be opened again	Continue to run	Check whether the SOCOPEN instruction is executed repeatedly.	When the application instruction is executed
5081	The Ethernet socket is not opened and could not be operated	Continue to run	Check whether the connected bit of SOCOPEN instruction (d2) parameter is set.	When the application instruction is executed
5082	The socket ID that Ethernet instruction inputs exceeds the range	Continue to run	Modify application instruction parameter.	When the application instruction is executed
5083	Failed to create TCP server	Continue to run	Check whether the link is full.	When the application instruction is executed
5084	Failed to create links	Continue to run	Check whether the link is full.	When the application instruction is executed
5086	The socket ID used by Ethernet instruction is not configured in the host computer or is not enabled after configuration	Continue to run	Check the Ethernet configuration of the host computer.	When the application instruction is executed

PLC LX5V Series Programming Manual (V2.2)

5087	SOCRECV instruction reception timeout	Continue to run	(1) Check whether the network connection is normal. (2) Check whether the network opposite end has data sent.	When the application instruction is executed
5088	The socket specified by SOCMTCP instruction uses the configuration mode of non-TCP client	Continue to run	Check the Ethernet configuration of the host computer.	When the application instruction is executed
5089	When Ethernet socket configures a TCP server, specify the local port as 502	Continue to run	The port 502 is occupied by the system. Please modify the local port number.	When the application instruction is executed
508A	The UDP port is set to 1092	Continue to run	The UDP port 1092 is occupied by the system and could not be used. Please modify the local port number.	When the application instruction is executed
5090	Abnormal network cable connection	Continue to run	Check whether the network cable is connected	When the application instruction is executed

Appendix

Attachment 1 Special Relay (SM)

Error message

SM label	Name	Content	R/W	Power-down data preservation
SMO	Latest error message	OFF: No error ON: There is an error	R	\times
SM1	Reserved			
SM2	Error resolution	OFF \rightarrow ON: Clear wrong request ON \rightarrow OFF: Error clearing completed	R/W	\times
SM3	Battery voltage is too low	OFF: Normal ON: Battery voltage is too low	R	\times
SM4	Low battery voltage latch	OFF: Normal ON: Battery voltage is too low	R	\times
SM5	Reserved		R	\times
SM6	PLC Hardware Error	OFF: No error ON: There is an error	R	\times
SM7	PLC communication error	OFF: No error ON: There is an error	R	\times
SM10	Parameters error	OFF: No error ON: There is an error	R	\times
SM11	Operation Error	OFF: No error ON: There is an error	R	\times
SM14	Operation error latch	OFF: No error ON: There is an error	R	\times

System message

SM label	Name	Content	R/W	Power-down data preservation
SM30	Low battery warning shield	OFF: turn off (default) ON: open	OFF \rightarrow ON: Clear request ON \rightarrow OFF: Clear completed	R/W

Clock information

SM label	Name	Content	R/W	Power-down data preservation
SM100	Always ON after RUN		R	\times
SM101	Always OFF after RUN		R	
SM102	The 1st cycle after RUN is ON		R	\times

PLC LX5V Series Programming Manual (V2.2)

SM103	The 1st cycle after RUN is OFF		R	\times
SM104	USB power supply	USB power supply mode when ON. In this case, only download, clock setting, and password setting are allowed.	R	\times
SM105 to SM106	Reserved		R	\times
SM107	Clock stop and preset	Stop clock running and display	R/W	\times
SM108	Clock reading display stops	Clock running at background, display stopped	R/W	\times
SM109	1 min oscillation clock	Switch state every 30 seconds	R	\times
SM110	1 ms oscillator clock	Switch state every 0.5 ms	R	\times
SM111	10 ms oscillation clock	Switch state every 5ms	R	\times
SM112	100ms oscillation clock	Switch state every 50 ms	R	\times
SM113	1s oscillation clock	Switch state every 500ms	R	\times
SM114	nms oscillation clock	State switch for each ($\mathrm{n} / 2$) ms, n is set by SD114	R	\times
SM115	ns oscillation clock	State switch for each ($\mathrm{n} / 2$) s, n is set by SD115	R	\times
SM116	± 30 s correction	If the clock number is less than 30S, it is reset; if the clock number is greater than 30S, it is carried	R/W	\times
SM117 to SM119	Reserved		R	\times

Scan information

SM label	Name	Content	R/W	Power-down data preservation
SM120	Constant scan period	OFF: not turned on (default) ON: open	R/W	\times
SM121	RUN, STOP control	OFF:STOP ON: RUN	R/W	\times
SM122	Circuit program Watchdog function switch	OFF: not open ON: open (default)	R/W	\times

Instruction related

SM label	Name	R/W	Power-down data preservation	
SM151	Carry sign	OFF: Operation does not carry ON: Operation carries	R	\times
SM152	Abdication sign	OFF: Operation does not abdicate ON: Operation abdicates	R	\times
SM153	Zero sign	OFF: Result is not zero ON: Result is zero	OFF: Parameter 1 is exchanged with parameter 2 ON: high 8-bit is exchanged with eighth bits for parameter itself.	R/W
SM160	XCH exchange mode	OFF: 16 bit processing mode ON: 8 bit processing mode	\times	
SM161	Bit processing mode (ASC, ASCI, BCC, CCD,CRC)	R/W	\times	
SM165	SORT/SORT2 instruction ascending and descending order selection	OFF: Ascending ON: Descending	R/W	\times
SM167	HKY instruction HEX data processing	OFF: Number key + Function key ON : Hex key	R/W	\times
SM168	SMOV instruction hexadecimal processing	OFF: Perform BIN \rightarrow BCD conversion ON: BIN \rightarrow BCD conversion is not performed	R/W	\times
SM191	BINDA output character number switching signal	OFF: Output00H ON: There is no change	R/W	\times
SM224	BMOV instruction direction	OFF: Forward transmission ON: Reverse transmission	R/W	\times
SM226	RAMP instruction mode	OFF: looping execution mode ON: Hold after completion	R/W	\times

PLC LX5V Series Programming Manual (V2.2)

SM227	PR mode	OFF :8 bytes serial output (fixed to 8 characters) ON : 16-byte serial output (1 to 16 characters)	R/W	\times
SM229	Partial application instruction execution completed flag	OFF: Instruction not executed or under executing ON: Instruction execution completed	R/W	\times
SM240	STL instruction transfer prohibited	OFF: Common action ON: State transfer is prohibited	R/W	\times
SM241	IST instruction transfer start	OFF: The IST instruction is not performed ON: IST instruction transfer started	R/W	\times
SM242	IST instruction corresponds to start input pulse output	OFF: Not Started ON: Started	R/W	\times
SM243	End flag of IST command origin return state(User program control)	OFF: Regression through the origin is not finished ON: Regression through the origin is finished	R/W	\times
SM244	IST instruction detects mechanical origin movement(User program control)	OFF: Non mechanical origin ON: Mechanical origin	R/W	\times
SM245	STL instruction: disables all output reset during mode switch(User program control)	OFF: Full reset output when state is switched ON: No action when state is switched		\times
SM246	IST instruction: It is ON in the state of STL	OFF: When the STL monitoring effect is OFF, or when the STL monitoring effect is ON and all stepping relays (S soft component) are OFF ON: When STL monitoring is ON and any one of the stepping relay (S soft component) is ON .		\times
SM247	STL monitoring is valid	OFF: Void ON: The STL monitoring becomes effective, and the state numbers in the action (S0 to S4095) are saved in the special auxiliary relays SD240 to SD247 in the order from small to large.	R/W	\times
SM248	ANS command signal alarm action	OFF: Alarm not working ON: Alarm working	R/W	\times
SM249	ANS command signal alarm is effective	OFF: Alarm void ON: Alarm effective	R/W	\times
SM340	DUTY timing clock output 1	CLKOUT for DUTY instruction	R	\times
SM341	DUTY timing clock output 2		R	\times
SM342	DUTY timing clock output 3		R	\times
SM343	DUTY timing clock output 4		R	\times
SM344	DUTY timing clock output 5		R	\times

Interrupt prohibited

SM label	Name	Content	R/W	Power-down data preservation
SM352	X0 rising edge interrupt	OFF: X0 rising edge interruption is valid ON: X0 rising edge interrupt is prohibited	\times	
SM353	X0 falling edge interrupt	OFF: X0 falling edge interruption is valid ON: X0 falling edge interrupt is prohibited	R	\times
SM354	X1 rising edge interrupt	OFF: X1 rising edge interruption is valid ON: X1 rising edge interrupt is prohibited	R	\times
SM355	X1 falling edge interrupt	OFF: X1 falling edge interruption is valid ON: X1 falling edge interrupt is prohibited	R/W	\times
SM356	X2 rising edge interrupt	OFF: X2 rising edge interruption is valid ON: X2 rising edge interrupt is prohibited	R/W	\times
SM357	X2 falling edge interrupt	OFF: X2 falling edge interruption is valid ON: X2 falling edge interrupt is prohibited	R/W	\times
SM358	X3 rising edge interrupt	OFF: X3 rising edge interruption is valid ON: X3 rising edge interrupt is prohibited	R/W	\times
SM359	X3 falling edge interrupt	OFF: X3 falling edge interruption is valid ON: X3 falling edge interrupt is prohibited	R/W	\times
SM360	X4 rising edge interrupt	OFF: X4 rising edge interruption is valid ON: X4 rising edge interrupt is prohibited	R/W	\times
SM361	X4 falling edge interrupt	OFF: X4 falling edge interruption is valid ON: X4 falling edge interrupt is prohibited	R/W	\times
SM362	X5 rising edge interrupt	OFF: X5 rising edge interruption is valid ON: X5 rising edge interrupt is prohibited	R/W	\times
SM363	X5 falling edge interrupt	OFF: X5 falling edge interruption is valid ON: X5 falling edge interrupt is prohibited	R/W	\times
SM364	X6 rising edge interrupt	OFF: X6 rising edge interruption is valid ON: X6 rising edge interrupt is prohibited	R/W	\times
SM365	X6 falling edge interrupt	OFF: X6 falling edge interruption is valid ON: X6 falling edge interrupt is prohibited	R/W	\times
SM366	X7 rising edge interrupt	OFF: X7 rising edge interruption is valid ON: X7 rising edge interrupt is prohibited	OFF: X7 falling edge interruption is valid ON: X7 falling edge interrupt is prohibited	\times
SM367	X7 falling edge interrupt	\times		

High-speed input and output

SM label	Name	Content	R/W	Power-down data preservation
SM400	HSCO contact status	OFF:Calculated value does not reach the set value ON: Calculated value reaches the set value	R	\times
SM401	Moving direction of HSCO	OFF: forward and reverse ON: reverse direction	R	\times
SM405	HSCO counting direction	OFF: count up ON: count down	R/W	\times
SM406 to SM429	Reserved			
SM430	HSC1 contact status	OFF:Calculated value does not reach the set value ON: Calculated value reaches the set value	R	\times
SM431	Moving direction of HSC1	OFF: forward direction ON: reverse direction	R	\times
SM435	HSC1 counting direction	OFF: count up ON: count down	R/W	\times
SM436 to SM459	Reserved	OFF:Calculated value does not reach the set value	R	\times
SM460	HSC2 contact status	ON: Calculated value reaches the set value ON		

PLC LX5V Series Programming Manual (V2.2)

SM461	Moving direction of HSC2	OFF: forward direction ON: reverse direction	R	\times
SM465	HSC2 counting direction	OFF: count up ON: count down	R/W	\times
SM466 to SM489	Reserved			
SM490	HSC3 contact status	OFF:Calculated value does not reach the set value ON: Calculated value reaches the set value	R	\times
SM491	Moving direction of HSC3	OFF: forward and reverse ON: reverse direction	R	\times
SM495	HSC3 counting direction	OFF: count up ON: count down	R/W	\times
SM496 to SM519	Reserved			
SM520	HSC4 contact status	OFF:Calculated value does not reach the set value ON: Calculated value reaches the set value	R	\times
SM521	Moving direction of HSC4	OFF: forward and reverse ON: reverse direction	R	\times
SM525	HSC4 counting direction	OFF: count up ON: count down	R/W	\times
SM526 to SM549	Reserved			
SM550	HSC5 contact status	OFF:Calculated value does not reach the set value ON: Calculated value reaches the set value	R	\times
SM551	Moving direction of HSC5	OFF: forward direction ON: reverse direction	R	\times
SM555	HSC5 counting direction	OFF: count up ON: count down	R/W	\times
SM556 to SM579	Reserved			
SM580	HSC6 contact status	OFF:Calculated value does not reach the set value ON: Calculated value reaches the set value	R	\times
SM581	Moving direction of HSC6	OFF: forward direction ON: reverse direction	R	\times
SM585	HSC6 counting direction	OFF: count up ON: count down	R/W	\times
SM586 to SM609	Reserved			
SM610	HSC7 contact status	OFF:Calculated value does not reach the set value ON: Calculated value reaches the set value	R	\times
SM611	Moving direction of HSC7	OFF: forward direction ON: reverse direction	R	\times
SM615	HSC7 counting direction	OFF: count up ON: count down	R/W	\times
SM616 to SM639	Reserved			

Pulse output (positioning axis)

SM label	Name	Content	R/W	Power-down data preservation
SM880	CH1 Pulse sending	OFF: Pulse transmission has not started or completed ON: Pulse being sent	R/W	\times
SM881	CH1 Pulse sending error	OFF: Normal ON: Error	R/W	\times
SM882	CH1 Pulse sending stopped	OFF: Indicates that the pulse is being sent or started ON: Pulse transmission is complete	R/W	\times
SM883	CH1 Forward limit	OFF: Inactive ON: After the function is enabled, forward pulse sending stops	R/W	\times
SM884	CH1 Reversal limit	OFF: Inactive ON: After the function is enabled, reverse pulse sending stops	R/W	\times
SM885	CH1 Rotation direction setting	OFF: Pulse meter value increases during forward rotation ON: Pulse meter value increases when reversed	R/W	\times
SM886	CH1 Origin return start	OFF: Disables the origin regression function. That is, the origin regression command is disabled and cannot be used. ON: Enable the origin regression function, that is, the origin regression command is enabled and can be used normally (default).	R/W	\times
SM887	CH 1 Origin regression direction	Reserved	R/W	\times
SM888	Reserved		R/W	\times
SM889	Reserved		R/W	\times
SM890	Reserved		R/W	\times
SM891	Reserved		R/W	\times
SM892	CH1 External signal start	OFF: Receiving external signals when inactive ON: Receiving external signals when activated	R/W	\times
SM893	CH1 External signal logic	OFF: No external signal is received ON: Receives external signals	R/W	\times
SM894	CH1 Interrupt signal start	OFF: Turns OFF the interrupt signal and cannot use the DVIT command ON: Turn ON interrupt signal (default)	R/W	\times
SM895	CH1 Interrupt signal logic	OFF: No interrupt signal is received ON: Interrupt signal is received	R/W	\times
SM896	CH1 External limit signal open	CH1 Limit signal on	R/W	
SM897	CH1 PWM mode	OFF: 16-bit pulse output mode ON: 1000 ratio mode	R/W	\times
SM898	CH1 Immediately stop	OFF: No action is performed ON: Stop pulse output immediately without acceleration or deceleration	R/W	\times
SM899	CH1 scan period is not processed	OFF: Common mode, stop after sending (default) ON: Stop or slow down immediately	R/W	\times
SM900	CH1 start speed setting	OFF: Use self-contained acceleration and deceleration ON: Use set acceleration and deceleration	R/W	\times
SM940	CH2 Pulse sending	OFF: Pulse transmission has not started or completed ON: Pulse being sent	R/W	\times
SM941	CH 2 Pulse sending error	OFF: Normal ON: Error	R/W	\times
SM942	CH2 Pulse sending stopped	OFF: Indicates that the pulse is being sent or started ON: Pulse transmission is complete	R/W	\times
SM943	CH2 Forward limit	OFF: Inactive ON: After the function is enabled, forward pulse sending stops	R/W	\times
SM944	CH2 Reversal limit	OFF: Inactive ON: After the function is enabled, reverse pulse sending stops	R/W	\times
SM945	CH2 Rotation direction setting	OFF: Pulse meter value increases during forward rotation ON: Pulse meter value increases when reversed	R/W	\times
SM946	CH2 Origin return start	OFF: Disables the origin regression function. That is, the origin regression command is disabled and cannot be used.	R/W	\times

		ON: Enable the origin regression function, that is, the origin regression command is enabled and can be used normally (default).		
SM947	CH2 Origin regression direction	Reserved	R/W	\times
SM948	Reserved			
SM949	Reserved			
SM950	Reserved			
SM951	Reserved			
SM952	CH2 External start signal start	OFF: Receiving external signals when inactive ON: Receiving external signals when activated	R/W	\times
SM953	CH2 External start signal logic	OFF: No external signal is received ON: Receives external signals	R/W	\times
SM954	CH2 Interrupt signal start	OFF: Turns OFF the interrupt signal and cannot use the DVIT command ON: Turn ON interrupt signal (default)	R/W	\times
SM955	CH2 Interrupt input signal logic	OFF: No interrupt signal is received ON: Interrupt signal is received	R/W	\times
SM956	CH2 External limit signal open	CH2 Limit signal on	R/W	\times
SM957	CH2 PWM mode	OFF: 16-bit pulse output mode ON: 1000 ratio mode	R/W	\times
SM958	CH2 Immediately stop	OFF: No action is performed ON: Stop pulse output immediately without acceleration or deceleration	R/W	\times
SM959	CH 1 scan period is not processed	OFF: Common mode, stop after sending (default) ON: Stop or slow down immediately	R/W	\times
SM960	CH2 Start speed setting	OFF: Use self-contained acceleration and deceleration ON: Use set acceleration and deceleration	R/W	\times
SM1000	CH3 Pulse sending	OFF: Pulse transmission has not started or completed ON: Pulse being sent	R/W	\times
SM1001	CH3 Pulse sending error	OFF: Normal ON: Error	R/W	\times
SM1002	CH3 Pulse sending stopped	OFF: Indicates that the pulse is being sent or started ON: Pulse transmission is complete	R/W	\times
SM1003	CH3 Forward limit	OFF: Inactive ON: After the function is enabled, forward pulse sending stops	R/W	\times
SM1004	CH3 Reversal limit	OFF: Inactive ON: After the function is enabled, reverse pulse sending stops	R/W	\times
SM1005	CH3 Rotation direction setting	OFF: Pulse meter value increases during forward rotation ON: Pulse meter value increases when reversed	R/W	\times
SM1006	CH3 Origin return start	OFF: Disables the origin regression function. That is, the origin regression command is disabled and cannot be used. ON: Enable the origin regression function, that is, the origin regression command is enabled and can be used normally (default).	R/W	\times
SM1007	CH3 Origin regression direction	Reserved	R/W	\times
SM1008	Reserved			
SM1009	Reserved			
SM1010	Reserved			
SM1011	Reserved			
SM1012	CH3 External start signal start	OFF: Receiving external signals when inactive ON: Receiving external signals when activated	R/W	\times
SM1013	CH3 External start signal logic	OFF: No external signal is received ON: Receives external signals	R/W	\times
SM1014	CH3 Interrupt signal start	OFF: Turns OFF the interrupt signal and cannot use the DVIT command ON: Turn ON interrupt signal (default)	R/W	\times
SM1015	CH3 Interrupt input signal logic	OFF: No interrupt signal is received ON: Interrupt signal is received	R/W	\times
SM1016	CH3 External limit signal open	CH3 Limit signal on	R/W	\times

SM1017	CH3 PWM mode	OFF: 16-bit pulse output mode ON: 1000 ratio mode	R/W	\times
SM1018	CH3 Immediately stop	OFF: No action is performed ON: Stop pulse output immediately without acceleration or deceleration	R/W	\times
SM1019	CH1 scan period is not processed	OFF: Common mode, stop after sending (default) ON: Stop or slow down immediately	R/W	\times
SM1020	CH3 Start speed setting	OFF: Use self-contained acceleration and deceleration ON: Use set acceleration and deceleration	R/W	\times
SM1060	CH4 Pulse sending	OFF: Pulse transmission has not started or completed ON: Pulse being sent	R/W	\times
SM1061	CH4 Pulse sending error	OFF: Normal ON: Error	R/W	\times
SM1062	CH4 Pulse sending stopped	OFF: Indicates that the pulse is being sent or started ON: Pulse transmission is complete	R/W	\times
SM1063	CH4 Forward limit	OFF: Inactive ON: After the function is enabled, forward pulse sending stops	R/W	\times
SM1064	CH4 Reversal limit	OFF: Inactive ON: After the function is enabled, reverse pulse sending stops	R/W	\times
SM1065	CH4 Rotation direction setting	OFF: Pulse meter value increases during forward rotation ON: Pulse meter value increases when reversed	R/W	\times
SM1066	CH4 Origin return start	OFF: Disables the origin regression function. That is, the origin regression command is disabled and cannot be used. ON: Enable the origin regression function, that is, the origin regression command is enabled and can be used normally (default)。	R/W	\times
SM1067	CH4 Origin regression direction	Reserved	R/W	\times
SM1068	Reserved			
SM1069	Reserved			
SM1070	Reserved			
SM1071	Reserved			
SM1072	CH4 External start signal start	OFF: Receiving external signals when inactive ON: Receiving external signals when activated	R/W	\times
SM1073	CH4 External start signal logic	OFF: No external signal is received ON: Receives external signals	R/W	\times
SM1074	CH4 Interrupt signal start	OFF: Turns OFF the interrupt signal and cannot use the DVIT command ON: Turn ON interrupt signal (default)	R/W	\times
SM1075	CH4 Interrupt input signal logic	OFF: No interrupt signal is received ON: Interrupt signal is received	R/W	\times
SM1076	CH4 External limit signal open	CH4 Limit signal on		
SM1077	CH4 PWM mode	OFF: 16-bit pulse output mode ON: 1000 ratio mode	R/W	\times
SM1078	CH4 Immediately stop	OFF: No action is performed ON: Stop pulse output immediately without acceleration or deceleration	R/W	\times
SM1079	CH 4 scan period is not processed	OFF: Common mode, stop after sending (default) ON: Stop or slow down immediately	R/W	\times
SM1120	CH5 Pulse sending	OFF: Use self-contained acceleration and deceleration ON: Use set acceleration and deceleration	R/W	\times
SM1121	CH5 Pulse sending error	OFF: Pulse transmission has not started or completed ON: Pulse being sent	R/W	\times
SM1122	CH5 Pulse sending stopped	OFF: Normal ON: Error	R/W	\times
SM1123	CH5 Forward limit	OFF: Indicates that the pulse is being sent or started ON: Pulse transmission is complete	R/W	\times
SM1124	CH5 Reversal limit	OFF: Inactive ON: After the function is enabled, forward pulse sending stops	R/W	\times
SM1125	CH5 Rotation direction setting	OFF: Inactive ON: After the function is enabled, reverse pulse sending stops	R/W	\times

SM1126	CH5 Origin return start	OFF: Pulse meter value increases during forward rotation ON: Pulse meter value increases when reversed	R/W	\times
SM1127	CH5 Origin regression direction	OFF: Disables the origin regression function. That is, the origin regression command is disabled and cannot be used. ON: Enable the origin regression function, that is, the origin regression command is enabled and can be used normally (default).	R/W	\times
SM1128	Reserved	Reserved	R/W	\times
SM1129	Reserved			
SM1130	Reserved			
SM1131	Reserved			
SM1132	CH5 External signal start			
SM1133	CH5 External signal logic	OFF: Receiving external signals when inactive ON: Receiving external signals when activated	R/W	\times
SM1134	Interrupt signal start	OFF: No external signal is received ON: Receives external signals	R/W	\times
SM1135	CH5 Interrupt signal logic	OFF: Turns OFF the interrupt signal and cannot use the DVIT command ON: Turn ON interrupt signal (default)	R/W	\times
SM1136	CH5 External limit signal open	CH5 Limit signal on	R/W	\times
SM1137	CH5 PWM mode		R/W	\times
SM1138	CH5 Immediately stop	OFF: 16-bit pulse output mode ON: 1000 ratio mode	R/W	\times
SM1139	CH5 scan period is not processed	OFF: No action is performed ON: Stop pulse output immediately without acceleration or deceleration	R/W	\times
SM1140	CH5 Start speed setting	OFF: Common mode, stop after sending (default) ON: Stop or slow down immediately	R/W	\times
SM1180	CH6 Pulse sending	OFF: Use self-contained acceleration and deceleration ON: Use set acceleration and deceleration	R/W	\times
SM1181	CH6 Pulse sending error	OFF: Pulse transmission has not started or completed ON: Pulse being sent	R/W	\times
SM1182	CH6 Pulse sending stopped	OFF: Normal ON: Error	R/W	\times
SM1183	CH6 Forward limit	OFF: Indicates that the pulse is being sent or started ON: Pulse transmission is complete	R/W	\times
SM1184	CH6 Reversal limit	OFF: Inactive ON: After the function is enabled, forward pulse sending stops	R/W	\times
SM1185	CH6 Rotation direction setting	OFF: Inactive ON: After the function is enabled, reverse pulse sending stops	R/W	\times
SM1186	CH6 Origin return start	OFF: Pulse meter value increases during forward rotation ON: Pulse meter value increases when reversed	R/W	\times
SM1187	CH6 Origin regression direction	OFF: Disables the origin regression function. That is, the origin regression command is disabled and cannot be used. ON: Enable the origin regression function, that is, the origin regression command is enabled and can be used normally (default).	R/W	\times
SM1188	Reserved	Reserved	R/W	\times
SM1189	Reserved			
SM1190	Reserved			
SM1191	Reserved			
SM1192	CH6 External signal start			
SM1193	CH6 External signal logic	OFF: Receiving external signals when inactive ON: Receiving external signals when activated	R/W	\times
SM1194	CH6 Interrupt signal start	OFF: No external signal is received ON: Receives external signals	R/W	\times
SM1195	CH6 Interrupt input signal logic	OFF: Turns OFF the interrupt signal and cannot use the DVIT command ON: Turn ON interrupt signal (default)	R/W	\times
SM1196	CH6 External limit signal open	CH6 Limit signal on	R/W	\times

SM1197	CH6 PWM mode			
SM1198	CH6 Immediately stop	OFF: 16-bit pulse output mode ON: 1000 ratio mode	R/W	\times
SM1199	CH6 Scan period processing is not performed	OFF: No action is performed ON: Stop pulse output immediately without acceleration or deceleration	R/W	\times
SM1200	CH6 start speed setting	OFF: Common mode, stop after sending (default) ON: Stop or slow down immediately	R/W	\times
SM1240	CH7 Pulse sending	OFF: Use self-contained acceleration and deceleration ON: Use set acceleration and deceleration	R/W	\times
SM1241	CH7 Pulse sending error	OFF: Pulse transmission has not started or completed ON: Pulse being sent	R/W	\times
SM1242	CH7 Pulse sending stopped	OFF: Normal ON: Error	R/W	\times
SM1243	CH7 Forward limit	OFF: Indicates that the pulse is being sent or started ON: Pulse transmission is complete	R/W	\times
SM1244	CH7 Reversal limit	OFF: Inactive ON: After the function is enabled, forward pulse sending stops	R/W	\times
SM1245	CH7 Rotation direction setting	OFF: Inactive ON: After the function is enabled, reverse pulse sending stops	R/W	\times
SM1246	CH7 Origin return start	OFF: Pulse meter value increases during forward rotation ON: Pulse meter value increases when reversed	R/W	\times
SM1247	CH7 Origin regression direction	OFF: Disables the origin regression function. That is, the origin regression command is disabled and cannot be used. ON: Enable the origin regression function, that is, the origin regression command is enabled and can be used normally (default).	R/W	\times
SM1248	Reserved	Reserved	R/W	\times
SM1249	Reserved			
SM1250	Reserved			
SM1251	Reserved			
SM1252	CH7 External start signal start			
SM1253	CH7 External start signal logic	OFF: Receiving external signals when inactive ON: Receiving external signals when activated	R/W	\times
SM1254	CH7 Interrupt signal start	OFF: No external signal is received ON: Receives external signals	R/W	\times
SM1255	CH7 Interrupt input signal logic	OFF: Turns OFF the interrupt signal and cannot use the DVIT command ON: Turn ON interrupt signal (default)	R/W	\times
SM1256	CH7 External limit signal open	CH7 Limit signal on	R/W	\times
SM1257	CH7 PWM mode			
SM1258	CH7 Immediately stop	OFF: 16-bit pulse output mode ON: 1000 ratio mode	R/W	\times
SM1259	CH7 Scan interval is not performed	OFF: No action is performed ON: Stop pulse output immediately without acceleration or deceleration	R/W	\times
SM1300	Pulse sending	OFF: Common mode, stop after sending (default) ON: Stop or slow down immediately	R/W	\times
SM1301	CH8 Pulse sending error	OFF: Use self-contained acceleration and deceleration ON: Use set acceleration and deceleration	R/W	\times
SM1302	CH8 Pulse sending stopped	OFF: Pulse transmission has not started or completed ON: Pulse being sent	R/W	\times
SM1303	CH8 Forward limit	OFF: Normal ON: Error	R/W	\times
SM1304	CH8 Reversal limit	OFF: Indicates that the pulse is being sent or started ON: Pulse transmission is complete	R/W	\times
SM1305	CH8 Rotation direction setting	OFF: Inactive ON: After the function is enabled, forward pulse sending stops	R/W	\times
SM1306	CH8 Origin return start	OFF: Disables the origin regression function. That is, the origin regression command is disabled and cannot be used.	R/W	

PLC LX5V Series Programming Manual (V2.2)

		ON: Enable the origin regression function, that is, the origin regression command is enabled and can be used normally (default)		
SM1307	CH8 Origin regression direction	Reserved		R/W
SM1308	Reserved		R/W	
SM1309	Reserved		R/W	
SM1310	Reserved	OFF: Receiving external signals when inactive ON: Receiving external signals when activated	R/W	
SM1311	Reserved	OFF: No external signal is received ON: Receives external signals	R/W	
SM1312	CH8 External start signal start	R/W		
SM1313	CH8 External start signal logic			
SM1314	CH8 Interrupt signal start	OFF: Turns OFF the interrupt signal and cannot use the DVIT Command ON: Turn ON interrupt signal (default)	R/W	
SM1315	CH8 Interrupt input signal logic	OFF: No interrupt signal is received ON: Interrupt signal is received	R/W	
SM1316	CH8 External limit signal open	CH8 Limit signal on	R/W	
SM1317	CH8 PWM mode	OFF: 16-bit pulse output mode ON: 1000 ratio mode	R/W	
SM1318	CH8 Immediately stop	OFF: No action is performed ON: Stop pulse output immediately without acceleration or deceleration	R/W	R/W
SM1319	Reserved	OFF: Common mode, stop after sending (default) ON: Stop or slow down immediately	OFF: Use self-contained acceleration and deceleration ON: Use set acceleration and deceleration	

BD board module

SM label	Name	Content	R/W	Power-down data preservation
BD board 1				
SM2010	BD1 first switch	The BD board has different models and functions. For details, see the corresponding BD board description	R/W	\times
SM2011	BD1 second way switch		R/W	\times
SM2012	BD1 third way switch		R/W	\times
SM2013	BD1 fourth way switch		R/W	\times
BD board 2				
SM2030	BD2 first switch	The BD board has different models and functions. For details, see the corresponding BD board description	R/W	\times
SM2031	BD2 second way switch		R/W	\times
SM2032	BD2 third way switch		R/W	\times
SM2033	BD2 fourth switch		R/W	\times

Communication

SM label	Name	Content	R/W	Power-down data preservation
Communication COM1				
SM2540	COM1 Sending- control function is enabled COM1 Sending- control/sent \& reminding function COM1 Receive - control is enabled		R/W	\times
SM2541	COM1 Sending- control function is enabled COM1 Sending- control/sent \& reminding function COM1 Receive - control is enabled		R/W	\times
SM2542	COM1 Sending- control function is enabled COM1 Sending- control/sent \& reminding function COM1 Receive - control is enabled		R/W	\times
SM2543	COM1 Control acceptance /prompt receiving		R/W	\times
SM2544	COM1 8-bit mode		R/W	\times
SM2560	COM1 Communication completion mark		R/W	\times
SM2561	COM1 Receiving sign		R/W	\times
SM2562	COM1 Retry occurs		R/W	\times
SM2563	COM1 Communication error		R/W	\times
SM2564	COM1 Communication timeout		R/W	\times
SM2565	Reserved			\times
SM2566	Reserved			\times
SM2567	Reserved			\times
SM2568	Reserved			\times
SM2569	Reserved			\times
SM2570	Reserved			\times
SM2571	Reserved			\times
Communication COM2				
SM2590	COM2 sending- control function is enabled COM2 sending- control/sent \& reminding function COM2 receive - control is enabled	OFF: Data transmission will be controlled by SM2591 ON: Data is automatically sent	R/W	\times
SM2591	COM2 sending- control function is enabled COM2 sending- control/sent \& reminding function COM2 receive - control is enabled	OFF \rightarrow ON: Start of data transmission ON \rightarrow OFF: End of data transmission	R/W	\times
SM2592	COM2 sending- control function is enabled COM2 sending- control/sent \& reminding function COM2 receive - control is enabled	OFF: Automatic stop when data receiving is fully loaded ON: Normal reception, not affected by flag SM2593	R/W	\times
SM2593	COM2 control acceptance /prompt receiving	OFF: Data is not fully received or data is not received (according to the status of SM2592) ON: Full data reception or data receiving (according to the status of SM2592)	R/W	\times
SM2594	COM2 8-bit mode (used by RS custom protocol)	OFF: 16-bit mode ON: 8-bit mode		\times
SM2610	Communication completion mark	OFF: Communication is not completed ON: Communication is completed	R/W	\times
SM2611	Receiving sign	OFF: No data is received ON: Data is being received	R/W	\times
SM2612	Retry occurs	OFF: No retries occur ON: Retry occurs	R/W	\times

SM2613	Communication error	OFF: No error ON: Communication error occurs	R/W	\times
SM2614	Communication timeout	OFF: Normal communication ON: Communication timeout	R/W	\times
SM2615	Reserved			

List of Special devices related to Ethernet

SM number	Name	Content	R/W	Power-down save
SM2681	Display the current network information	Refresh the current IP, subnet mask, default gateway after ON, and then OFF after the refresh is complete	R/W	\times
SM2682	Display the current MAC information	Refresh the current MAC, and then OFF after the refresh is complete	R/W	\times
SM2683	IP, subnet mask, gateway modification flag	ON: changeable OFF: unchangeable (When is set to ON, modify when stop->run, and then turn OFF after modification is complete)	R/W	\checkmark
SM2684	Network card connection status	ON: Network is connecting OFF: Network is not connecting, please check whether the wire is connected	R	\checkmark
SM2692	MAC address modification flag	ON: changeable OFF: unchangeable (When is set to ON, modify when stop->run, and then turn OFF after modification is complete)	R/W	\checkmark
SM2700	ModbusTCP keep alive mechanism	ON: enable OFF: disable (default)	R/W	\checkmark
SM2701	ModbusTCP server is forced to shut down	ON: enable OFF: disable (default) (After successfully close the enable, it automatically changes to OFF)	R/W	\times
SM2710	Ethernet error flag	ON: Ethernet error, please check SD2710 and SD2711 OFF: No Ethernet error	R	\times
SM2740	ModbusTCP server connection status 1	ON: The client is connected OFF: The client is not connected	R	\times
SM2760	ModbusTCP server connection status 2	ON: The client is connected OFF: The client is not connected	R	\times
SM2780	ModbusTCP server connection status 3	ON : The client is connected OFF: The client is not connected	R	\times
SM2800	ModbusTCP server connection status 4	ON: The client is connected OFF: The client is not connected	R	\times
SM2820	ModbusTCP server connection status 5	ON: The client is connected OFF: The client is not connected	R	\times

SM2840	ModbusTCP server connection status 6	ON: The client is connected OFF: The client is not connected	R	\times
SM2860	ModbusTCP server connection status 7	ON: The client is connected OFF: The client is not connected	R	\times
SM2880	ModbusTCP server connection status 8	ON : The client is connected OFF: The client is not connected	R	\times

Appendix 2 Special Register (SD)

Error message

SD label	Name	Content	R/W	Power-down data preservation
SDO	Latest error message Error code	Latest self-diagnosed error code will be stored	R	X
SD1	Reserved			
SD2	Set minimum battery voltage	Default value: 26 (2.6V) Unit: 0.1 V	R/W	X
SD3	Current battery voltage	Default value: 26 (2.6V) Unit: 0.1 V	R	X
SD4	Battery voltage latch value	Battery voltage value, in unit of 0.1 V , when the battery voltage is too low and the latching error occurs	R	X
SD5	AC/DC power down times	Record the number of times the current power supply fails and restarts automatically	R	X
SD6	Error code of PLC hardware error	Hardware error code will be stored	R	X
SD7	PLC communication Error code	Communication error code will be stored	R	X
SD8	PLC communication error step number low word	Circuit program step numbers for communication error will be stored, double - word	R	X
SD9	PLC communication error step number high word	Parameter error codes will be stored	R	X
SD10	Parameter Error code	Error codes for operation errors are stored	R	X
SD11	Operation Error code	Circuit program step number of the operation error will be stored, double word	R	X
SD12	Operation error program step number low word	Error code for operation error is stored and cannot be cleared by the error lifting function	R	X
SD13	Operation error program step number high word	Circuit program step number of the operation error will be stored, double word, cannot be cleared by error lifting function, double word	R	X
SD14	Operation Error code latch	An unexpected error occurred in the PLC	R	x
SD15	Operation error program step number latch low word	Recovered time after AC220V power failure will be stored, unit: ms	R	X
SD16	Operation error program step number latch high word		R	X
SD17	Program error Error code	The latest self-diagnosing error code will be stored	R	X
SD18	AC220V power down recovery time		R	X
SD19 to SD29	Reserved	Default value: 26 (2.6V)		

System message

SD label	Name	Content	R/W	Power-down data preservation
SD30	Model ID	PLC model ID is stored and cannot be modified	R	X
SD31	Software version number	PLC software version number is stored and cannot be modified	R	X
SD32	Hardware version number	PLC hardware version number is stored and cannot be modified	R	X
SD33	Input points	PLC input points are stored and cannot be modified	R	X
SD34	Output points	Output points of PLC are stored and cannot be modified	R	X
SD35	Number of high-speed input shafts	Number of high speed input shafts is stored, cannot be modified	R	X
SD36	Number of high-speed output shafts	Number of PLC high speed output shafts is stored and cannot be modified	R	X
SD37, SD38	Relay identification	Identify how many output points are of relay type,Using mask method, each bit identifies an output point, 1 code stands for relay type	R	X
SD40 to SD47	Product unique ID (16 bytes)	Unique ID code of the product is stored and cannot be modified	R	X
SD48	Compile the link version	PLC compiler linked module version is stored, and cannot be modified	R	X
SD49	Production information string	Production information is stored, and ASCII code is saved		X
SD50 to SD99	Model ID	PLC model ID is stored and cannot be modified	R	X

Clock information

SD label	Name	Content	R/W	Power-down data preservatio n
SD100	Real time clock seconds (0 to 59)	PLC built-in RTC clock	R	X
SD101	Real-time clock minutes (0 to 59)		R	X
SD102	Real-time clock hour (0 to 23)		R	X
SD103	Real-time clock day (1 to 31)		R	X
SD104	Real-time clock month (1 to 12)		R	X
SD105	Real-time clock Gregorian calendar year (2000 to 2099)		R	X
SD106	Real time clock week		R	X
SD107 to SD113	Reserved			
SD114	n value of nms oscillation clock	Set SM114 clock oscillator n to 500 ms by default	R/W	X
SD115	n value of n s oscillation clock	Set SM115 clock oscillator n to 2s by default	R/W	X
SD116 to SD119	Reserved			

Scan information

SM label	Name	Content	R/W	Power-down data preservation
SD120	Constant scan cycle time setting (ms)	Default: 10 ms	R/W	X
SD122	Watchdog timer time setting value	Unit ms, default 200	R/W	X
SD128	Ms part of current scan cycle value (ms part)	- The current scan time will be stored in SD128 and SD129. (Measured in $1 \mu \mathrm{~s}$) SD128: store ms bits (storage range: 0 to 65535) SD129: store $\mu \mathrm{s}$ bits (storage range: 0 to 999) (Example) When the current scan time is 23.6 ms , Store as	R	X
SD129	Scan period current value (us part)	follows: $\begin{aligned} & \text { SD128=23 } \\ & \text { SD129=600 } \end{aligned}$ - STOP \rightarrow RUN zero clearing will be performed once	R	X
SD130	Ms part of the maximum scan period		R	X
SD131	Maximum scan period us part	(Measured in $1 \mu \mathrm{~s}$) SD130: Store ms bits (storage range: 0 to 65535) SD131: Store μ s bits (storage range: 0 to 999) - STOP \rightarrow RUN zero clearing will be performed once	R	X
SD132	Scan period minimum ms part	The minimum scan time excluding the scan time of the	R	X
SD133	Scan period minimum us part	SD134. (Measured in $1 \mu \mathrm{~s}$) SD130: Store ms bits (storage range: 0 to 65535) SD131: Store $\mu \mathrm{s}$ bits (storage range: 0 to 999) - STOP \rightarrow RUN zero clearing will be performed once	R	X
SD134	Ms part of initial scan time	- The initial scan time will be stored in SD134 and SD135.	R	X
SD135	Initial scan time us part	(Measured in $1 \mu \mathrm{~s}$) SD134: store ms bits (storage range: 0 to 65535) SD135: store μ s bits (storage range: 0 to 999) - STOP \rightarrow RUN zero clearing will be performed once	R	X
SD136	END processing time ms part	- After the scan, the time until the start of the next scan	R	X
SD137	END processing time us part	will be stored in SD136 and SD137. (Measured in $1 \mu \mathrm{~s}$) SD136: store ms bits (storage range: 0 to 65535) SD137: store $\mu \mathrm{s}$ bits (storage range: 0 to 999) - STOP \rightarrow RUN zero clearing will be performed once	R	X
SD138	Ms part of program execution time	Constant scan wait time (in ms)	R	X
SD139	Program execution time us part	- Wait times for constant scan Settings are stored in SD138 and SD139. (measuring in units of $1 \mu \mathrm{~s}$) SD138: Store ms bits (storage range: 0 to 65535) SD149: Store $\mu \mathrm{s}$ bits (storage range: 0 to 999) - STOP \rightarrow RUN zero clearing will be performed once	R	X
SD140	Constant scan cycle waiting time ms	- Execution time of a scan is stored in SD140 and SD141.	R	X
SD141	Constant scan cycle waiting time us	(Measured in $1 \mu \mathrm{~s}$) SD140: store ms bits (storage range: 0 to 65535) SD141: store $\mu \mathrm{s}$ bits (storage range: 0 to 999) - STOP \rightarrow RUN zero clearing will be performed once	R	X
SD150	Current interrupt priority	During the execution of the interrupt program, the priority of interrupts is stored. 0 to 2: Priority of interrupt pointer for an executing interrupt program	R	X
SD151	Priority of interrupts currently prohibited	According to interrupt prohibition instruction (DI instruction), interrupt prohibition instruction (DI instruction), interrupt permit instruction (EI instruction) below the specified priority, and the priority in interrupt prohibition will be stored. 0 : interrupt prohibition with all priority (default) 1: interrupt prohibition with priority level 1 and priority level 2. 2: interrupt prohibition with priority level 2. 3: interrupt enable with all priority.	R	X

Instruction related

SD label	Name	Content	R/W	Power-down data preservation
SD150	Current interrupt priority	During the execution of the interrupt program, the priority of the interrupt will be stored. 1 to 3: The interrupt pointer priority of the interrupt program being executed 0 : No interrupt is executed (default)	R	X
SD151	Currently interrupt prohibition priority	According to the interrupt prohibition instruction (DI instruction), the interrupt prohibition instruction (DI instruction) below the designated priority, and the interrupt enable instruction (El instruction), the priority of the interrupt prohibition will be stored. 0: All priority interrupts are disabled (default) 1: Priority 1 and 2 interrupts are disabled 2: Priority 2 interrupts are disabled 3: All priority interrupts are enabled	R	X
SD240	For STL: ON status number 1		R	X
SD241	For STL: ON status number 2		R	X
SD242	For STL: ON status number 3		R	X
SD243	For STL: ON status number 4	The S soft element number of the ON status in STL will be sav	R	X
SD244	For STL: ON status number 5		R	X
SD245	For STL: ON status number 6		R	X
SD246	For STL: ON status number 7		R	X
SD247	For STL: ON status number 8		R	X
SD249	Signal alarm ON state minimum number	Store signal alarm ON state minimum number	R/W	X
SD340	DUTY timing clock count value 1	Timing clock output 1 of DUTY instruction is counted by scan numbers	R/W	X
SD341	DUTY timing clock count value 2	Timing clock output 2 of DUTY instruction is counted by scan numbers	R/W	X
SD342	DUTY timing clock count value 3	Timing clock output 3 of DUTY instruction is counted by scan numbers	R/W	X
SD343	DUTY timing clock count value 4	Timing clock output 4 of DUTY instruction is counted by scan numbers	R/W	X
SD344	DUTY timing clock count value 5	Timing clock output 5 of DUTY instruction is counted by scan numbers	R/W	X

Interrupt prohibited

SD label	Name	Content	R/W	Power-down data preservation
SD350 to SD381	Timer interrupt disable mask	SIMASK instruction interrupt mask. Each bit represents an interrupt. For details, see SIMAK instruction	R/W	X
SD382 to SD388	High-speed counter interrupt disable mask	SIMASK instruction interrupt mask. Each bit represents an interrupt. For details, see SIMAK instruction	R/W	X

High-speed input and output

SD label	Name	Content	R/W	Power-down data preservation
SD400	HSCO current count value low	Current value of the memory channel high-speed counter, updated every $100 \mu \mathrm{~s}$	R/W	\checkmark
SD401	HSCO current count value high		R/W	\checkmark
SD402	HSCO current frequency low	Current frequency of the memory channel high-speed counter, updated every $100 \mu \mathrm{~s}$	R/W	\times
SD403	HSCO current frequency high		R/W	\times
SD405	HSCO mode (display) 0: ordinary IO 1: Single phase counting 2: AB phase count	Default: General I/O	R/W	\times
SD420	HSCO frequency multiplication (display) 1: 1 times frequency 2: 2 times frequency 4: 4 times frequency	Default: 1 x frequency	R/W	\times
SD421	HSCO frequency sampling time (ms)	Calculate the sampling time of channel high speed counter frequency, default is 1000 ms	R/W	\times
SD422	HSCO input filter setting (0.01us)	The value ranges from 0 to 1700 . The default value is 0	R/W	\times
SD423	DHSCS, DHSCR, DHSZ instructions use the priority setting of the HSCOchannel	The value ranges from 0 to 2 . The highest priority is 0 . The default value is 0	R/W	\times
SD430	HSC1 current count value low		R/W	\times
SD431	HSC1 current count value high	counter, updated every $100 \mu \mathrm{~s}$	R/W	\times
SD432	HSC1 current frequency low	Current frequency of the memory channel	R/W	\times
SD433	HSC1 current frequency high		R/W	\times
SD435	HSC1 mode (display) 0: ordinary IO 1: Single phase counting 2: AB phase count	Default: General I/O	R/W	\times
SD450	HSC1 frequency multiplication 1: 1 times frequency 2: 2 times frequency 4: 4 times frequency	Default: 1x frequency	R/W	\times
SD451	HSC1 frequency sampling time (ms)	Calculate the sampling time of channel high speed counter frequency, default is 1000 ms	R/W	\times
SD452	HSC1 input filter setting (0.01us)	The value ranges from 0 to 1700 . The default value is 0	R/W	\times
SD453	DHSCS, DHSCR, DHSZ instructions use the priority setting of the HSC1 channel	The value ranges from 0 to 2 . The highest priority is 0 . The default value is 0	R/W	\times
SD460	HSC2 current count value low	Current value of the memory channel high-speed counter, updated every $100 \mu \mathrm{~s}$	R/W	\times
SD461	HSC2 current count value high	Current frequency of the memory channel high-speed counter, updated every $100 \mu \mathrm{~s}$	R/W	\times
SD462	HSC2 current frequency low	Current frequency of the memory channel high-speed counter, updated every $100 \mu \mathrm{~s}$	R/W	\times
SD463	HSC2 current high frequency		R/W	\times
SD464	Reserved		R/W	\times

SD465	HSC2 mode (display) 0: ordinary IO 1: Single phase counting 2: AB phase count	Default: General I/O	R/W	\times
SD480	HSC2 frequency multiplication 1: 1 times frequency 2: 2 times frequency 4: 4 times frequency	Default: 1x frequency	R/W	\times
		Calculate the sampling time of channel high speed counter frequency, default is 1000 ms	R/W	\times
SD481	HSC2 frequency sampling time (ms)	The value ranges from 0 to 1700 . The default value is 0	R/W	\times
SD482	HSC2 input filter setting (0.01us)	The value ranges from 0 to 2 . The highest priority is 0 . The default value is 0	R/W	\times
SD483	DHSCS, DHSCR, DHSZ instructions use the priority setting of the HSC2 channel	The value ranges from 0 to 2 . The highest priority is 0 . The default value is 0	R/W	\times
SD490	HSC3 current count value low	Current value of the memory channel high-speed	R/W	\times
SD491	HSC3 current count value high	counter, updated every $100 \mu \mathrm{~s}$	R/W	\times
SD492	HSC3 current frequency low	Current frequency of the memory channel	R/W	\times
SD493	HSC3 current high frequency	high-speed counter, updated every 100	R/W	\times
SD494	Reserved		R/W	\times
SD495	HSC3 mode (display) 0: ordinary IO 1: Single phase counting 2: AB phase count	Default: General I/O	R/W	\times
SD510	HSC3 frequency multiplication 1: 1 times frequency 2: 2 times frequency 4: 4 times frequency	Default: 1x frequency	R/W	\times
SD511	HSC3 frequency sampling time (ms)	Calculate the sampling time of channel high speed counter frequency, default is 1000 ms	R/W	\checkmark
SD512	HSC3 input filter setting (0.01us)	The value ranges from 0 to 1700 . The default value is 0	R/W	\checkmark
SD513	DHSCS, DHSCR, DHSZ instructions use the priority setting of the HSC3 channel	The value ranges from 0 to 2 . The highest priority is 0 . The default value is 0	R/W	\times
SD521	HSC4 current count value high		R/W	\times
SD522	HSC4 current frequency low	Current frequency of the memory channel	R/W	\times
SD523	HSC4 current high frequency	high-speed counter, updated every $100 \mu \mathrm{~s}$	R/W	\times
SD524	Reserved		R/W	\times
SD525	HSC4 mode (display) 0: ordinary IO 1: Single phase counting 2: AB phase count	Default: General I/O	R/W	\times
SD540	HSC4 frequency multiplication 1: 1 times frequency 2: 2 times frequency 4: 4 times frequency	Default: 1x frequency	R/W	\times
SD541	HSC4 frequency sampling time (ms)	Calculate the sampling time of channel high speed counter frequency, default is 1000 ms	R/W	\times

PLC LX5V Series Programming Manual (V2.2)

SD542	HSC4 input filter setting (0.01us)	The value ranges from 0 to 1700 . The default value is 0	R/W	\times
SD543	DHSCS, DHSCR, DHSZ instructions use the priority setting of the HSC4 channel	The value ranges from 0 to 2 . The highest priority is 0 . The default value is 0	R/W	\times
SD550	HSC5 current count value low		R/W	\times
SD551	HSC5 current count value high	counter, updated every 100μ s	R/W	\times
SD552	HSC5 current frequency low	Current frequency of the memory	R/W	\times
SD553	HSC5 current frequency high	high-speed counter, updated every $100 \mu \mathrm{~s}$	R/W	\times
SD554	Reserved		R/W	\times
SD555	HSC5 mode (display) 0: ordinary IO 1: Single phase counting 2: AB phase count	Default: General I/O	R/W	\times
SD570	HSC5 frequency multiplication 1: 1 times frequency 2: 2 times frequency 4: 4 times frequency	Default: 1x frequency	R/W	x
SD571	HSC5 frequency sampling time (ms)	Calculate the sampling time of channel high speed counter frequency, default is 1000 ms	R/W	\times
SD572	HSC5 input filter setting (0.01us)	The value ranges from 0 to 1700 . The default value is 0	R/W	\times
SD573	DHSCS, DHSCR, DHSZ instructions use the priority setting of the HSC5 channel	The value ranges from 0 to 2 . The highest priority is 0 . The default value is 0	R/W	\times
SD580	HSC6 current count value low		R/W	\times
SD581	HSC6 current count value high	counter, updated every $100 \mu \mathrm{~s}$	R/W	\times
SD582	HSC6 current frequency low	Current frequency of the memory channel	R/W	\times
SD583	HSC6 current frequency high	high-speed counter, updated every $100 \mu \mathrm{~s}$	R/W	\times
SD584	Reserved		R/W	\times
SD585	HSC6 mode (display) 0: ordinary IO 1: Single phase counting 2: AB phase count	Default: General I/O	R/W	\times
SD586	HSC6 frequency multiplication 1: 1 times frequency 2: 2 times frequency 4: 4 times frequency	Default: $1 x$ frequency	R/W	\times
SD601	HSC6 frequency sampling time (ms)	Calculate the sampling time of channel high speed counter frequency, default is 1000 ms	R/W	\times
SD602	HSC6 input filter setting (0.01us)	The value ranges from 0 to 1700 . The default value is 0	R/W	\times
SD603	DHSCS, DHSCR, DHSZ instructions use the priority setting of the HSC6 channel	The value ranges from 0 to 2 . The highest priority is 0 . The default value is 0	R/W	\times
SD610	HSC7 current count value low		R/W	\times
SD611	HSC7 current count value high	counter, updated every $100 \mu \mathrm{~s}$	R/W	\times
SD612	HSC7 current frequency low	Current frequency of the memory channel	R/W	\times
SD613	HSC7 current frequency high		R/W	\times

SD614	Reserved		R/W	\times
SD615	HSC7 mode (display) 0: ordinary IO 1: Single phase counting 2: AB phase count	Default: General I/O	R/W	\times
SD630	HSC7 frequency multiplication 1: 1 times frequency 2: 2 times frequency 4: 4 times frequency	Default: 1x frequency	R/W	\times
SD631	HSC7 frequency sampling time (ms)	Calculate the sampling time of channel high speed counter frequency, default is 1000 ms	R/W	\times
SD632	HSC7 input filter setting (0.01us)	Value ranges from 0 to 1700 . The default value is 0	R/W	\times
SD633	Reserved	The value ranges from 0 to 2 . The highest prio rity is 0 . The default value is 0	R/W	\times

Pulse output (positioning axis)

SD label	Name	Content	R/W	Power-down data preservation
SD880	CH1 positioning axis output low bit	Count value of current high speed pulse output	R/W	\checkmark
SD881	CH1 positioning axis output upper bit		R/W	\checkmark
SD882	Reserved		R/W	\times
SD883	Reserved		R/W	\times
SD884	CH1 current speed lower bit	Current high speed pulse output frequency	R/W	\times
SD885	CH1 current speed upper bit		R/W	\times
SD886	Reserved		R/W	\times
SD887	Reserved		R/W	\times
SD888	Reserved		R/W	\times
SD889	Reserved		R/W	\times
SD890	Reserved		R/W	\times
SD891	Reserved		R/W	\times
SD892	Reserved		R/W	\times
SD893	Reserved		R/W	\times
SD894	Reserved		R/W	\times
SD895	Reserved		R/W	\times
SD896	Reserved		R/W	\times
SD897	Reserved		R/W	\times
SD898	CH1 maximum speed (32 bits)	Default: 100000 Hz	R/W	\times
SD899	CH1 maximum speed (32 bits)		R/W	\times
SD900	CH1 offset speed (32 bits)	Default: 1Hz	R/W	\times
SD901	CH1 offset speed (32 bits)		R/W	\times
SD902	CH1acceleration time (16 bits)	Default: 100 ms	R/W	\times
SD903	CH1 deceleration time (16 bits)	Default: 100 ms	R/W	\times
SD904	CH 1 stop mode	0: slows down and stops 1: Stop immediately	R/W	\times

PLC LX5V Series Programming Manual (V2.2)

SD905	CH 1 direction delay time (ms)	Default: Oms	R/W	\times
SD906	CH1 external start signal (X register value)	After the external start signal is enabled, set the input register, for example, SET X10 to 10. Default value: 0	R/W	\times
SD907	Reserved		R/W	\times
SD908	CH1 start speed (32 bits)	Default: OHz	R/W	\times
SD909	CH1 start speed (32 bits)		R/W	\times
SD910	Reserved		R/W	\times
SD911	Reserved		R/W	\times
SD912	Reserved		R/W	\times
SD913	Reserved		R/W	\times
SD914	Reserved		R/W	\times
SD915	Reserved		R/W	\times
SD940	CH2 positioning axis output low bit	Count value of current high speed pulse output	R/W	\checkmark
SD941	CH 2 positioning axis output upper bit		R/W	\checkmark
SD942	Reserved		R/W	\times
SD943	Reserved		R/W	\times
SD944	CH2 current speed lower bit	Current high speed pulse output frequency	R/W	\times
SD945	CH2 current speed upper bit		R/W	\times
SD946	Reserved		R/W	\times
SD947	Reserved		R/W	\times
SD948	Reserved		R/W	\times
SD949	Reserved		R/W	\times
SD950	Reserved		R/W	\times
SD951	Reserved		R/W	\times
SD952	Reserved		R/W	\times
SD953	Reserved		R/W	\times
SD954	Reserved		R/W	\times
SD955	Reserved		R/W	\times
SD956	Reserved		R/W	\times
SD957	Reserved		R/W	\times
SD958	CH2 maximum speed (32 bits)	Default: 100000 Hz	R/W	\times
SD959	CH2 maximum speed (32 bits)		R/W	\times
SD960	CH2 offset speed (32 bits)	Default: 1Hz	R/W	\times
SD961	CH2 offset speed (32 bits)		R/W	\times
SD962	CH2acceleration time (16 bits)	Default: 100 ms	R/W	\times
SD963	CH2 deceleration time (16 bits)	Default: 100 ms	R/W	\times
SD964	CH2 stop mode	0: slows down and stops 1: Stop immediately	R/W	\times
SD965	CH 2 direction delay time (ms)	Default: Oms	R/W	\times
SD966	CH2 external start signal (X register value)	After the external start signal is enabled, set the input register, for example, set X10 to 10. Default: 0	R/W	\times
SD967	Reserved		R/W	\times
SD968	CH2 start speed (32 bits)	Default: OHz	R/W	\times
SD969	CH2 start speed (32 bits)		R/W	\times

PLC LX5V Series Programming Manual (V2.2)

SD970	Reserved		R/W	\times
SD971	Reserved		R/W	\times
SD972	Reserved		R/W	\times
SD973	Reserved		R/W	\times
SD974	Reserved		R/W	\times
SD975	Reserved		R/W	\times
SD1000	CH2 positioning axis output low bit (Configurable unit)	Count value of current high speed pulse output	R/W	\times
SD1001	CH 2 positioning axis output upper bit (Configurable unit)		R/W	\times
SD1002	Reserved		R/W	\times
SD1003	Reserved		R/W	\times
SD1004	CH3 current speed lower bit	Current high speed pulse output frequency	R/W	\times
SD1005	CH3 current speed upper bit		R/W	\times
SD1006	Reserved		R/W	\times
SD1007	Reserved		R/W	\times
SD1008	Reserved		R/W	\times
SD1009	Reserved		R/W	\times
SD1010	Reserved		R/W	\times
SD1011	Reserved		R/W	\times
SD1012	Reserved		R/W	\times
SD1013	Reserved		R/W	\times
SD1014	Reserved		R/W	\times
SD1015	Reserved		R/W	\times
SD1016	Reserved		R/W	\times
SD1017	Reserved		R/W	\times
SD1018	CH3 maximum speed (32 bits)	Default: 100000 Hz	R/W	\times
SD1019	CH3 maximum speed (32 bits)		R/W	\times
SD1020	CH3 offset speed (32 bits)	Default: 1Hz	R/W	\times
SD1021	CH3 offset speed (32 bits)		R/W	\times
SD1022	CH3acceleration time (16 bits)	Default: 100 ms	R/W	\times
SD1023	CH3 deceleration time (16 bits)	Default: 100 ms	R/W	\times
SD1024	CH3 stop mode	0: slows down and stops 1: Stop immediately	R/W	\times
SD1025	CH3 direction delay time (ms)	Default: Oms	R/W	\times
SD1026	CH3 external start signal (X register value)	After the external start signal is enabled, set the input register, for example, SET X10 to 10. Default value: 0	R/W	\times
SD1027	Reserved		R/W	\times
SD1028	CH3 start speed (32 bits)	Default: OHz	R/W	\times
SD1029	CH3 start speed (32 bits)		R/W	\times
SD1030	Reserved		R/W	\times
SD1031	Reserved		R/W	\times
SD1032	Reserved		R/W	\times
SD1033	Reserved		R/W	\times
SD1034	Reserved		R/W	\times
SD1035	Reserved		R/W	\times

PLC LX5V Series Programming Manual (V2.2)

SD1060	CH5 positioning axis output low bit		R/W	\checkmark
SD1061	CH5 positioning axis output upper bit		R/W	\checkmark
SD1062	Reserved		R/W	\times
SD1063	Reserved		R/W	\times
SD1064	CH4 current speed lower bit	Current high speed pulse output frequency	R/W	\times
SD1065	CH4 current speed upper bit		R/W	\times
SD1066	Reserved		R/W	\times
SD1067	Reserved		R/W	\times
SD1068	Reserved		R/W	\times
SD1069	Reserved		R/W	\times
SD1070	Reserved		R/W	\times
SD1071	Reserved		R/W	\times
SD1072	Reserved		R/W	\times
SD1073	Reserved		R/W	\times
SD1074	Reserved		R/W	\times
SD1075	Reserved		R/W	\times
SD1076	Reserved		R/W	\times
SD1077	Reserved		R/W	\times
SD1078	CH4 maximum speed (32 bits)	Default: 100000 Hz	R/W	\times
SD1079	CH4 maximum speed (32 bits)		R/W	\times
SD1080	CH4 offset speed (32 bits)	Default: 1Hz	R/W	\times
SD1081	CH4 offset speed (32 bits)		R/W	\times
SD1082	CH4acceleration time (16 bits)	Default: 100 ms	R/W	\times
SD1083	CH 4 deceleration time (16 bits)	Default: 100 ms	R/W	\times
SD1084	CH4 stop mode	0: slows down and stops 1: Stop immediately	R/W	\times
SD1085	CH4 direction delay time (ms)	Default: Oms	R/W	\times
SD1086	CH4 External start signal (X register value)	After the external start signal is enabled, set the input register, for example, SET X10 to 10. Default value: 0	R/W	\times
SD1087	Reserved		R/W	\times
SD1088	CH4 start speed (32 bits)	Default: 0 Hz	R/W	\times
SD1089	CH4 start speed (32 bits)		R/W	\times
SD1090	Reserved		R/W	\times
SD1091	Reserved		R/W	\times
SD1092	Reserved		R/W	\times
SD1093	Reserved		R/W	\times
SD1094	Reserved		R/W	\times
SD1095	Reserved		R/W	\times
SD1120	CH5 positioning axis output low bit	Count value of current high speed pulse output	R/W	\checkmark
SD1121	CH5 positioning axis output upper bit		R/W	\checkmark
SD1122	Reserved		R/W	\times
SD1123	Reserved		R/W	\times
SD1124	CH5 current speed lower bit	Current high speed pulse output frequency	R/W	\times

PLC LX5V Series Programming Manual (V2.2)

SD1125	CH5 current speed upper bit		R/W	\times
SD1126	Reserved		R/W	\times
SD1127	Reserved		R/W	\times
SD1128	Reserved		R/W	\times
SD1129	Reserved		R/W	\times
SD1130	Reserved		R/W	\times
SD1131	Reserved		R/W	\times
SD1132	Reserved		R/W	\times
SD1133	Reserved		R/W	\times
SD1134	Reserved		R/W	\times
SD1135	Reserved		R/W	\times
SD1136	Reserved		R/W	\times
SD1137	Reserved		R/W	\times
SD1138	CH5 maximum speed (32 bits)		R/W	\times
SD1139	CH5 maximum speed (32 bits)		R/W	\times
SD1140	CH5 offset speed (32 bits)		R/W	\times
SD1141	CH5 offset speed (32 bits)	Defaut.	R/W	\times
SD1142	CH5 acceleration time (16 bits)	Default: 100 ms	R/W	\times
SD1143	CH5 deceleration time (16 bits)	Default: 100 ms	R/W	\times
SD1144	CH5 stop mode	0: slows down and stops 1: Stop immediately	R/W	\times
SD1145	CH5 direction delay time (ms)	Default: Oms	R/W	\times
SD1146	CH5 external start signal (X register value)	After the external start signal is enabled, set the input register, for example, SET X10 to 10. Default value: 0	R/W	\times
SD1147	Reserved		R/W	\times
SD1148	CH5 start speed (32 bits)	fault: 0 Hz	R/W	\times
SD1149	CH5 start speed (32 bits)	Default. OHz	R/W	\times
SD1150	Reserved		R/W	\times
SD1151	Reserved		R/W	\times
SD1152	Reserved		R/W	\times
SD1153	Reserved		R/W	\times
SD1154	Reserved		R/W	\times
SD1155	Reserved		R/W	\times
SD1180	CH6 positioning axis output low bit	Count value of current high speed pulse output	R/W	\checkmark
SD1181	CH6 positioning axis output upper bit	Count value of current high speed pulse output	R/W	\checkmark
SD1182	Reserved		R/W	\times
SD1183	Reserved		R/W	\times
SD1184	CH6 current speed lower bit		R/W	\times
SD1185	CH6 current speed upper bit	Current high speed pulse output frequency	R/W	\times
SD1186	Reserved		R/W	\times
SD1187	Reserved		R/W	\times
SD1188	Reserved		R/W	\times
SD1189	Reserved		R/W	\times
SD1190	Reserved		R/W	\times
SD1191	Reserved		R/W	\times

PLC LX5V Series Programming Manual (V2.2)

SD1192	Reserved		R/W	\times
SD1193	Reserved		R/W	\times
SD1194	Reserved		R/W	\times
SD1195	Reserved		R/W	\times
SD1196	Reserved		R/W	\times
SD1197	Reserved		R/W	\times
SD1198	CH6 maximum speed (32 bits)	Default: 100000Hz	R/W	\times
SD1199	CH6 maximum speed (32 bits)		R/W	\times
SD1200	CH6 offset speed (32 bits)	Default: 1Hz	R/W	\times
SD1201	CH6 offset speed (32 bits)		R/W	\times
SD1202	CH6acceleration time (16 bits)	Default: 100 ms	R/W	\times
SD1203	CH6 deceleration time (16 bits)	Default: 100 ms	R/W	\times
SD1204	CH6 stop mode	0: slows down and stops 1: Stop immediately	R/W	\times
SD1205	CH6 direction delay time (ms)	Default: Oms	R/W	\times
SD1206	CH6 external start signal (X register value)	After the external start signal is enabled, set the input register, for example, SET X10 to 10. Default value: 0	R/W	\times
SD1207	Reserved		R/W	\times
SD1208	CH6 external start signal (X register value)	Default: 0 Hz	R/W	\times
SD1209	CH6 start speed upper bit (32 bits)		R/W	\times
SD1210	Reserved		R/W	\times
SD1211	Reserved		R/W	\times
SD1212	Reserved		R/W	\times
SD1213	Reserved		R/W	\times
SD1214	Reserved		R/W	\times
SD1215	Reserved		R/W	\times
SD1240	CH 7 positioning axis output low bit	Count value of current high speed pulse output	R/W	\checkmark
SD1241	CH 7 positioning axis output upper bit		R/W	\checkmark
SD1242	Reserved		R/W	\times
SD1243	Reserved		R/W	\times
SD1244	CH7 current speed lower bit	Current high speed pulse output frequency	R/W	\times
SD1245	CH7 current speed upper bit		R/W	\times
SD1246	Reserved		R/W	\times
SD1247	Reserved		R/W	\times
SD1248	Reserved		R/W	\times
SD1249	Reserved		R/W	\times
SD1250	Reserved		R/W	\times
SD1251	Reserved		R/W	\times
SD1252	Reserved		R/W	\times
SD1253	Reserved		R/W	\times
SD1254	Reserved		R/W	\times
SD1255	Reserved		R/W	\times
SD1256	Reserved		R/W	\times
SD1257	Reserved		R/W	\times
SD1258	CH7 maximum speed (32 bits)	Default: 100000Hz	R/W	\times

WECON technology Co., Ltd.

PLC LX5V Series Programming Manual (V2.2)

SD1259	CH7 maximum speed (32 bits)		R/W	\times
SD1260	CH7 offset speed (32 bits)	Default: 1Hz	R/W	\times
SD1261	CH7 offset speed (32 bits)		R/W	\times
SD1262	CH7acceleration time (16 bits)	Default: 100 ms	R/W	\times
SD1263	CH 7 deceleration time (16 bits)	Default: 100 ms	R/W	\times
SD1264	CH7 stop mode	O: slows down and stops 1: Stop immediately	R/W	\times
SD1265	CH 7 direction delay time (ms)	Default: Oms	R/W	\times
SD1266	CH7 external start signal (X register value)	After the external start signal is enabled, set the input register, for example, SET X10 to 10. Default value: 0	R/W	\times
SD1267	Reserved		R/W	\times
SD1268	CH7 start speed low bit (32 bits)	Default: OHz	R/W	\times
SD1269	CH7 start speed high bit(32 bits)		R/W	\times
SD1270	Reserved		R/W	\times
SD1271	Reserved		R/W	\times
SD1272	Reserved		R/W	\times
SD1273	Reserved		R/W	\times
SD1274	Reserved		R/W	\times
SD1275	Reserved		R/W	\times
SD1300	CH8 positioning axis output low bit	Count value of current high speed pulse output	R/W	\checkmark
SD1301	CH8 positioning axis output upper bit		R/W	\checkmark
SD1302	Reserved		R/W	\times
SD1303	Reserved		R/W	\times
SD1304	CH8 current speed lower bit	Current high speed pulse output frequency	R/W	\times
SD1305	CH8 current speed upper bit		R/W	\times
SD1306	Reserved		R/W	\times
SD1307	Reserved		R/W	\times
SD1308	Reserved		R/W	\times
SD1309	Reserved		R/W	\times
SD1310	Reserved		R/W	\times
SD1311	Reserved		R/W	\times
SD1312	Reserved		R/W	\times
SD1313	Reserved		R/W	\times
SD1314	Reserved		R/W	\times
SD1315	Reserved		R/W	\times
SD1316	Reserved		R/W	\times
SD1317	Reserved		R/W	\times
SD1318	CH8 maximum speed (32 bits)	Default: 100000 Hz	R/W	\times
SD1319	CH8 maximum speed (32 bits)		R/W	\times
SD1320	CH8 offset speed (32 bits)	Default: 1Hz	R/W	\times
SD1321	CH8 offset speed (32 bits)		R/W	\times
SD1322	CH8acceleration time (16 bits)	Default: 100 ms	R/W	\times
SD1323	CH8 deceleration time (16 bits)	Default: 100 ms	R/W	\times
SD1324	CH8 stop mode	0: slows down and stops 1: Stop immediately	R/W	\times

PLC LX5V Series Programming Manual (V2.2)

SD1325	CH8 direction delay time (ms)	Default: Oms	R/W	
SD1326	CH8 external start signal (X register value)	After the external start signal is enabled, set the input register, for example, SET X10 to 10. Default value: 0	R/W	
SD1327	Reserved		\times	
SD1328	CH8 start speed low bit (32 bits)	Default: OHz	R/W	
SD1329	CH8 start speed high bit (32 bits)		R/W	
SD1330	Reserved		R/W	
SD1331	Reserved		R/W	
SD1332	Reserved		R/W	
SD1333	Reserved		R/W	\times
SD1334	Reserved		R/W	
SD1335	Reserved		\times	

BD board module

SD label	Name	Content	R/W	Power-down data preservation
BD board 1				
SD2000	BD1 Type	Stores the type of the BD board currently connected)	R	\times
SD2001	BD1 version	Stores the version number of the BD board currently connected	R	\times
SD2002	BD1 last error	Stores the last time Error code of the the currently connected BD board	R	\times
SD2003	BD1 current error	store the current error code of the BD board currently connected	R	\times
SD2004	BD1 error times	Stores the number of errors recorded in BD board currently connected	R	\times
SD2010	BD1 first value	Values stored on different BD boards have different meanings. For details, see the corresponding BD board description	R	\times
SD2011	BD1 second value		R	\times
SD2012	BD1 third value		R	\times
SD2013	BD1 fourth value		R	\times
BD board 2				
SD2020	BD2 type	Stores the type of the BD board currently connected)	R	\times
SD2021	BD2 version	Stores the version number of the BD board currently connected	R	\times
SD2022	BD2 last error	Last time Error code of the the currently connected BD board	R	\times
SD2023	BD2 current error	store the current error code of the BD board currently connected	R	\times
SD2024	BD2 error times	Stores the number of errors recorded in BD board currently connected	R	\times
SD2030	BD2 first value	Values stored on different BD boards have different meanings. For details, see the corresponding BD board description	R	\times
SD2031	$B D 2$ second value		R	\times
SD2032	BD2 third value		R	\times
SD2033	BD2 fourth value		R	\times

Right expansion module

SD label	Name	Content	R/W	Power-down data preservation
SD2081	Total number of modules connected	Total number of currently connected right expansion modules	R	\times
SD2082	Number of IO modules	Number of connected I/O expansion modules	R	\times
SD2083	Number of special expansion modules	Number of special extension modules currently connected	R	\times
SD2084	Which module started to go offline	$-1:$ No module is offline $0:$ The first module is offline $1:$ The second module is offline, and so on	R	\times

Input filtering

SD label	Name	Content	R/W	Power-down data preservation
SD2280	Input filter point setting, default 10ms	Low byte X0 to X3, high byte X4 to X7	R/W	\times
SD2281	Input filter point setting, default 10ms	Low byte X10 to X13, high byte X14 to X17	R/W	\times
SD2282	Input filter point setting, default 10ms	Low byte X20 to X23, high byte X24 to X27	R/W	\times
SD2283	Input filter point setting, default 10ms	Low byte X30 to X33, high byte X34 to X37	R/W	
SD2284	Input filter point setting, default 10ms	Low byte X40 to X43, high byte X44 to X47	R/W	\times
SD2285	Input filter point setting, default 10ms	Low byte X50 to X53, high byte X54 to X57	R/W	\times
SD2286 to SD2287	Input filter point setting, default 10ms		$\times \ldots$	R/W

Communication

SD label	Name	Content	R/W	Power-down data preservation
Communication com1				
SD2540	COM1 Communication port settings	Default: Baud rate 115200, Stop bit 1, data bit 8, setting method for parity bit is not specified, but you may refer to the Description of the PROTPARA Instruction	R/W	\checkmark
SD2541	COM1 Serial port parameter modification identifier	If you need to modify serial port parameters in RUN, you must operate the modification identifier and write a correct identifier to make the modification successful. After the modification is successful, the value is automatically cleared. For details about the operation method, see Description of the PROTPARA Instruction.	R/W	\checkmark
SD2542	COM1 Protocol settings	OH : Wecon Modbus slave station 2H: ModbusRTU slave station 3H: ModbusASCII slave station 10H: User-defined protocol 20H: ModbusRTU Master station 30H: ModbusASCII Master station	R/W	\checkmark
SD2543	COM1 Protocol modification logo	If the communication PROTOCOL needs to be modified in RUN, it must calculate the modification identifier and write the correct identifier to make the modification successful. After the modification is successful, the value is automatically cleared. For details, see the PROTOCOL instruction.	R/W	\checkmark
SD2544	COM1 Station number setting	Value range: $0 \sim 255$ Default value: 0	R/W	v
SD2545	COM1 Station number modification logo	If the communication STATION number needs to be modified in RUN, it must calculate the modification identifier and write the correct identifier to make the modification successful. After the modification is successful, the value will be cleared automatically. For	R/W	\checkmark

PLC LX5V Series Programming Manual (V2.2)

		the specific calculation method, see the STATION instruction.		
SD2546	Sending interval 0.1 ms		R/W	\checkmark
SD2547	Communication timeout setting 10 ms		R/W	\checkmark
SD2548	COM1 Timeout retries		R/W	\checkmark
SD2549	COM1 Character interval timeout setting 0.1 ms		R/W	V
SD2550	COM1 STX value		R/W	\checkmark
SD2551	COM1 ETX value		R/W	V
SD2555	In case of PLC upload and download timeout, the upload and download will be interrupted if the transmission does not continue after the timeout.	Unit: 100ms, default: 300 (30s)		V
SD2560	The amount of data received by COM1		R	\checkmark
SD2561	COM1 last error		R	\checkmark
SD2562	COM1 Current error		R	\checkmark
SD2563	COM1 Error steps		R	\checkmark
SD2564	COM1 Error station number		R	\checkmark
SD2565	COM1 Cumulative number of errors		R	\checkmark
SD2566	COM1 Number of error steps (double		R	V
SD2567			R	\checkmark
SD2568	Reserved		R	\checkmark
SD2569	Reserved		R	\checkmark
SD2570	Reserved		R	\checkmark
SD2571	Reserved		R	V
Communication com2				
SD2590	COM2 Communication port settings	Default: Baud rate 115200, Stop bit 1, data bit 8, parity bit None For details, see the description of the PROTPARA instruction.	R/W	V
SD2591	COM2 Serial port parameter modification identifier	If you need to modify serial port parameters in RUN, you must calculate the modification identifier and write a correct identifier to make the modification successful. After the modification is successful, the value is automatically cleared. For details about the calculation method, see the PROTPARA instruction description.	R/W	\checkmark
SD2592	COM2 Protocol settings	OH: Wecon Modbus slave station 2H: ModbusRTU slave station 3H: ModbusASCII slave station 10H: User-defined protocol 20H: ModbusRTU master station 30H: ModbusASCII master station	R/W	V
SD2593	COM2 Protocol modification logo	If the communication PROTOCOL needs to be modified in RUN, it must calculate the modification identifier and write the correct identifier to make the modification successful. After the modification is successful, the value is automatically cleared. For details, see the PROTOCOL instruction.	R/W	V
SD2594	COM2 Station number setting	Value range: 0 to 255 Default value: 0	R/W	\checkmark
SD2595	Station number modification logo	If the communication STATION number needs to be modified in RUN, it must calculate the modification identifier and write the correct identifier to make the modification successful. After the modification is successful, the value will be cleared automatically. For the specific calculation method, see the STATION	R/W	V

		instruction.		
SD2596	Sending interval	Unit: 0.1 ms , Default: 0	R/W	V
SD2597	Communication timeout setting	Unit: 10 ms ,Default: 100 ms	R/W	\checkmark
SD2598	COM2 Timeout retries	Default: 0	R/W	\checkmark
SD2599	COM2 Character interval timeout setting 0.1 ms	Unit: 0.1 ms , Default: 10 (1 ms)	R/W	V
SD2600	COM2 user-defined protocol starting symbol	Default: 0	R/W	V
SD2601	COM2 user-defined protocol end symbol	Default: 0	R/W	\checkmark
SD2610	The amount of data received by COM2	Amount of data received by the storage serial port	R	\times
SD2611	COM2 last error	Stores the last communication error code	R	\times
SD2612	COM2 Current error	Stores the current communication error code	R	\times
SD2613	COM2 Error steps	Stores the number of steps in the ladder diagram for the current communication error	R	\times
SD2614	COM2 Error station number	The station number that stores the current communication error	R	\times
SD2615	COM2 Cumulative number of errors	Stores the accumulative number of communication errors	R	\times

List of special devices related to Ethernet

SD number	Name	Content	R/W	Power-off save
SD2680	The 1st byte of IP address	Local IP address	R/W	\checkmark
SD2681	The 2nd byte of IP address		R/W	\checkmark
SD2682	The 3rd byte of IP address		R/W	\checkmark
SD2683	The 4th byte of IP address		R/W	\checkmark
SD2684	The 1st byte of subnet mask	Local subnet mask	R/W	\checkmark
SD2685	The 2nd byte of subnet mask		R/W	\checkmark
SD2686	The 3rd byte of subnet mask		R/W	\checkmark
SD2687	The 4th byte of subnet mask		R/W	\checkmark
SD2688	The 1st byte of default gateway	Local default gateway	R/W	\checkmark
SD2689	The 2nd byte of default gateway		R/W	v
SD2690	The 3rd byte of default gateway		R/W	\checkmark
SD2691	The 4th byte of default gateway		R/W	\checkmark
SD2692	The 1st byte of MAC address	Local MAC address	R/W	\checkmark
SD2693	The 2nd byte of MAC address		R/W	\checkmark
SD2694	The 3rd byte of MAC address		R/W	\checkmark
SD2695	The 4th byte of MAC address		R/W	\checkmark
SD2696	The 5th byte of MAC address		R/W	\checkmark
SD2697	The 6th byte of MAC address		R/W	\checkmark
SD2700	Communication speed	0: $100 \mathrm{Mbps} /$ half-duplex 1: 100Mbps/full duplex 2: 10Mbps/half-duplex 3: 10Mbps/full duplex	R	\times

SD2702	The maximum connection number supported by ModbusTCP server	The maximum client connection number supported by local ModbusTCP server	R/W	\times
SD2703	Number of ModbusTCP connections	Number of local ModbusTCP connections	R	\times
SD2710	Error code	Ethernet error code	R	\times
SD2711	The socket ID of the error this time	-1: system default ModbusTCP server 0 to 5: custom socket error	R	\times
SD2720	Input the low bit of the number of ping requests		R	\times
SD2721	Input the high bit of the number of ping requests	Number ofexter	R	\times
SD2722	Input the low bit of the number of ping replies		R	\times
SD2723	Input the high bit of the number of ping replies	Number ofreplies to external ping commands	R	\times
SD2724	Output the low bit of the number of ping requests		R	\times
SD2725	Output the high bit of the number of ping requests		R	\times
SD2726	Output the low bit of the number of ping replies	Number of replies after receiving the ping	R	\times
SD2727	OUtput the high bit of the number of ping replies	command	R	\times
SD2728	The sending number of arp package	Count the sending number of arp package	R	\times
SD2729	The receiving number of arp package	Count the receiving number of arp package	R	\times
SD2730	The sending number of IP package	Count the sending number of IP package	R	\times
SD2731	The receiving number of IP package	Count the receiving number of IP package	R	\times
SD2732	The sending number of tcp package	Count the sending number of tcp package	R	\times
SD2733	The receiving number of tcp package	Count the receiving number of tcp package	R	\times
SD2734	The sending number of udp package	Count the sending number of udp package	R	\times
SD2735	The receiving number of udp package	Count the receiving number of udp package	R	\times
SD2740	Connection 1 Local port number		R	\times
SD2741	Connection 1 The 1st byte of IP address		R	\times
SD2742	Connection 1 The 2nd byte of IP address		R	\times
SD2743	Connection 1 The 3rd byte of IP address		R	\times
SD2744	Connection 1 The 4th byte of IP address		R	\times
SD2745	Connection 1 Peer port number	The first of ModbusTCP client to connect to	R	\times
SD2746	Reserved	this PLC connection information and errors	R	\times
SD2747	Reserved			
SD2748	Connection 1 Error code		R	\times
SD2749	Connection 1 Error communication times low word		R	\times
SD2750	Connection 1 Error communication times high word		R	\times
SD2760	Connection 2 Local port number		R	\times
SD2761	Connection 2 The 1st byte of IP address		R	\times
SD2762	Connection 2 The 2nd byte of IP address	The second of ModbusTCP client to connect	R	\times
SD2763	Connection 2 The 3rd byte of IP address	to this PLC connection information and errors	R	\times
SD2764	Connection 2 The 4th byte of IP address		R	\times
SD2765	Connection 2 Port number		R	\times

SD2766	Reserved		R	\times
SD2767	Reserved			
SD2768	Connection 2 Error code		R	\times
SD2769	Connection 2 Error communication times low word		R	\times
SD2770	Connection 2 Error communication times high word		R	\times
SD2780	Connection 3 Local port number	The third of ModbusTCP client to connect to this PLC connection information and errors	R	\times
SD2781	Connection 3 The 1st byte of IP address		R	\times
SD2782	Connection 3 The 2nd byte of IP address		R	\times
SD2783	Connection 3 The 3rd byte of IP address		R	\times
SD2784	Connection 3 The 4th byte of IP address		R	\times
SD2785	Connection 3 Peer port number		R	\times
SD2786	Reserved		R	\times
SD2787	Reserved			
SD2788	Connection 3 Error code		R	\times
SD2789	Connection 3 Error communication times low word		R	\times
SD2780	Connection 3 Error communication times high word		R	\times

Log information

SD label	Name	Content	R/W	Power-down data preservation
SD4000	Lower bit of ladder diagram writing number	Total download times of storage ladder diagram, power off preservation	R	\checkmark
SD4001	Higher bit of ladder diagram writing number		R	\checkmark
SD4002	Lower bit of PLC parameter writing number	Total download times of storage parameters, power off preservation	R	\checkmark
SD4003	Higher bit of PLC parameter writing number		R	\checkmark
SD4004	Lower bit of password writing number	Store the total times of writing password, power off preservation	R	\checkmark
SD4005	Higher bit of password writing number		R	\checkmark
SD4006	Lower bit of comment writing number	Store the total times of downloading comment, power off preservation	R	\checkmark
SD4007	Lower bit of comment writing number		R	\checkmark
SD4008	Lower bit of total startup times	Store the total number of PLC startup times, power off preservation	R	\checkmark
SD4009	Higher bit of total startup times		R	\checkmark
SD4010	Lower bit of total startup time	Store the total startup time of PLC, power off preservation, unit s	R	\checkmark
SD4011	Higher bit of total startup time		R	\checkmark
SD4012	Lower bit of total startup RUN time	Store the total number of PLC startup times, power off preservation	R	\checkmark
SD4013	Higher bit of total startup RUN time		R	\checkmark
SD4014	Lower bit of this startup RUN time	Store the total startup time of PLC, power off preservation, unit s	R	\times
SD4015	Lower bit of this startup RUN time		R	\times

Appendix 3 Error code Sorting

PLC hardware error

Error code	Instruction	Action	Treatment plan	Detection time
1000	PLC power supply voltage is abnormal	Stop running PWR light is off	Prompt that the power supply is abnormal, please replace the power supply	Always
1100	Watchdog timeout	The scan time of the program exceeds the watchdog timeout time setting. Modify the setting value of the timeout time (SD122) or the program.	Always	
1200	FLASH write times exceed limit (information display of read times of upper computer, SD4000 double word)	Stop running	The number of FLASH writes exceeds 20,000, and the PLC needs to be replaced	When downloading the program
1201	Failed to read production information	Stop running	FLASH is damaged, PLC needs to be replaced	When STOP \rightarrow RUN
1380	lt is detected that the battery voltage is too low, which will affect the power-down retention Devices	keep running	- Confirm the battery connection.	
- Replace the battery in time.	When the END instruction is executed			
1382	User-defined exception	keep running	No need to deal with	When the END instruction is executed

Circuit program execution error

Error code	Instruction	Action	Treatment plan	Detection time
1400	Program abnormality caused by STOP \rightarrow RUN	Stop running	Check whether the parameter configuration is incorrectly configured, and whether the Circuit program uses an unsupported instruction.	When STOP \rightarrow RUN
1401	Program exception caused by STOP	Stop running		STOP
1402	The execution of the Circuit program is caused by the program exception	Stop running		When the Circuit program is running
1403	Program abnormality caused by RUN \rightarrow STOP	Stop running		When RUN \rightarrow STOP
1500	Circuit program conversion is executed in the END instruction OUT T label is wrong	Stop running	Detect OUT T instruction in Circuit program	When the END instruction is executed
1501	Null pointer error	Stop running	Check whether an undefined program name is used	When initializing

PLC parameter error

Error code	Instruction	Action	Treatment plan	Detection time
2000	Number of I/O points allocated by program is different from the actual number of hardware I/O points	Stop running	Check the configuration of I/O points	When STOP \rightarrow RUN
2001	Set the parameters of the standard input and output module for the high-speed pulse input and output module	Stop running	Check input point parameter configuration	When STOP \rightarrow RUN
2002	The installed expansion module exceeds the maximum number	Stop running	Reduce the installation of expansion modules	When STOP \rightarrow RUN
2003	X point multiplexing, the same point is used as AB phase high-speed input, but also as one-way input or interrupt input	Stop running	Check input mode configuration	When STOP \rightarrow RUN
2004	Configure high-speed input IO error, CNTCFG instruction parameter write	Stop running	Check the value of parameter 1 of CNTCFG	Command runtime
2100	Memory capacity setting error	Stop running	Check the memory capacity setting	When STOP \rightarrow RUN
2101	Wrong setting of holding area	Stop running	Check the setting of the holding register	When STOP \rightarrow RUN
2102	Setting of the comment area is wrong	Stop running	Check the annotation settings	When STOP \rightarrow RUN
2103	File register area setting error	Stop running	Check file storage area settings	When STOP \rightarrow RUN
2200	Inconsistent program verification	Stop running	The upper and lower computer programs are inconsistent, please upload or download	When STOP $\rightarrow R U N$

			again	
2201	Inconsistent check sums of special parameters	Stop running	The upper and lower computer parameters are inconsistent, please upload or download again	When STOP \rightarrow RUN
2202	Special parameter setting error	Stop running	Check the settings of special parameters	When STOP \rightarrow RUN
2203	PLC EDITOR2 and PLC firmware version are inconsistent	Stop running	Please check the correspondence table between PLC EDITOR2 and firmware version, reinstall PLC EDITOR2 or upgrade firmware	When STOP \rightarrow RUN
2380	The current scan period exceeds the constant scan period setting value	keep running	Modify the constant scan period setting	When the END instruction is executed
2400	Event exceeds maximum range	Stop running	Check whether the event setting exceeds 100	When STOP \rightarrow RUN
2401	Event executor is empty	Stop running	Whether to establish the correct event procedure	When STOP \rightarrow RUN
2402	Event clearer is empty	Stop running	Whether to establish the correct event procedure	When STOP \rightarrow RUN
2403	Timed interrupt exceeds the maximum range	Stop running	Check whether the timer interrupt setting exceeds 100	When STOP \rightarrow RUN
2404	Timed interrupt execution program is empty	Stop running	Whether to establish the correct timing interrupt program	When STOP \rightarrow RUN
2405	Timed interrupt priority setting error	Stop running	Check whether the timer interrupt priority is set to 0 to 2	When STOP \rightarrow RUN
2406	High-speed counting interrupt exceeds the maximum range	Stop running	Check whether the high-speed counting interrupt setting exceeds 100	When STOP \rightarrow RUN
2407	High-speed counting interrupt execution program is empty	Stop running	Whether to establish the correct high-speed counting interrupt program	When STOP \rightarrow RUN
2408	High-speed counter priority setting error	Stop running	Check whether the high-speed counting interrupt priority is set to 0 to 2	When STOP \rightarrow RUN
2409	Input interruption exceeds the maximum range	Stop running	Check whether the external interrupt setting exceeds 16	When STOP \rightarrow RUN
240A	Input interrupt execution program is empty	Stop running	Whether to establish the correct external interrupt program	When STOP \rightarrow RUN
240B	Input interrupt priority setting error	Stop running	Check whether the external interrupt priority is set to 0 to 2	When STOP \rightarrow RUN
2500	High-speed counter channel exceeds the maximum range*/	Stop running	Detect high-speed input configuration	When STOP \rightarrow RUN
2501	High-speed counter mode setting error*/	Stop running	Detect high-speed input configuration	When STOP \rightarrow RUN
2502	The multiplication setting of the high-speed counter is wrong*/	Stop running	Detect high-speed input configuration	When STOP \rightarrow RUN
2503	The counting direction of the high-speed counter is set incorrectly*/	Stop running	Detect high-speed input configuration	When STOP \rightarrow RUN
2504	High-speed counter interrupts were used, but high-speed counters were not turned on using OUT HSC instructions, and values of HSC soft components were modified	keep running	Check to see if there are contacts to turn off the OUT HSC instruction	100us interrupt execution time
2580	After the high-speed counter is turned on, but the axis high-speed counter enable is not configured	keep running	View project management \rightarrow parameters \rightarrow high-speed counting configuration	When OUT HSC instruction is executed
2581	High-speed counter interrupts were used, but high-speed counters were not turned on using OUT HSC instructions, and values of HSC soft components were modified	keep running	See if there are any contacts that have the OUT HSC instruction turned off	100us interrupt execution time
2582	The REF instruction was used to refresh the speedometer value, but no OUT HSC instruction was used to turn on the high-speed counter for the channel	keep running	1. View project management \rightarrow Parameters \rightarrow High-speed counting configuration \rightarrow Whether to use 2. Check if there are any contacts with OUT HSC instruction turned off	When the REF instruction is executed
2600	High-speed counter conflicts with the interrupted X point	Stop running	Detect high-speed input or external interrupt configuration	When STOP \rightarrow RUN

PLC communication error

Error code	Instruction	Action	Treatment plan	Detection time
3080	COM1 data receiving error	keep running	There may be interference on the communication line, it is recommended to connect the ground wire.	When the instruction is executed
3081	COM1 data receiving timeout	keep running	Check the wiring, check whether the serial port parameter settings correspond to master and slave, and check whether there is interference. Check whether the slave station is too late to respond. For this reason, you can try to increase the sending interval SD2546.	When the instruction is executed
3082	COM1 CRC check error	keep running	There may be interference on the communication line, it is recommended to connect the ground wire.	When the instruction is executed
3083	COM1 LRC check error	keep running	There may be interference on the communication line, it is recommended to connect the ground wire.	When the instruction is executed
3084	COM1 station number configuration error	keep running	Check the slave station number setting. And check whether there is any problem with the receiving and sending mechanism from the station.	When the instruction is executed
3085	COM1 send buffer overflow	keep running	Contact a technician if this error occurs	When the instruction is executed
3086	COM1 function code error	keep running	Check whether the set function code is a function code supported by PLC	When the instruction is executed
3087	COM1 address error	keep running	Check whether the slave station has this address (please refer to Modbus Abnormal 02)	When the instruction is executed
3088	COM1 length error	keep running	Check whether the communication length exceeds the Modbus range	When the instruction is executed
3089	COM1 data error	keep running	Check the parameters of the instruction for errors. Check whether the slave station supports the setting of this value. (Please refer to Modbus exception 03)	When the instruction is executed
308A	COM1 slave is busy	Keep running	Slave station returns information: Slave station is busy (please refer to Modbus Abnormal 06)	When the instruction is executed
308B	COM1 slave does not support function codes	keep running	Check whether the slave station supports this function code (please refer to Modbus exception 01)	When the instruction is executed
308C	COM1 slave failure	keep running	Slave station returns information: Slave station is faulty, please check whether the slave station is faulty (please refer to Modbus Abnormal 04))	When the instruction is executed
308D	COM1 slave confirmation	keep running	Slave station return information: slave station confirmation (please refer to Modbus abnormal 05)	When the instruction is executed
308E		keep running		When the instruction is executed
308F	COM1 sending timeout	keep running	Contact a technician if this error occurs	When the instruction is executed
3090	Receive buffer overflow	keep running	Check if the other device is sending data all the time	When the instruction is executed
30A0	COM1 unavailable gateway	keep running	Returned information from the station: unavailable gateway (please refer to Modbus exception OA)	When the instruction is executed
30A1	COM1 indicates that no response was obtained from the target device. Usually means that the device is not in the network	keep running	Slave station returns information: soft components is not in the network (please refer to Modbus exception OB)	When the instruction is executed

PLC LX5V Series Programming Manual (V2.2)

3180	COM2 data receiving error	keep running	There may be interference on the communication line, it is recommended to connect the ground wire.	When the instruction is executed
3181	COM2 data receiving timeout	keep running	Check the wiring, check whether the serial port parameter settings correspond to master and slave. Check whether there is interference. Check whether the slave station is too late to respond. For this reason, you can try to increase the sending interval SD2546.	When the instruction is executed
3182	COM2 CRC check error	keep running	There may be interference on the communication line, it is recommended to connect the ground wire.	When the instruction is executed
3183	COM2 LRC check error	keep running	There may be interference on the communication line, it is recommended to connect the ground wire.	When the instruction is executed
3184	COM2 station number configuration error	keep running	Check the slave station number setting. And check whether there is any problem with the receiving and sending mechanism from the station.	When the instruction is executed
3185	COM2 send buffer overflow	keep running	Contact a technician if this error occurs	When the instruction is executed
3186	COM2 function code error	keep running	Check whether the set function code is a function code supported by PLC	When the instruction is executed
3187	COM2 address error	keep running	Check whether the slave station has this address (please refer to Modbus Abnormal 02)	When the instruction is executed
3188	COM2 length error	keep running	Check whether the communication length exceeds the Modbus range	When the instruction is executed
3189	COM2 data error	keep running	Check the parameters of the instruction for errors. Check whether the slave station supports the setting of this value. (Please refer to Modbus exception 03)	When the instruction is executed
318A	COM2 slave is busy	keep running	Slave station returns information: Slave station is busy (please refer to Modbus Abnormal 06)	When the instruction is executed
318B	COM2 slave does not support function codes	keep running	Check whether the slave station supports this function code (please refer to Modbus exception 01)	When the instruction is executed
318C	COM2 slave failure	keep running	Slave station returns information: Slave station is faulty, please check whether the slave station is faulty (please refer to Modbus Abnormal 04))	When the instruction is executed
318D	COM2 slave confirmation	keep running	Slave station return information: slave station confirmation (please refer to Modbus abnormal 05)	When the instruction is executed
318E		keep running		When the instruction is executed
318F	COM2 sending timeout	keep running	Contact a technician if this error occurs	When the instruction is executed
31A0	COM2 unavailable gateway	keep running	Returned information from the station: unavailable gateway (please refer to Modbus exception OA)	When the instruction is executed
31A1	COM2 indicates that no response was obtained from the target device. Usually means that the device is not in the network	keep running	Slave station returns information: soft components is not in the network (please refer to Modbus exception OB)	When the instruction is executed
31C0	PLCLINK meter header exception	keep running	Download the program again	When the instruction or function is applied
31C1	The communication port does not support PLCLINK for the function	keep running	Upgrade firmware	When the instruction or function is applied

PLC LX5V Series Programming Manual (V2.2)

$31 C 2$	PLCLINK table version is not compatible	keep running	Download the program again	When the instruction or function is applied
$31 C 3$	The number of PLCLINK commands is out of range. The current limit is 1 to 255 articles.	keep running	Check the number of commands	When the instruction or function is applied
$31 C 4$	The station number in the PLCLINK form is o ut of range	keep running	Check the site number in the form	When the instruction or function is applied
$31 C 5$	The PLCLINK form is outside the scope of the software component	keep running	Check the range of software components c orresponding to the table	When the instruction or function is applied
$31 C 6$	The PLCLINK form command uses software c omponents that are out of range	keep running	Check the software components used for e ach command in the table	When the instruction or function is applied

PLC operation error

Error code	Instruction	Action	Processing scheme	Detection time
3680	Ethernet data reception error	Keep running	Check the environment for interference.	When the instruction is executed
3681	Ethernet data reception timeout	Keep running	Check whether the network cable is loose. Check whether the network opposite end is faulty and cannot send data. Check whether the network opposite end is not responding in time and the data is too late. For this reason, try increasing the receive timeout in the socket configuration.	When the instruction is executed
3684	ModbusTCP station number configuration error	Keep running	Check the setting of slave station number. Check whether there is a problem with the receiving and sending mechanism of the slave station.	When the instruction is executed
3685	ModbusTCP send buffer overflow	Keep running	Contact the technician for the error	When the instruction is executed
3686	ModbusTCP function code error	Keep running	Check whether the function code set is supported by the PLC.	When the instruction is executed
3687	ModbusTCP address error	Keep running	Check whether the slave station has the address. (Please refer to Modbus abnormality 02)	When the instruction is executed
3688	ModbusTCP length error	Keep running	Check whether the communication length exceeds the range of Modbus.	When the instruction is executed
3689	ModbusTCP data error	Keep running	Check whether the parameter of instruction is incorrect. Check whether the value set is supported by slave. (Please refer to Modbus abnormality 03)	When the instruction is executed
368A	ModbusTCP slave station is busy	Keep running	Slave returns message: Slave is busy. (Please refer to Modbus abnormality 06)	When the instruction is executed
368B	ModbusTCP slave station does not support function code	Keep running	Check whether the function code is supported by slave. (Please refer to Modbus abnormality 01)	When the instruction is executed
368C	ModbusTCP slave station fault	Keep running	Slave returns message: Slave is faulty. (Please refer to Modbus abnormality 04)	When the instruction is executed
368D	ModbusTCP slave station confirmation	Keep running	Slave returns message: Slave confirmation. (Please refer to Modbus abnormality 05)	When the instruction is executed
368E	ModbusTCP protocol currently does not support this instruction	Keep running	RS instruction could not be used when set to slave protocol. Please change protocol or close the contact before the RS instruction.	When the instruction is executed
368F	Network port sending timeout	Keep running	Contact the technician for the error.	When the instruction is executed
3690	Receiving cache overflow	Keep running	Check whether the other device has been sending data.	When the instruction is executed
36A0	ModbusTCP unavailable gateway	Keep running	Slave returns message: Unavailable gateway. (Please refer to Modbus abnormality OA)	When the instruction is executed

36A1	ModbusTCP No response was received from the target device. Generally it means that the device is not on the network.	Keep running	Slave returns message: The device is not on the network. (Please refer to Modbus abnormality OB)	When the instruction is executed
36C0	ModbusTCP transaction identifier error	Keep running	Check whether the network is congested and data cannot be received.	When the instruction is executed
36C1	ModbusTCP The server is full of available links	Keep running	Check whether SD2702 and SD2703 have too many clients to link.	When the instruction is executed
36C8	The Ethernet protocol stack is running out of space	Keep running	Contact the technician for the error.	When the instruction is executed
36C9	The number of links exceeded the limit	Keep running	Check whether the total number of links exceeds the limit.	When the instruction is executed
36CA	The last sending is not complete	Keep running	Use the send completion flag to judge the current send is complete before sending the next one.	When the instruction is executed
36CB	TCP abnormal write	Keep running	Use flag bit device to judge whether the connection is normal. If not, not data is sent. For example, after the closing flag is set,no data is sent.	When the instruction is executed
36CC	TCP abnormal output	Keep running	Contact the technician for the error.	When the instruction is executed
36CD	The IP address has been used	Keep running	Check whether a connection using the same address information exists.	When the instruction is executed
36CE	The server receiving link error	Keep running	Contact the technician for the error.	When the instruction is executed
36CF	TCP receiving buffer overflow	Keep running	Contact the technician for the error.	When the instruction is executed
36D0	TCP connection failed	Keep running	The TCP client may be enabled when the network cable is not connected.	When the instruction is executed
36D1	Abnormal when closing the link initiatively	Keep running	Contact the technician for the error.	When the instruction is executed
36D2	An abnormal shutdown occurred inside the protocol stack	Keep running	It may be closed because of no response for a long time. Check whether the opposite end is online, and whether it could be pinged.	When the instruction is executed
36D3	Initiate an RST link o the opposite end	Keep running	Check whether the opposite end initiates an abnormal shutdown. As a client, the number of links on the opposite end iis full or the port on the opposite end is not opened.	When the instruction is executed
36D4	A single-ended shutdown of the protocol stack occurs	Keep running	Contact the technician for the error.	When the instruction is executed
36D5	There is an IP address conflict	Keep running	There are the same IP devices in the LAN, please change the IP address.	When the instruction is executed
36D6	There is an MAC address conflict	Keep running	There are the same MAC devices in the LAN, please change the MAC address.	When the instruction is executed
36D7	TCP sending buffer overflow	Keep running	Contact the technician for the error.	When the instruction is executed
36D8	UDP abnormal connection	Keep running	IP address and port number may have been used.	When the instruction is executed
36D9	UDP sending buffer overflow	Keep running	Contact the technician for the error.	When the instruction is executed
36DA	UDP insufficient memory space when sending	Keep running	Contact the technician for the error.	When the instruction is executed
36DB	UDP failed to send	Keep running	Contact the technician for the error.	When the instruction is executed
36DC	UDP memory release failure	Keep running	Contact the technician for the error.	When the instruction is executed
36DD	UDP receiving buffer overflow	Keep running	The data length that UDP received exceeds the limit value 512.	When the instruction is executed
4080	The divisor in the division instruction is 0	Keep running	Modify application instruction parameters	When the application instruction is executed
4081	Application instruction	Keep running	Modify application instruction parameters	When the application

	calculation data overflow			instruction is executed
4082	A data type that cannot be converted is entered in the application instruction	Keep running	Modify application instruction parameters	When the application instruction is executed
4083	Any data of -0, non-normalized number, non-number, and $\pm \infty$ is input in the application command	Keep running	Modify application instruction parameters	When the application instruction is executed
4084	Data beyond the specified range is entered in the application instruction (for example, parameter 1 is specified as $0 \sim 1$, setting 2)	Keep running	Modify application instruction parameters	When the application instruction is executed
4085	The output result in the read application instruction exceeds device range (for example, the maximum D7999 of the D device, and D8000 is used)	Keep running	Modify application instruction parameters	When the application instruction is executed
4086	The output result in the writing application instruction exceeds device range (for example, the maximum D7999 of the D device, and D8000 is used)	Keep running	Modify application instruction parameters	When the application instruction is executed
4087	The application instruction parameter uses an unsupported device	Keep running	Modify application instruction parameters	When the application instruction is executed
4088	Multiple application instructions use the same axis at the same time and all have been activated	Keep running	Modify application instruction parameters	When the application instruction is executed
4089	The number of application instructions exceeds the limit	Keep running	Check whether a restricted instruction is used in the Circuit program and exceeds the limit	When the application instruction is executed
408A	The read length of the string exceeds, the continuous length of the string exceeds the limit (currently 400) or exceeds the limit within the instruction	Keep running	Modify the length of the read string	When the application instruction is executed
408B	When the character string is read, the maximum range of device is read, but 00 H is not found.	Keep running	View string terminator	When the application instruction is executed
408E	Multiple application instruction parameters use the same device, but the instruction does not allow device multiplexing	Keep running	Check whether the DUTY command uses the same SM for output	When the application instruction is executed
408F	The firmware used does not support this command, please upgrade to the latest firmware	Keep running	Upgrade to firmware that contains the instruction	When the application instruction is executed
4100	The number of FOR ~ NEXT instructions used does not correspond or FOR ~ NEXT exceeds the maximum nesting level	Keep running	Modify the corresponding relationship of the FOR ~ NEXT instruction of the Circuit program	When NEXT and END instructions are executed
4180	There is no jump destination address of CJ or CALL, the result of index modification, the label is not defined, and P63 is executed in the CALL instruction when it is other than P0 to P4095. Because P63 is a label to jump to END, it cannot be used in the CALL instruction	Keep running	Modify application instruction parameters	When the application instruction is executed
4181	CJ instruction exceeds the maximum nesting level	Keep running	Modify application instruction parameters	When the application instruction is executed

4102	CALL instruction exceeds the maximum nesting level	Keep running	Modify application instruction parameters	When the application instruction is executed
4183	Break exceeds maximum nesting level	Keep running	Modify application instruction parameters	When the application instruction is executed
4185	El instruction popping error	Keep running	Modify application instruction parameters	When the application instruction is executed
4186	BREAK is not in the FOR ~ NEXT command	Keep running	Modify application instruction parameters	When the application instruction is executed
4187	MC ~ MCR exceeds the maximum nesting range	Keep running	View the nesting relationship of MC and MCR	When the application instruction is executed
4188	When using N in the MC nesting structure, the order from small to large is not followed	Keep running	Modify the N nesting corresponding to MC	When the application instruction is executed
4189	SIMASK instruction specifies an unset interrupt	Keep running	Modify the interrupt name specified by SIMASK or the interrupt configuration	When the application instruction is executed
4D80	The sampling time (Ts) exceeds the target range ($\mathrm{Ts} \leqq 0$)	Keep running	Modify application instruction parameters	When the application instruction is executed
4D81	The input filter constant (α) exceeds the target range ($\alpha<0$ or $1025<\alpha$)	Keep running	Modify application instruction parameters	When the application instruction is executed
4D82	The maximum ascent rate (deltaT) exceeds the target range (deltaT <0 or $32000 \leqq$ deltaT)	Keep running	Modify application instruction parameters	When the application instruction is executed
4D83	The proportional gain (Kp) exceeds the target range $(\mathrm{Kp}<0)$	Keep running	Modify application instruction parameters	When the application instruction is executed
4D84	The integral gain (Ki) exceeds the target range ($\mathrm{Ki}<0$)	Keep running	Modify application instruction parameters	When the application instruction is executed
4D85	Differential gain (Kd) exceeds the target range ($\mathrm{Kd}<0$)	Keep running	Modify application instruction parameters	When the application instruction is executed
4D86	Sampling time (Ts)<operation period	Keep running	Modify application instruction parameters	When the application instruction is executed
4D87	The proportional gain (Kp) exceeds the target range ($\mathrm{Kp}<1$ or Kp>3000)	Keep running	Modify application instruction parameters	When the application instruction is executed
4D88	The integration time (Ti) exceeds the target range ($\mathrm{Ti}<0$ or Ti>3600)	Keep running	Modify application instruction parameters	When the application instruction is executed
4D89	Differential time (Td) exceeds the target range (Td<0 or Td>1000)	Keep running	Modify application instruction parameters	When the application instruction is executed
4D90	PID output upper limit is less than lower limit	Keep running	Modify application instruction parameters	When the application instruction is executed
4E80	E-cam table loading error	Keep running	Modify application instruction parameters	When the instruction is executed
4E81	The currently numbered form has a cam in use	Keep running	Modify application instruction parameters	When the instruction is executed
4E82	Form address error	Keep running	Modify application instruction parameters	When the instruction is executed
4E83	Table exceeds device range	Keep running	Modify application instruction parameters	When the instruction is executed
4ECO	Electronic gear ratio setting error	Keep running	Modify application instruction parameters	When the instruction is executed
4F80	DHSZ instruction minimum range >= maximum range	Keep running	Modify application instruction parameters	When the instruction is executed
4F81	DHSCS, DHSCR, DHSZ commands are enabled but high-speed counter counting is not enabled with OUT HSC instruction	Keep running	1. View project management \rightarrow Parameters \rightarrow High-speed counting configuration \rightarrow Whether to use 2. Check if there are any contacts with OUT HSC command turned off	When the instruction is executed

Right expansion module error (communication error reported)

Error code	Instruction	Action	Treatment plan	Detection time
7080	Expansion module and check error	keep running	Detect the connection between the expansion module and the host or whether there is external interference	Command runtime
7081	Expansion module communication message is abnormal	keep running	Detect the connection between the expansion module and the host or whether there is external interference	Command runtime
7082	FROM/TO instruction error	keep running	Check the link between the expansion module and the host	Command runtime
7083	Expansion module access exception	keep running	Check the link between the expansion module and the host	Command runtime

Appendix 4 ASCII code comparison table

ASCII code comparison table

Bin	Oct	Dec	Hex		
(Binary)	(Octal)	(Decimal)	(Hexadecimal)	Aboreviation/character	
00000000	0	0	0×00	NUL(null)	Null character
00000001	1	1	0×01	SOH (start of headline)	Start of headline
00000010	2	2	0×02	STX (start of text)	Start of text
00000011	3	3	0×03	ETX (end of text)	End of text
00000100	4	4	0x04	EOT (end of transmission)	End of transmission
00000101	5	5	0×05	ENQ (enquiry)	Enquiry
00000110	6	6	0×06	ACK (acknowledge)	Acknowledge
00000111	7	7	0×07	BEL (bell)	Bell
00001000	10	8	0×08	BS (backspace)	Backspace
00001001	11	9	0×09	HT (horizontal tab)	Horizontal tab
00001010	12	10	$0 \times 0 \mathrm{~A}$	LF (NL line feed, new line)	Line feed
00001011	13	11	$0 \times 0 \mathrm{~B}$	VT (vertical tab)	Vertical tab
00001100	14	12	0x0C	FF (NP form feed, new page)	Form feed
00001101	15	13	0x0D	CR (carriage return)	Enter key
00001110	16	14	0x0E	SO (shift out)	No need to switch
00001111	17	15	OxOF	SI (shift in)	Enable to switch
00010000	20	16	0×10	DLE (data link escape)	data link escape
00010001	21	17	0×11	DC1 (device control 1)	Device control 1
00010010	22	18	0×12	DC2 (device control 2)	Device control 2
00010011	23	19	0×13	DC3 (device control 3)	Device control 3
00010100	24	20	0×14	DC4 (device control 4)	Device control 4
00010101	25	21	0x15	NAK (negative acknowledge)	Decline to receive
00010110	26	22	0x16	SYN (synchronous idle)	Synchronous idle
00010111	27	23	0×17	ETB (end of trans. block)	Ends the transfer block

00011000	30	24	0×18	CAN (cancel)	Cancel
00011001	31	25	0x19	EM (end of medium)	End of medium
00011010	32	26	0x1A	SUB (substitute)	Substitute
00011011	33	27	0x1B	ESC (escape)	Escape
00011100	34	28	0x1C	FS (file separator)	File separator
00011101	35	29	0x1D	GS (group separator)	Group separator
00011110	36	30	$0 \times 1 \mathrm{E}$	RS (record separator)	Record separator
00011111	37	31	0x1F	US (unit separator)	Unit separator
00100000	40	32	0x20	(space)	Space
00100001	41	33	0x21	!	!
00100010	42	34	0x22	"	"
00100011	43	35	0x23	\#	\#
00100100	44	36	0x24	\$	\$
00100101	45	37	0x25	\%	\%
00100110	46	38	0x26	\&	
00100111	47	39	0x27	'	,
00101000	50	40	0×28	1	1
00101001	51	41	0×29))
00101010	52	42	$0 \times 2 \mathrm{~A}$	*	*
00101011	53	43	0×2B	+	+
00101100	54	44	0×2C	,	,
00101101	55	45	0×2D	-	-
00101110	56	46	0x2E	.	.
00101111	57	47	0x2F	/	/
00110000	60	48	0x30	0	0
00110001	61	49	0x31	1	1
00110010	62	50	0x32	2	2
00110011	63	51	0x33	3	3
00110100	64	52	0x34	4	4
00110101	65	53	0x35	5	5
00110110	66	54	0x36	6	6
00110111	67	55	0×37	7	7
00111000	70	56	0x38	8	8
00111001	71	57	0x39	9	9
00111010	72	58	0x3A	:	:
00111011	73	59	0x3B	;	;
00111100	74	60	0x3C	<	<
00111101	75	61	0x3D	=	=
00111110	76	62	0x3E	>	>

00111111	77	63	0x3F	?	?
01000000	100	64	0x40	@	@
01000001	101	65	0x41	A	A
01000010	102	66	0x42	B	B
01000011	103	67	0×43	C	C
01000100	104	68	0×44	D	D
01000101	105	69	0x45	E	E
01000110	106	70	0x46	F	F
01000111	107	71	0x47	G	G
01001000	110	72	0x48	H	H
01001001	111	73	0x49	1	1
1001010	112	74	$0 \times 4 \mathrm{~A}$	J	J
01001011	113	75	0x4B	K	K
01001100	114	76	0x4C	L	L
01001101	115	77	0x4D	M	M
01001110	116	78	0x4E	N	N
01001111	117	79	0x4F	0	0
01010000	120	80	0x50	P	P
01010001	121	81	0x51	Q	Q
01010010	122	82	0x52	R	R
01010011	123	83	0x53	S	S
01010100	124	84	0x54	T	T
01010101	125	85	0x55	U	U
01010110	126	86	0x56	V	V
01010111	127	87	0x57	W	W
01011000	130	88	0x58	X	X
01011001	131	89	0x59	Y	Y
01011010	132	90	0x5A	Z	Z
01011011	133	91	0x5B	[[
01011100	134	92	0x5C	1	1
01011101	135	93	0x5D]]
01011110	136	94	0x5E	\wedge	\wedge
01011111	137	95	0x5F	-	-
01100000	140	96	0x60	,	-
01100001	141	97	0×61	a	a
01100010	142	98	0x62	b	b
01100011	143	99	0x63	c	c
01100100	144	100	0x64	d	d
01100101	145	101	0x65	e	e

WECON technology Co., Ltd.

01100110	146	102	0×66	f	f
01100111	147	103	0×67	g	g
01101000	150	104	0x68	h	h
01101001	151	105	0x69	i	i
01101010	152	106	$0 \times 6 \mathrm{~A}$	j	j
01101011	153	107	0x6B	k	k
01101100	154	108	0x6C	1	1
01101101	155	109	0x6D	m	m
01101110	156	110	0x6E	n	n
01101111	157	111	0x6F	O	O
01110000	160	112	0×70	p	p
01110001	161	113	0×71	q	q
01110010	162	114	0×72	r	r
01110011	163	115	0×73	S	S
01110100	164	116	0×74	t	t
01110101	165	117	0×75	u	u
01110110	166	118	0×76	V	V
01110111	167	119	0×77	w	w
01111000	170	120	0×78	x	x
01111001	171	121	0x79	y	Y
01111010	172	122	0x7A	z	z
01111011	173	123	0x7B	\{	\{
01111100	174	124	0x7C	\|	\|
01111101	175	125	0x7D	\}	\}
01111110	176	126	0x7E	~	~
01111111	177	127	0x7F	DEL (delete)	Delete

Appendix 5 Instruction list

Application instruction (by instruction type)

Classification	Instruction	Function	LX5V	Reference page
Program flow instruction	LD	Normally open contact operation start instruction	\bigcirc	26
	LDI	Normally closed contact operation start instruction	\bigcirc	26
	AND	Normally open contact series connection instruction	\bigcirc	26
	ANI	Normally closed contact series connection instruction	\bigcirc	26
	OR	one normally open contact parallel connection instruction	\bigcirc	26
	ORI	one normally closed contact parallel connection instruction	\bigcirc	26
	LDP	Rising edge pulse operation start instruction	\bigcirc	30

PLC LX5V Series Programming Manual（V2．2）

	LDF	Falling edge pulse operation start instruction	\bigcirc	30
	ANDP	Rising edge pulse series connection instruction	\bigcirc	30
	ANDF	Falling edge pulse series connection instruction	\bigcirc	30
	ORP	Rising edge pulse parallel connection instruction	\bigcirc	30
	ORF	Falling edge pulse parallel connection instruction	\bigcirc	30
	ANB	Ladder diagram block series connection instruction	\bigcirc	33
	ORB	Ladder diagram block parallel connection instruction	\bigcirc	33
	MPS	Operation result push，read，pop	\bigcirc	34
	MRD	Operation result push，read，pop	\bigcirc	34
	MPP	Operation result push，read，pop	\bigcirc	34
	INV	Invert the result of the operation	\bigcirc	35
	MEP	Pulse the result of the operation	\bigcirc	36
	MEF	Pulse the result of the operation	\bigcirc	36
	OUT	Output instruction	\bigcirc	37
	SET	Setting instruction	\bigcirc	38
	RST	Reset instruction	\bigcirc	40
	PLF	Falling edge output	\bigcirc	42
	PLS	Rising edge output	\bigcirc	43
	END	Program end instruction	\bigcirc	43
	CJ	Conditional jump	\bigcirc	44
	CALL	Subroutine call	\bigcirc	48
	DI	Interrupt prohibited	\bigcirc	50
	El	Interrupt allowed	\bigcirc	50
	SIMASK	Interrupt mask	\bigcirc	54
	FOR～NEXT	Cycle instruction	\bigcirc	错误！未定义书签。
	BREAK	Break cycle	\bigcirc	错误！未定义书签。
	MC	Main control instruction	\bigcirc	58
	MCR	Main control instruction	\bigcirc	58
	WDT	Watchdog timer	\bigcirc	61
Timer，counter and output instruction	OUT T	Timer output	\bigcirc	62
	OUT C	Counter output	\bigcirc	63
	OUT LC	Long counter output	\bigcirc	64
High－speed input counter	OUT HSC	High－speed counter switch	\bigcirc	69
	DHSCS	High－speed comparison set	\bigcirc	错误！未定义书签。
	DHSCR	High－speed comparison reset	\bigcirc	72
	DHSZ	High－speed zone comparison	\bigcirc	73
Transmit comparison	MOV	16－bit transmission	\bigcirc	76

PLC LX5V Series Programming Manual（V2．2）

instructions	DMOV	32－bit transmission	\bigcirc	77
	BMOV	Batch transmission	\bigcirc	错误！未定义书签。
	FMOV	16－bit multicast	\bigcirc	79
	DFMOV	32－bit multicast	\bigcirc	80
	SMOV	Bit shift	\bigcirc	81
	CML	16－bit invert transmission	\bigcirc	83
	DCML	32－bit invert transmission	\bigcirc	84
	CMP	16－bit data comparison output	\bigcirc	85
	DCMP	32－bit data comparison output	\bigcirc	86
	XCH	16－bit data exchange	\bigcirc	87
	DXCH	32－bit data exchange	\bigcirc	88
	ZCP	16－bit data interval comparison	\bigcirc	89
	DZCP	32－bit data interval comparison	\bigcirc	90
Cycle bit shift instruction	ROR	16－bit cycle shift right	\bigcirc	92
	DROR	32－bit cycle shift right	\bigcirc	93
	RCR	16－bit cycle shift right with carry	\bigcirc	94
	DRCR	32－bit cycle shift right with carry	\bigcirc	96
	ROL	16－bit cycle shift left	0	97 错误！未定义书签。
	DROL	32－bit cycle shift left	\bigcirc	98
	RCL	16－bit cycle shift left with carry	\bigcirc	99
	DRCL	32－bit cycle shift left with carry	\bigcirc	100
	SFTR	n －bit shift right of the n －bit data	\bigcirc	101
	SFTL	n －bit shift left of the n －bit data	\bigcirc	102
	WSFR	n －word shift right of the n －word data	\bigcirc	103
	WSFL	n －word shift left of the n－word data	\bigcirc	104
	SFR	n －bit shift right of the 16－bit data	\bigcirc	107
	DSFR	one word shift right of the n －bit data	\bigcirc	106
	SFL	n－bit shift left of the 16－bit data	\bigcirc	107
	DSFL	one word shift left of the n－bit data	\bigcirc	108
Arithmetic operation instruction	ADD	16－bit addition operation	\bigcirc	109
	DADD	32－bit addition operation	\bigcirc	110
	SUB	16－bit subtraction operation	\bigcirc	112
	DSUB	32－bit subtraction operation	\bigcirc	113
	MUL	16－bit multiplication operation	\bigcirc	115
	DMUL	32－bit multiplication operation	0	116
	DIV	16－bit division operation	0	117
	DDIV	32－bit division operation	\bigcirc	118
	INC	16－bit data increment	\bigcirc	119

	DINC	32－bit data increment	\bigcirc	120
	DEC	16－bit data decrement	\bigcirc	121
	DDEC	32－bit data decrement	\bigcirc	122
Logic operation instruction	NEG	16－bit complement	\bigcirc	123
	DNEG	32－bit complement	\bigcirc	124
	WOR	16－bit data logic OR	\bigcirc	125
	DOR	32－bit data logic OR	\bigcirc	126
	WAND	16－bit data logic AND	\bigcirc	127
	DAND	3－bit data logic AND	\bigcirc	128
	WXOR	16－bit data logic exclusive OR	\bigcirc	129
	DXOR	32－bit data logic exclusive OR	\bigcirc	130
	PRUN	Octal bit transmission（16－bit data）	\bigcirc	131
Data processing instruction	ANS	Alarm setting	\bigcirc	错误！未定义书签。
	ANR	Alarm reset	\bigcirc	142
	BON	16－bit data bit judgement	\bigcirc	143
	DBON	32－bit data bit judgement	\bigcirc	144
	ENCO	Encode	\bigcirc	145
	DECO	Decode	\bigcirc	146
	SUM	The ON bits of 16－bit data	\bigcirc	147
	DSUM	The ON bits of 32－bit data	\bigcirc	148
	MEAN	16－bit data mean value	\bigcirc	149
	DMEAN	32－bit data mean value	\bigcirc	错误！未定义书签。
	SQR	16－bit square root	\bigcirc	151
	DSQR	32－bit square root	\bigcirc	152
	WSUM	16－bit data sum value	\bigcirc	153
	DWSUM	32－bit data sum value	\bigcirc	错误！未定义书签。
	SORT	16－bit data sorting	\bigcirc	155
	SORT2	16－bit data sorting	\bigcirc	158
	DSORT2	32－bit data sorting	\bigcirc	161
	SWAP	16－bit high and low byte swap	\bigcirc	164
	DSWAP	32－bit high and low byte swap	\bigcirc	165
	BTOW	Byte unit data merge	\bigcirc	166
	WTOB	Byte unit data separation	\bigcirc	168
	DIS	4－bit separation of 16－bit data	\bigcirc	170
	UNI	4－bit combination of 16－bit data	\bigcirc	171
	ZRST	Data batch reset	\bigcirc	172
	ZSET	Data batch set	\bigcirc	174

	CRC	cyclic redundancy check instruction	\bigcirc	175
	BCC	BIN16 and BIN8 bit data addition，subtraction and exclusive check	0	错误！未定义书签。
	MAX	BIN16 bit The maximum value of 16－bit data	\bigcirc	错误！未定义书签。
	DMAX	BIN32 bit The maximum value of 32－bit data	0	错误！未定义书签。
	MIN	BIN16 bit The minimum value of 16－bit data	0	错误！未定义书签。
	DMIN	BIN32 bit The minimum value of 32－bit data	\bigcirc	错误！未定义书签。
Matrix input instruction	MTR	Matrix input	0	177
	ABSD	BIN 16－bit data absolute method	\bigcirc	179
	DABSD	BIN 32－bit data absolute method	0	181
	SER	16－bit data search	\bigcirc	183
	DSER	32－bit data search	0	184
	ALT	Bit device output inversion	\bigcirc	186
	INCD	BIN 16－bit data relative method	\bigcirc	188
	RAMP	Rotary table proximity control	\bigcirc	190
	ROTC	Rotary table proximity control	\bigcirc	192
	STMR	Special function timer	\bigcirc	195
	TTMR	Teaching timer	\bigcirc	197
	TRH	Conversion of wet and dry bulb temperature and humidity	\bigcirc	199
External IO instruction	ARWS	Arrow switch	\bigcirc	201
	DSW	Numeric key input	\bigcirc	204
	HKY	Hexadecimal numeric key input	\bigcirc	错误！未定义书签。
	DHKY	32 digit key input	\bigcirc	209
	PR	ASCII code printing	\bigcirc	211
	SEGD	numeric key input	\bigcirc	213
	SEGL	7SEG code hour and minute display	\bigcirc	214
	TKY	Numeric key input	\bigcirc	217
	DTKY	Numeric key input	\bigcirc	219
Data conversion instruction	BCD	$\mathrm{BIN} \rightarrow$ BCD	\bigcirc	221
	BIN	4－bit BCD \rightarrow BIN	\bigcirc	222
	DBIN	8－bit BCD \rightarrow BIN	\bigcirc	224
	FLT	BIN integer \rightarrow binary floating point number	\bigcirc	225
	DFLT	BIN integer \rightarrow binary floating point number	\bigcirc	227
	VAL	Character string \rightarrow BIN 16－bit data conversion	\bigcirc	228
	DVAL	Character string \rightarrow BIN 32－bit data conversion	\bigcirc	229
	ASCI	HEX code data \rightarrow ASCII conversion	\bigcirc	231

PLC LX5V Series Programming Manual（V2．2）

	HEX	ASCII \rightarrow HEX code data conversion	\bigcirc	234
	CCD	Check code	\bigcirc	236
	GBIN	Gray code \rightarrow BIN 16－bit data conversion	\bigcirc	239
	DGBIN	Gray code \rightarrow BIN 32－bit data conversion	\bigcirc	239
	GRY	BIN 16－bit data \rightarrow Gray code conversion	\bigcirc	241
	DGRY	BIN 32－bit data \rightarrow Gray code conversion	\bigcirc	242
	DPRUN	Octal digit transmission（32－bit data）	\bigcirc	243
	DACOS	Single precision real number COS－1 operation	\bigcirc	244
	DASIN	Single precision real number SIN－1 operation	\bigcirc	245
	DATAN	Single precision real number TAN－1 operation	\bigcirc	246
	DCOS	Single precision real number COS operation	\bigcirc	247
	DCOSH	Single precision real number COSH operation	\bigcirc	248
	DSIN	Single precision real number SIN operation	\bigcirc	249
	DSINH	Single precision real number SINH operation	\bigcirc	250
	DTAN	Single precision real number TAN operation	\bigcirc	251
	DTANH	Single precision real number TANH operation	\bigcirc	252
	DDEG	Single precision real number radian \rightarrow angle conversion	\bigcirc	253
	DRAD	Single precision real number conversion angle \rightarrow radian conversion	\bigcirc	254
	DEADD	Single precision real number addition operation	\bigcirc	255
	DESUB	Single precision real number subtraction operation	\bigcirc	256
	DEMUL	Single precision real number multiplication operation	\bigcirc	257
	DEDIV	Single precision real number division operation	\bigcirc	258
	DEMOV	Single precision real data transmission	\bigcirc	260
	DEBCD	Binary floating point \rightarrow decimal floating point conversion	\bigcirc	错误！未定义书签。
	DEBIN	Decimal floating point \rightarrow binary floating point conversion	\bigcirc	262
	DENEG	Single precision real number sign inversion	\bigcirc	263
	DECMP	Single precision real number comparison	\bigcirc	264
	DEZCP	Binary floating point bandwidth comparison	\bigcirc	265
	DESQR	Single precision real square root	\bigcirc	267
	DESTR	Single precision real number \rightarrow string conversion	\bigcirc	268
	DEVAL	String \rightarrow single precision real number conversion	\bigcirc	273
	DEXP	Single precision real number exponential operation	\bigcirc	277
	INT	Single precision real number \rightarrow signed BIN 16－bit data	\bigcirc	278
	DINT	Single precision real number \rightarrow signed BIN 32－bit data	\bigcirc	279
	DLOG10	Single precision real number common logarithmic operation	\bigcirc	280
	DLOGE	Single precision real number natural logarithm operation	\bigcirc	错误！未定义书签。
Contact comparison instruction	LD＝	Number equal comparison	\bigcirc	282
	LD＞	Number greater than comparison	\bigcirc	282
	LD＜	Number less than comparison	\bigcirc	282
	LD＞＝	Number greater than or equal to comparison	\bigcirc	282

PLC LX5V Series Programming Manual (V2.2)

	LD<=	Number less than or equal to comparison	\bigcirc	282
Floating number comparison instruction	LD<>	Number unequal comparison	0	282
	AND=	Number equal comparison	0	282
	AND>	Number greater than comparison	\bigcirc	282
	AND<	Number less than comparison	\bigcirc	282
	AND>=	Number greater than or equal to comparison	\bigcirc	282
	AND<=	Number less than or equal to comparison	0	282
	AND<>	Number unequal comparison	0	282
	$\mathrm{OR}=$	Number equal comparison	\bigcirc	282
	OR>	Number greater than comparison	\bigcirc	282
	$\mathrm{OR}<$	Number less than comparison	0	282
	OR>=	Number greater than or equal to comparison	\bigcirc	282
	OR<=	Number less than or equal to comparison	0	282
	OR<>	Number unequal comparison	0	282
	LDD=	Number equal comparison	0	284
	LDD>	Number greater than comparison	\bigcirc	284
	LDD<	Number less than comparison	\bigcirc	284
	LDD>=	Number greater than or equal to comparison	\bigcirc	284
	LDD<=	Number less than or equal to comparison	\bigcirc	284
	LDD<>	Number unequal comparison	0	284
	ANDD=	Number equal comparison	0	284
	ANDD>	Number greater than comparison	\bigcirc	284
	ANDD<	Number less than comparison	\bigcirc	284
	ANDD>=	Number greater than or equal to comparison	0	284
	ANDD<=	Number less than or equal to comparison	\bigcirc	284
	ANDD<>	Number unequal comparison	\bigcirc	284
	ORD=	Number equal comparison	\bigcirc	284
	ORD>	Number greater than comparison	\bigcirc	284
	ORD<	Number less than comparison	0	284
	ORD>=	Number greater than or equal to comparison	\bigcirc	284
	ORD<=	Number less than or equal to comparison	\bigcirc	284
	ORD<>	Number unequal comparison	\bigcirc	284
	LDE=	Floating number equal comparison	\bigcirc	286
	LDE>	Floating number greater than comparison	\bigcirc	286
	LDE<	Floating number less than comparison	\bigcirc	286
	LDE>=	Floating number greater than or equal to comparison	\bigcirc	286
	LDE<=	Floating number less than or equal to comparison	0	286
	LDE<>	Floating number unequal comparison	\bigcirc	286
	ANDE=	Floating number equal comparison	\bigcirc	286
	ANDE>	Floating number greater than comparison	0	286
	ANDE<	Floating number less than comparison	\bigcirc	286
	ANDE>=	Floating number greater than or equal to comparison	\bigcirc	286

	ANDE＜＝	Floating number less than or equal to comparison	\bigcirc	286
	ANDE＜＞	Floating number unequal comparison	\bigcirc	286
	ORE＝	Floating number equal comparison	\bigcirc	286
	ORD＞	Floating number greater than comparison	\bigcirc	286
	ORE＜	Floating number less than comparison	\bigcirc	286
	ORE＞＝	Floating number greater than or equal to comparison	\bigcirc	286
	ORE＜＝	Floating number less than or equal to comparison	\bigcirc	286
	ORE＜＞	Floating number unequal comparison	\bigcirc	286
	LDS＝	String number equal comparison	\bigcirc	288
	LDS＜＞	String number greater than comparison	\bigcirc	288
	ANDS $=$	String number less than comparison	\bigcirc	288
	ANDS＜＞	String number greater than or equal to comparison	\bigcirc	288
	ORS＝	String number less than or equal to comparison	\bigcirc	288
	ORS＜＞	String number unequal comparison	\bigcirc	288
Clock operation instruction	TADD	The addition of clock data	\bigcirc	290
	TSUB	The subtraction of clock data	\bigcirc	292
	TRD	Clock data reading	\bigcirc	294
	TWR	Clock data writing	\bigcirc	295
	HTOS	16－bit data conversion of time data（hour，minute，second \rightarrow second）	\bigcirc	297
	DHTOS	32－bit data conversion of time data（hour，minute，second \rightarrow second）	\bigcirc	298
	HOUR	Hour measuring 16－bit	\bigcirc	299
	DHOUR	Hour measuring 32－bit	0	301
	STOH	17－bit data conversion of time data（second \rightarrow hour，minute，second）	0	错误！未定义书签。
	DSTOH	33－bit data conversion of time data（second \rightarrow hour，minute，second）	0	304
	TCMP	Clock data comparison	\bigcirc	305
	TZCP	Clock data bandwidth comparison	\bigcirc	307
Data control instruction	BAND	BIN 16－bit data dead zone control	\bigcirc	309
	DBAND	BIN 32－bit data dead zone control	\bigcirc	310
	BINDA	BIN 16－bit data \rightarrow Decimal ASCII conversion	\bigcirc	312
	DBINDA	BIN 32－bit data \rightarrow Decimal ASCII conversion	\bigcirc	313
	DABIN	Decimal ASCII \rightarrow BIN conversion	\bigcirc	314
	DDABIN	Decimal ASCII \rightarrow BIN32－bit data conversion	\bigcirc	315
	LIMIT	BIN 16－bit data high and low limit control	\bigcirc	317
	DLIMIT	BIN 32－bit data high and low limit control	\bigcirc	318
	SCL	BIN 16－bit unit scale（coordinate data of each point）	\bigcirc	319
	DSCL	BIN 32－bit unit scale（coordinate data of each point）	\bigcirc	322
	DSCL2	BIN 32－bit unit scale（ X / Y coordinate data）	\bigcirc	328
	ZONE	BIN 16－bit data zone control	0	331
	DZONE	BIN 32－bit data zone control	\bigcirc	332
Data block instruction	BK＋	BIN 16－bit block data addition operation	\bigcirc	333
	DBK＋	BIN 32－bit block data addition operation	\bigcirc	335

	BK－	BIN 16－bit block data subtraction operation	\bigcirc	错误！未定义书签。
	DBK－	BIN 32－bit block data subtraction operation	\bigcirc	错误！未定 义书签。
	BKCMP＝	BIN 16－bit block data comparison	\bigcirc	341
	DBKCMP＝	BIN 32－bit block data comparison	\bigcirc	342
	BKCMP＜＞	BIN 16－bit block data comparison	\bigcirc	343
	DBKCMP＜＞	BIN 32－bit block data comparison	\bigcirc	345
	BKCMP＞	BIN 16－bit block data comparison	\bigcirc	346
	DBKCMP＞	BIN 32－bit block data comparison	\bigcirc	347
	BKCMP＞＝	BIN 16－bit block data comparison	\bigcirc	错误！未定义书签。
	DBKCMP＞＝	BIN 32－bit block data comparison	\bigcirc	错误！未定义书签。
	BKCMP＜	BIN 16－bit block data comparison	\bigcirc	351
	DBKCMP＜	BIN 32－bit block data comparison	\bigcirc	353
	BKCMP＜＝	BIN 16－bit block data comparison	\bigcirc	354
	DBKCMP＜＝	BIN 32－bit block data comparison	\bigcirc	355
	SFRD	Shift read	0	357
	POP	Read from the back of the data table	\bigcirc	359
Data table operation	SFWR	Shift write	\bigcirc	361
	FINS	Data insertion of data sheet	\bigcirc	363
	FDEL	Data deletion of data sheet	\bigcirc	364
10 refresh instruction	REF	10 refresh	\bigcirc	366
O refresh instruction	REFF	Input refresh（with filter setting）	\bigcirc	368
Timing measure instruction	DUTY	Clock pulse generation instruction	\bigcirc	369
Random number instruction	RND	Random number instruction	\bigcirc	371
Preferred instruction	DEXMN	Preferred instruction	\bigcirc	372
High－speed pulse output instruction	ZRN	Origin return	\bigcirc	错误！未定义书签。
	DZRN	Origin return	\bigcirc	错误！未定义书签。
	DSZR	Origin return	\bigcirc	错误！未定义书签。
	DDSZR	Origin return	\bigcirc	错误！未定义书签。
	DVIT	16－bit data relative positioning	\bigcirc	错误！未定义书签。
	DDVIT	32－bit data relative positioning	\bigcirc	错误！未定义书签。

	DRVI	Relative positioning	\bigcirc	383
	DDRVI	Relative positioning	\bigcirc	383
	DRVA	Absolute positioning	\bigcirc	385
	SCL2	BIN16－bit unit scale（ X / Y coordinate data）	\bigcirc	325
	DDRVA	Absolute positioning	\bigcirc	385
	PLSR	Pulse output with acceleration and deceleration	0	387
	DPLSR	Pulse output with acceleration and deceleration	\bigcirc	387
	PLSR2	Multi－speed positioning	\bigcirc	389
	PLSV	Variable speed operation	\bigcirc	395
	DPLSV	Variable speed operation	0	395
	PLSY	Pulse output	\bigcirc	397
	DPLSY	Pulse output	0	397
	PWM	BIN 16－bit pulse output	\bigcirc	399
	PWM	PWM perimeter mode	\bigcirc	400
	G90G01	Absolute position line interpolation instruction	\bigcirc	402
	G91G01	Relative position line interpolation instruction	0	404
	G90G02	Absolute position clockwise circular interpolation instruction	\bigcirc	406
	G91G02	Relative position clockwise circular interpolation instruction	\bigcirc	409
	G90G03	Absolute position counterclockwise circular interpolation instruction	\bigcirc	412
	G91G03	Relative position counterclockwise circular interpolation instruction	0	415
	G90G02H	Absolute position clockwise circular helical interpolation instruction	0	418
	G91G02H	Relative position clockwise circular helical interpolation instruction	\bigcirc	421
	G90G03H	Absolute position counterclockwise circular helical interpolation instruction	\bigcirc	424
	G91G03H	Relative position counterclockwise circular helical interpolation instruction	\bigcirc	427
Electronic cam	DEGEAR	Electronic gear／32 bit hand wheel instruction	\bigcirc	440
	DECAM	32－bit electronic cam instruction	\bigcirc	错误！未定义书签。
	ECAMCUT	Electronic cam table switching instruction	\bigcirc	错误！未定义书签。
	ECAMTBX	Electronic cam table generation instructions	\bigcirc	错误！未定义书签。
Communication instruction	PROTOCOL	Communication port protocol setting	\bigcirc	495
	PORTPARA	Modbus serial port parameter setting	\bigcirc	错误！未定义书签。
	STATION	Modbus station number setting	\bigcirc	499
	RS	External communication instruction	\bigcirc	501
	RS2	External communication instruction	\bigcirc	错误！未定义书签。
	TO	Single word data writing from TO／PLC to the module （16－bit specification）	\bigcirc	510
	DTO	Double word data writing from TO／PLC to the module （16－bit specification）	\bigcirc	错误！未定义书签。

PLC LX5V Series Programming Manual（V2．2）

	FROM	Read single word data from the module（16－bit specification）	\bigcirc	514
	DFROM	Read single word data from the module（32－bit specification）	\bigcirc	516
PID control instruction	CCPID	CCPID calculation	\bigcirc	553
	CCPID＿SHT	CCPID＿SHT calculation	\bigcirc	错误！未定 义书签。
	PID	PID calculation	\bigcirc	550
	LAGCDL	Large time－delay temperature control instruction	\bigcirc	571
	FPID	FPID calculation	\bigcirc	554
String instruction	LEN	String length detection	\bigcirc	574
	LEFT	Extract from the left side of the string	\bigcirc	575
	RIGHT	Extract from the right side of the string	\bigcirc	577
	MIDR	Any extraction from string	\bigcirc	579
	\＄MOV	String transfer	\bigcirc	581
	MIDW	Arbitrary replacement in string	\bigcirc	583
	STR	BIN 16－bit data \rightarrow string conversion	0	586
	DSTR	BIN 32－bit data \rightarrow string conversion	\bigcirc	588
	\＄＋	Combination of strings	\bigcirc	591
	INSTR	String search	\bigcirc	593
	ASC	ASCII data input	\bigcirc	595
Step ladder diagram instruction	STL／RET	Step ladder diagram instruction	\bigcirc	597
	IST	Initialization state	\bigcirc	601
Ethernet instruction	SOCOPEN	Create socket link	\bigcirc	619
	SOCCLOSE	Close socket link	\bigcirc	621
	SOCSEND	Ethernet free－form communication sending	\bigcirc	622
	SOCRECV	Ethernet free－form communication receiving	\bigcirc	623
	SOCMTCP	Ethernet ModbusTCP communication	0	624

Application instruction（by alphabetical order）

Classification	Instruction	Function	LX5V	Reference page
A	LD	Normally open contact operation start instruction	\bigcirc	26
	ABSD	BIN 16－bit data absolute method	\bigcirc	179
	ADD	16－bit addition operation	\bigcirc	26
	ALT	Bit device output inversion	\bigcirc	186
	ANB	Ladder diagram block series connection instruction	\bigcirc	33
	AND	Normally open contact series connection instruction	\bigcirc	26
	AND＜	Number less than comparison	\bigcirc	282
	AND＜＝	Number less than or equal to comparison	\bigcirc	282
	AND＜＞	Number unequal comparison	\bigcirc	282
	AND＝	Number equal comparison	\bigcirc	282

Classification	Instruction	Function	LX5V	Reference page
B	AND＞	Number greater than comparison	\bigcirc	282
	AND＞＝	Number greater than or equal to comparison	\bigcirc	282
	ANDD＜	Number less than comparison	\bigcirc	284
	ANDD＜＝	Number less than or equal to comparison	\bigcirc	284
	ANDD＜＞	Number unequal comparison	\bigcirc	284
	ANDD＝	Number equal comparison	\bigcirc	284
	ANDD＞	Number greater than comparison	\bigcirc	284
	ANDD＞＝	Number greater than or equal to comparison	\bigcirc	284
	ANDE＜	Floating number less than comparison	\bigcirc	286
	ANDE＜＝	Floating number less than or equal to comparison	\bigcirc	286
	ANDE＜＞	Floating number unequal comparison	\bigcirc	286
	ANDE＝	Floating number equal comparison	\bigcirc	286
	ANDE＞	Floating number greater than comparison	\bigcirc	286
	ANDE＞＝	Floating number greater than or equal to comparison	\bigcirc	286
	ANDF	Falling edge pulse series connection instruction	\bigcirc	30
	ANDP	Rising edge pulse series connection instruction	\bigcirc	30
	ANDS＜＞	String number greater than or equal to comparison	\bigcirc	288
	ANDS＝	String number less than comparison	\bigcirc	288
	ANI	Normally closed contact series connection instruction	\bigcirc	26
	ANR	Alarm reset	\bigcirc	142
	ANS	Alarm setting	\bigcirc	错误！未定 义书签。
	ARWS	Arrow switch	\bigcirc	201
	ASC	ASCII data input	\bigcirc	595
	ASCI	HEX code data \rightarrow ASCII conversion	\bigcirc	231
	BAND	BIN 16－bit data dead zone control	\bigcirc	309
	BCC	BIN16 and BIN8 bit data addition，subtraction and exclusive check	\bigcirc	错误！未定义书签。
	BCD	$\mathrm{BIN} \rightarrow \mathrm{BCD}$	\bigcirc	221
	BIN	4－bit BCD \rightarrow BIN	\bigcirc	222
	BINDA	BIN 16－bit data \rightarrow Decimal ASCII conversion	\bigcirc	312
	BK－	BIN 16－bit block data subtraction operation	\bigcirc	错误！未定义书签。
	BK＋	BIN 16－bit block data addition operation	\bigcirc	333
	BKCMP＜	BIN 16－bit block data comparison	\bigcirc	343
	BKCMP＜＝	BIN 16－bit block data comparison	\bigcirc	354
	BKCMP＜＞	BIN 16－bit block data comparison	\bigcirc	343
	BKCMP＝	BIN 16－bit block data comparison	\bigcirc	341
	BKCMP＞	BIN 16－bit block data comparison	\bigcirc	346

Classification	Instruction	Function	LX5V	Reference page
	BKCMP＞＝	BIN 16－bit block data comparison	\bigcirc	错误！未定义书签。
	BMOV	Batch transmission	\bigcirc	错误！未定义书签。
	BON	16－bit data bit judgement	\bigcirc	143
	BREAK	Break cycle	\bigcirc	错误！未定义书签。
	BTOW	Byte unit data merge	\bigcirc	92
C	CALL	Subroutine call	\bigcirc	48
	CCD	Check code	\bigcirc	236
	CCPID	CCPID calculation	\bigcirc	553
	CJ	Conditional jump	\bigcirc	44
	CML	16－bit invert transmission	\bigcirc	83
	CMP	16－bit data comparison output	\bigcirc	85
	CRC	cyclic redundancy check instruction	\bigcirc	175
D	DABIN	Decimal ASCII \rightarrow BIN conversion	\bigcirc	314
	DABSD	BIN 32－bit data absolute method	\bigcirc	181
	DACOS	Single precision real number COS－1 operation	\bigcirc	244
	DADD	32－bit addition operation	\bigcirc	110
	DAND	3－bit data logic AND	\bigcirc	128
	DASIN	Single precision real number SIN－1 operation	\bigcirc	245
	DATAN	Single precision real number TAN－1 operation	\bigcirc	246
	DBAND	BIN 32－bit data dead zone control	\bigcirc	310
	DBIN	8 －bit BCD \rightarrow BIN	\bigcirc	224
	DBINDA	BIN 32－bit data \rightarrow Decimal ASCII conversion	\bigcirc	313
	DBK－	BIN 32－bit block data subtraction operation	\bigcirc	错误！未定义书签。
	DBK＋	BIN 32－bit block data addition operation	\bigcirc	335
	DBKCMP＜	BIN 32－bit block data comparison	\bigcirc	353
	DBKCMP＜＝	BIN 32－bit block data comparison	\bigcirc	355
	DBKCMP＜＞	BIN 32－bit block data comparison	\bigcirc	345
	DBKCMP＝	BIN 32－bit block data comparison	\bigcirc	342
	DBKCMP＞	BIN 32－bit block data comparison	\bigcirc	347
	DBKCMP＞＝	BIN 32－bit block data comparison	\bigcirc	错误！未定 义书签。
	DBON	32－bit data bit judgement	\bigcirc	144
	DCML	32－bit invert transmission	\bigcirc	84
	DCMP	32－bit data comparison output	\bigcirc	DCMP
	DCOS	Single precision real number COS operation	\bigcirc	247

PLC LX5V Series Programming Manual（V2．2）

Classification	Instruction	Function	LX5V	Reference page
	DCOSH	Single precision real number COSH operation	\bigcirc	248
	DDABIN	Decimal ASCII \rightarrow BIN32－bit data conversion	\bigcirc	315
	DDEC	32－bit data decrement	\bigcirc	122
	DDEG	Single precision real number radian \rightarrow angle conversion	\bigcirc	253
	DDIV	32－bit division operation	\bigcirc	118
	DDRVA	Absolute positioning	\bigcirc	385
	DDRVI	Relative positioning	\bigcirc	383
	DDSZR	Origin return	\bigcirc	错误！未定义书签。
	DDVIT	32－bit data relative positioning	\bigcirc	错误！未定义书签。
	DEADD	Single precision real number addition operation	\bigcirc	255
	DEBCD	Binary floating point \rightarrow decimal floating point conversion	\bigcirc	错误！未定 义书签。
	DEBIN	Decimal floating point \rightarrow binary floating point conversion	\bigcirc	95
	DEC	16－bit data decrement	\bigcirc	121
	DECAM	32－bit electronic cam instruction	\bigcirc	错误！未定 义书签。
	DECMP	Single precision real number comparison	\bigcirc	264
	DECO	Decode	\bigcirc	146
	DEDIV	Single precision real number division operation	\bigcirc	258
	DEGEAR	Electronic gear／32 bit hand wheel instruction	\bigcirc	440
	DEMOV	Single precision real data transmission	\bigcirc	260
	DEMUL	Single precision real number multiplication operation	\bigcirc	257
	DENEG	Single precision real number sign inversion	\bigcirc	263
	DESQR	Single precision real square root	\bigcirc	267
	DESTR	Single precision real number \rightarrow string conversion	\bigcirc	268
	DESUB	Single precision real number subtraction operation	\bigcirc	256
	DEVAL	String \rightarrow single precision real number conversion	\bigcirc	273
	DEXMN	Preferred instruction	\bigcirc	372
	DEXP	Single precision real number exponential operation	\bigcirc	277
	DEZCP	Binary floating point bandwidth comparison	\bigcirc	265
	DFLT	BIN integer \rightarrow binary floating point number	\bigcirc	227
	DFMOV	32－bit multicast	\bigcirc	80
	DFROM	Read single word data from the module（32－bit specification）	\bigcirc	516
	DGBIN	Gray code \rightarrow BIN 32－bit data conversion	\bigcirc	239
	DGRY	BIN 32－bit data \rightarrow Gray code conversion	\bigcirc	242
	DHKY	32 digit key input	\bigcirc	209
	DHOUR	Hour measuring 32－bit	\bigcirc	301
	DHSCR	High－speed comparison reset	\bigcirc	72

PLC LX5V Series Programming Manual（V2．2）

Classification	Instruction	Function	LX5V	Reference page
	DHSCS	High－speed comparison set	\bigcirc	错误！未定义书签。
	DHSZ	High－speed zone comparison	\bigcirc	73
	DHTOS	32－bit data conversion of time data（hour，minute，second \rightarrow second）	\bigcirc	298
	DI	Interrupt prohibited	\bigcirc	50
	DINC	32－bit data increment	\bigcirc	120
	DINT	Single precision real number \rightarrow signed BIN 32－bit data	\bigcirc	279
	DIS	4－bit separation of 16－bit data	\bigcirc	170
	DIV	16－bit division operation	\bigcirc	117
	DLIMIT	BIN 32－bit data high and low limit control	\bigcirc	318
	DLOG10	Single precision real number common logarithmic operation	\bigcirc	280
	DLOGE	Single precision real number natural logarithm operation	\bigcirc	错误！未定义书签。
	DMAX	BIN32 bit The maximum value of 32－bit data	\bigcirc	错误！未定 义书签。
	DMEAN	32－bit data mean value	\bigcirc	错误！未定义书签。
	DMIN	BIN32 bit The minimum value of 32－bit data	\bigcirc	错误！未定义书签。
	DMOV	32－bit transmission	\bigcirc	77
	DMUL	32－bit multiplication operation	\bigcirc	116
	DNEG	32－bit complement	\bigcirc	124
	DOR	32－bit data logic OR	\bigcirc	126
	DPLSR	Pulse output with acceleration and deceleration	\bigcirc	387
	DPLSV	Variable speed operation	\bigcirc	395
	DPLSY	Pulse output	\bigcirc	397
	DPRUN	Octal digit transmission（32－bit data）	\bigcirc	243
	DRAD	Single precision real number conversion angle \rightarrow radian conversion	\bigcirc	254
	DRCL	32－bit cycle shift left with carry	\bigcirc	100
	DRCR	32－bit cycle shift right with carry	\bigcirc	96
	DROL	32－bit cycle shift left	\bigcirc	98
	DROR	32－bit cycle shift right	\bigcirc	93
	DRVA	Absolute positioning	\bigcirc	385
	DRVI	Relative positioning	\bigcirc	383
	DSCL	BIN 32－bit unit scale（coordinate data of each point）	\bigcirc	322
	DSCL2	BIN 32－bit unit scale（X／Y coordinate data）	\bigcirc	328
	DSER	32－bit data search	\bigcirc	184
	DSFL	one word shift left of the n－bit data	\bigcirc	108
	DSFR	one word shift right of the n －bit data	\bigcirc	106
	DSIN	Single precision real number SIN operation	\bigcirc	249

PLC LX5V Series Programming Manual（V2．2）

Classification	Instruction	Function	LX5V	Reference page
	FOR～NEXT	Cycle instruction	\bigcirc	错误！未定义书签。
	FPID	FPID calculation	\bigcirc	554
	FROM	Read single word data from the module（16－bit specification）	\bigcirc	514
G	G90G01	Absolute position line interpolation instruction	\bigcirc	402
	G90G02	Absolute position clockwise circular interpolation instruction	\bigcirc	406
	G90G02H	Absolute position clockwise circular helical interpolation instruction	\bigcirc	418
	G90G03	Absolute position counterclockwise circular interpolation instruction	\bigcirc	412
	G90G03H	Absolute position counterclockwise circular helical interpolation instruction	\bigcirc	424
	G91G01	Relative position line interpolation instruction	\bigcirc	404
	G91G02	Relative position clockwise circular interpolation instruction	\bigcirc	409
	G91G02H	Relative position clockwise circular helical interpolation instruction	\bigcirc	421
	G91G03	Relative position counterclockwise circular interpolation instruction	\bigcirc	415
	G91G03H	Relative position counterclockwise circular helical interpolation instruction	\bigcirc	427
	GBIN	Gray code \rightarrow BIN 16－bit data conversion	\bigcirc	239
	GRY	BIN 16－bit data \rightarrow Gray code conversion	\bigcirc	241
H	HEX	ASCII \rightarrow HEX code data conversion	\bigcirc	234
	HKY	Hexadecimal numeric key input	\bigcirc	错误！未定 义书签。
	HOUR	Hour measuring 16－bit	\bigcirc	299
	HTOS	16－bit data conversion of time data（hour，minute，second \rightarrow second）	\bigcirc	297
I	INC	16－bit data increment	\bigcirc	119
	INCD	BIN 16－bit data relative method	\bigcirc	188
	INSTR	String search	\bigcirc	593
	INT	Single precision real number \rightarrow signed BIN 16－bit data	\bigcirc	278
	INV	Invert the result of the operation	\bigcirc	34
L	IST	Initialization state	\bigcirc	601
	LD＜	Number less than comparison	\bigcirc	15
	LD＜＝	Number less than or equal to comparison	\bigcirc	15
	LD＜＞	Number unequal comparison	\bigcirc	15
	LD＝	Number equal comparison	\bigcirc	26
	LD＞	Number greater than comparison	\bigcirc	26
	LD＞＝	Number greater than or equal to comparison	\bigcirc	15
	LDD＜	Number less than comparison	\bigcirc	284
	LDD＜＝	Number less than or equal to comparison	\bigcirc	284
	LDD＜＞	Number unequal comparison	\bigcirc	284
	LDD＝	Number equal comparison	\bigcirc	284
	LDD＞	Number greater than comparison	\bigcirc	284
	LDD＞＝	Number greater than or equal to comparison	\bigcirc	284
	LDE＜	Floating number less than comparison	\bigcirc	286

PLC LX5V Series Programming Manual（V2．2）

Classification	Instruction	Function	LX5V	Reference page
	LDE＜＝	Floating number less than or equal to comparison	\bigcirc	286
	LDE＜＞	Floating number unequal comparison	\bigcirc	286
	LDE＝	Floating number equal comparison	\bigcirc	286
	LDE＞	Floating number greater than comparison	\bigcirc	286
	LDE＞＝	Floating number greater than or equal to comparison	\bigcirc	286
	LDF	Falling edge pulse operation start instruction	\bigcirc	30
	LDI	Normally closed contact operation start instruction	\bigcirc	26
	LDP	Rising edge pulse operation start instruction	\bigcirc	30
	LDS＜＞	String number greater than comparison	\bigcirc	288
	LDS＝	String number equal comparison	\bigcirc	288
	LEFT	Extract from the left side of the string	\bigcirc	575
	LEN	String length detection	\bigcirc	574
	LIMIT	BIN 16－bit data high and low limit control	\bigcirc	317
M	MAX	BIN16 bit The maximum value of 16－bit data	\bigcirc	错误！未定 义书签。
	MC	Main control instruction	\bigcirc	58
	MCR	Main control instruction	\bigcirc	58
	MEAN	16－bit data mean value	\bigcirc	149
	MEF	Pulse the result of the operation	\bigcirc	36
	MEP	Pulse the result of the operation	\bigcirc	36
	MIDR	Any extraction from string	\bigcirc	579
	MIDW	Arbitrary replacement in string	\bigcirc	583
	MIN	BIN16 bit The minimum value of 16－bit data	\bigcirc	错误！未定义书签。
	MOV	16－bit transmission	\bigcirc	76
	MPP	Operation result push，read，pop	\bigcirc	34
	MPS	Operation result push，read，pop	\bigcirc	34
	MRD	Operation result push，read，pop	\bigcirc	34
	MTR	Matrix input	\bigcirc	177
	MUL	16－bit multiplication operation	\bigcirc	115
N	NEG	16－bit complement	\bigcirc	123
0	OR	One normally open contact parallel connection instruction	\bigcirc	26
	OR＜	Number less than comparison	\bigcirc	282
	OR＜＝	Number less than or equal to comparison	\bigcirc	282
	OR＜＞	Number unequal comparison	\bigcirc	282
	$\mathrm{OR}=$	Number equal comparison	\bigcirc	282
	OR＞	Number greater than comparison	\bigcirc	282
	OR＞＝	Number greater than or equal to comparison	\bigcirc	282
	ORB	Ladder diagram block parallel connection instruction	\bigcirc	33
	ORD＜	Number less than comparison	\bigcirc	284

Classification	Instruction	Function	LX5V	Reference page
	ORD<=	Number less than or equal to comparison	\bigcirc	284
	ORD<>	Number unequal comparison	\bigcirc	284
	ORD=	Number equal comparison	\bigcirc	284
	ORD>	Number greater than comparison	\bigcirc	284
	ORD>	Floating number greater than comparison	\bigcirc	284
	ORD>=	Number greater than or equal to comparison	\bigcirc	284
	ORE<	Floating number less than comparison	\bigcirc	286
	ORE<=	Floating number less than or equal to comparison	\bigcirc	286
	ORE<>	Floating number unequal comparison	\bigcirc	286
	ORE=	Floating number equal comparison	\bigcirc	286
	ORE>=	Floating number greater than or equal to comparison	\bigcirc	286
	ORF	Falling edge pulse parallel connection instruction	\bigcirc	30
	ORI	one normally closed contact parallel connection instruction	\bigcirc	26
	ORP	Rising edge pulse parallel connection instruction	\bigcirc	30
	ORS<>	String number unequal comparison	\bigcirc	288
	ORS=	String number less than or equal to comparison	\bigcirc	288
	OUT	Output instruction	\bigcirc	37
	OUT C	Counter output	\bigcirc	63
	OUT HSC	High-speed counter switch	\bigcirc	69
	OUT LC	Long counter output	\bigcirc	64
	OUT T	Timer output	\bigcirc	63
P	PID	PID calculation	\bigcirc	550
	PLF	Falling edge output	\bigcirc	42
	PLS	Rising edge output	\bigcirc	43
	PLSR	Pulse output with acceleration and deceleration	\bigcirc	387
	PLSR2	Multi-speed positioning	\bigcirc	389
	PLSV	Variable speed operation	\bigcirc	395
	PLSY	Pulse output	\bigcirc	397
	POP	Read from the back of the data table	\bigcirc	359
	PORTPARA	Modbus serial port parameter setting	\bigcirc	499
	PR	ASCII code printing	\bigcirc	211
	PROTOCOL	Communication port protocol setting	\bigcirc	495
	PRUN	Octal bit transmission (16-bit data)	\bigcirc	131
	PWM	BIN 16-bit pulse output	\bigcirc	399
	PWM	PWM perimeter mode	\bigcirc	400
R	RAMP	Rotary table proximity control	\bigcirc	190
	RCL	16-bit cycle shift left with carry	\bigcirc	99
	RCR	16-bit cycle shift right with carry	\bigcirc	94
	REF	10 refresh	\bigcirc	366
	REFF	Input refresh (with filter setting)	\bigcirc	368

Classification	Instruction	Function	LX5V	Reference page
	RIGHT	Extract from the right side of the string	\bigcirc	577
	RND	Random number instruction	\bigcirc	371
	ROL	16－bit cycle shift left	\bigcirc	97
	ROR	16－bit cycle shift right	\bigcirc	92
	ROTC	Rotary table proximity control	\bigcirc	192
	RS	External communication instruction	\bigcirc	501
	RS2	External communication instruction	\bigcirc	错误！未定义书签。
	RST	Reset instruction	\bigcirc	40
S	SCL	BIN 16－bit unit scale（coordinate data of each point）	\bigcirc	319
	SCL2	BIN16－bit unit scale（X／Y coordinate data）	\bigcirc	325
	SEGD	numeric key input	\bigcirc	213
	SEGL	7SEG code hour and minute display	\bigcirc	214
	SER	16－bit data search	\bigcirc	183
	SET	Setting instruction	\bigcirc	38
	SFL	n －bit shift left of the 16－bit data	\bigcirc	107
	SFR	n－bit shift right of the 16－bit data	\bigcirc	107
	SFRD	Shift read	\bigcirc	357
	SFTL	n－bit shift left of the n－bit data	\bigcirc	102
	SFTR	n －bit shift right of the n －bit data	\bigcirc	101
	SFWR	Shift write	\bigcirc	361
	SIMASK	Interrupt mask	\bigcirc	54
	SMOV	Bit shift	\bigcirc	81
	SOCCLOSE	Close socket link	\bigcirc	621
	SOCMTCP	Ethernet ModbusTCP communication	\bigcirc	624
	SOCOPEN	Create socket link	\bigcirc	619
	SOCRECV	Ethernet free－form communication receiving	\bigcirc	623
	SOCSEND	Ethernet free－form communication sending	\bigcirc	622
	SORT	16－bit data sorting	\bigcirc	155
	SORT2	16－bit data sorting	\bigcirc	158
	SQR	16－bit square root	\bigcirc	151
	STATION	Modbus station number setting	\bigcirc	499
	STL／RET	Step ladder diagram instruction	\bigcirc	597
	STMR	Special function timer	\bigcirc	195
	STOH	16－bit data conversion of time data（hour，minute，second \rightarrow second）	\bigcirc	错误！未定义书签。
	STR	BIN 16－bit data \rightarrow string conversion	\bigcirc	STR
	SUB	16－bit subtraction operation	\bigcirc	112
	SUM	The ON bits of 16－bit data	\bigcirc	147
	SWAP	16－bit high and low byte swap	\bigcirc	164

PLC LX5V Series Programming Manual（V2．2）

Classification	Instruction	Function	LX5V	Reference page
T	TADD	The addition of clock data	\bigcirc	290
	TCMP	Clock data comparison	\bigcirc	305
	TKY	Numeric key input	\bigcirc	217
	TO	Single word data writing from TO／PLC to the module（16－bit specification）	\bigcirc	510
	TRD	Clock data reading	\bigcirc	294
	TRH	Conversion of wet and dry bulb temperature and humidity	\bigcirc	199
	TSUB	The subtraction of clock data	\bigcirc	292
	TTMR	Teaching timer	\bigcirc	197
	TWR	Clock data writing	\bigcirc	295
	TZCP	Clock data bandwidth comparison	\bigcirc	307
V	UNI	4－bit combination of 16－bit data	\bigcirc	171
	VAL	Character string \rightarrow BIN 16－bit data conversion	\bigcirc	228
W	WAND	16－bit data logic AND	\bigcirc	127
	WDT	Watchdog timer	\bigcirc	61
	WOR	16－bit data logic OR	\bigcirc	125
	WSFL	n－word shift left of the n－word data	\bigcirc	104
	WSFR	n－word shift right of the n－word data	\bigcirc	103
	WSUM	16－bit data sum value	\bigcirc	153
	WTOB	Byte unit data separation	\bigcirc	168
	WXOR	16－bit data logic exclusive 0R	\bigcirc	129
X	XCH	16－bit data exchange	\bigcirc	87
Z	ZCP	16－bit data interval comparison	\bigcirc	89
	ZONE	BIN 16－bit data zone control	\bigcirc	331
	ZRN	Origin return	\bigcirc	错误！未定义书签。
	ZRST	Data batch reset	\bigcirc	172
	ZSET	Data batch set	\bigcirc	174
	\＄＋	Combination of strings	\bigcirc	591
	\＄MOV	String transfer	\bigcirc	581

[^0]: When M0 is ON, the number of ON bits in D0 is counted and stored in D1. The value after D1 is executed is 4.

[^1]: When $\mathrm{M} 0=\mathrm{ON}$, the total of 16-bit data of D 0 to D 2 is saved in [D100, D101], and the accounting result is 18.

[^2]: When $\mathrm{MO}=\mathrm{ON}$, the total of 16 -bit data of DO to D 2 is saved in [D100, D101], and the accounting result is 18 .

[^3]: When $M 0$ is $O N$, the low 4 bits of D0 to D3 are combined and stored in D10, the value is $H 236 F$.

[^4]: (1) DSW operates while M1 (digital switch read input) is ON.
 (2) DSW will operate until the end of one cycle of operation and the instruction execution end flag (SM229) turns ON.

[^5]: - Comparison operations are performed in 32-bit units.

[^6]: Time-minute S-type acceleration and deceleration

[^7]: For detailed user-defined protocol instructions, please refer to "10.7.1 Custom protocol description"

[^8]: Formula: $\mathbf{T}_{\text {now }}=\mathbf{(1 0 0 - \alpha)} \times \mathbf{T}_{\boldsymbol{\alpha}} \boldsymbol{+} \boldsymbol{\alpha} \times \mathbf{T}_{\text {old }}$

