

LX5V-2PT2DAI-BD BD Module Manual

1 Installation

- Before installation, it must be ensured that the PLC host and the related device of the BD module terminal
 wiring are powered off reliably. The module shell is inserted into the BD module slot of PLC host, and then
 locked with two standard screws for fixation.
- Two standard terminal heads are equipped with this BD module. After connecting the wiring, insert them
 into its terminal. After confirming that the host, BD module, wiring, etc. are installed correctly, it can be
 powered on for use.

■ Note:

- When DAI current is output, ensure that the external load resistance is less than 500Ω . If the external load resistance is greater than 500Ω , the output current will be lower than normal value.
- Please install the BD module firmly and fix it on PLC. Poor contact may lead to failure.
- Tightening torque for fixing BD module or PLC top cover is 0.3N.m to0.6N.m. Please tighten it firmly to avoid malfunction.
- You can only use a LX5V-2PT2DAI-BD on the PLC main unit of LX5 series.
- Warning: Cut off the power before installing, removing or wiring the BD module to avoid electric shock or product damage.

2 Appearance and terminal

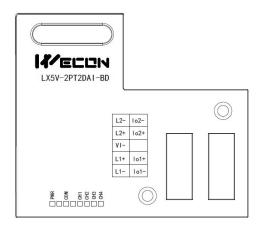


Table2 LED lamp function description

I	N_2PT part	OUT_2DAI part		
2-wir	e/3-wire PT100	Current output range: 4m/		
ther	mal resistance	to 20mA		
	Channel 2 sensor		Channel 2	
L2-	signal input	lo2-	sensor signal	
	negative		output negative	
	Channel 2 sensor		Channel 2	
L2+	signal input	lo2+	sensor signal	
	positive		output positive	
VI-	Sensor common		NC	
VI-	pole		IVC	
	Channel 1 sensor		Channel 1	
L1+	signal input	lo1+	sensor signal	
	positive		output positive	
	Channel 1 sensor		Channel 1	
L1-	Signal input	lo1-	sensor signal	
	negative		output negative	

Indicator lamp	Description
PWR	ON when power-on (when the program is running, it will be ON).
СОМ	It flashes when communicating with PLC normally, and it is OFF when timeout.
CH1	Channel 1 lamp: Always on in range; Flashing outside the range of -100 ℃ to600 ℃; Off when the channel is closed.
CH2	Channel 2 lamp: Always on in range; Flashing outside the range of -100 ℃ to600 ℃; Off when the channel is closed.
CH3	Channel 3 lamp: Set the digital value 0to 2000 (4mA) to 20mA) to be always on; Flashes outside the digital value 0 to 2000 (4mA to 20mA). When the channel is open, the light is on, and the current is output; When the channel is closed, the light is off, and the current is not output (approaching 0).

CH4

Channel 4 lamp: Set the digital value 0 to 2000 (4mA) to 20mA) to be always on; Flashes outside the digital value 0 to 2000 (4mA to 20mA).

When the channel is open, the light is on, and the current is output; When the channel is closed, the light is off, and the current is not output (approaching 0).

3 Specification

- (1) General specification: Same as PLC main unit. (Please refer to the accompanying manual of the PLC main unit.)
- (2) Power supply specification: The power supply is provided internally by PLC.
- (3) Performance specifications:

Project	Description Description					
Power supply	24VDC±10%, 50mA; 5VDC±10%, 70mA (The power supply is provided internally by host)					
	PT part					
Analog input signal	Platinum thermal resistance PT100 sensor (100Ω), 3-wire, 2-channel input (CH1, CH2)					
Sensor current	1mA sensor: 100 Ω (PT100)					
Compensation range	-100 °C to 600 °C (recommended range) Over range display: 32767					
Digital output	-1000 to 6000 (unit 0.1 $^{\circ}\mathrm{C}$)					
Measurement accuracy	0.2℃ to 0.3℃					
Total accuracy	Full range ±0.5% (compensation range)					
Conversion speed	2 channels 50ms					
Conversion features	100 °C 1000 C Temperature input					
	DAI section					
Rated range	0 to 2000: 4mA to 20mA					
Analog output range	DC 4mA to 20mA (external load resistance \leq 500 Ω)					
Digital output	12-bit binary					
Resolution	8uA (4mA to 20mA/2000)					
Comprehensive precision	±0.5% of full scale (4mA to 20mA: ±0.08 mA)					
D/A conversion time	One scan cycle (D/A conversion after ladder diagram END instruction is executed, and BD channel output value is updated)					
Output features	External load is 250Ω . 0 to 2000 was converted to 4mA to 20 mA. Analogoutput AmA Digital input					
Points occupied	0 point (2DAI is not affected by the standard maximum control points of the main PLC because it is operated through the data register)					

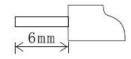
4 Wiring

Wiring instructions:

- (1) 2-wire PT100: When using channel 1, L1- and VI- are shorted with wires, and the two leads of the sensor are connected to L1+ and LI- respectively. Similarly, when using channel 2, L2- and VI- are shorted with wires, and the two leads of the sensor are connected to L2+ and L2- respectively.
- (2) 3-wire PT100: When using channel 1, two leads of the same color are connected to L1- and VI-respectively, and the other lead of different color is connected to L1+. Channel 2 is connected in the same way.

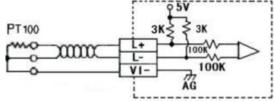
Cut off the power before installing, removing or wiring the BD module to avoid electric shock or product damage.

Note:

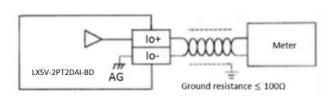

- Do not place signal cables near high voltage power cables or in the same trunk line. Otherwise, it may be disturbed or surged. Keep a safe distance between signal cable and power cable, at least 100mm.
- Ground the shielding of shielded wire or shielded cable. But the ground point and high voltage line cannot be the same.
- Do not connect cables of impermissible size to avoid poor contact or product damage.
- Fix the cable so that no force directly acts on the terminal line or cable connection area.
- The tightening torque of terminal is 0.5Nm to 0.6N.m. Please tighten it to prevent malfunction.
- Do not use empty terminals.

4.1 Applicable cables

- (1) AWG25-16 is used for connection with output device.
- (2) Maximum terminal tightening torque is 0.5N.m to 0.6N.m.
- (3) Using different types of cables may cause poor contact with terminals. Please use pressfit terminals for good contact.


Line number and cross-sectional area

Line number	Cross-sectional area (mm²)	End processing
AWG26	0.1288	Stranded cable: Strip off the sheath, rub the core wire,
		and then connect the cable.
AWG16	1.309	Single-core cable: Strip off the sheath and connect the
AVVGIO	1.309	cable.



4.2 I/O Mode

Thermal resistance PT100 input mode

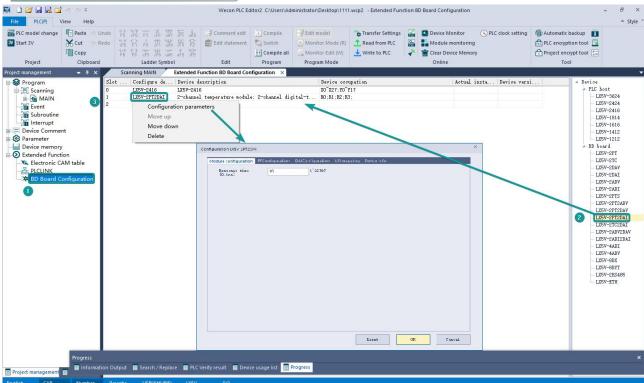
Current output mode

5 Description of PLC device

- (1) When connected to LX3 series PLC, please refer to LX3 series BD module manual.
- (2) When connected to LX5 series PLC, if the firmware version of PLC is lower than 2.051 (excluding 2.051), or BD module is not configured by host computer, it can be controlled by the following system devices:

 Table3Device allocation

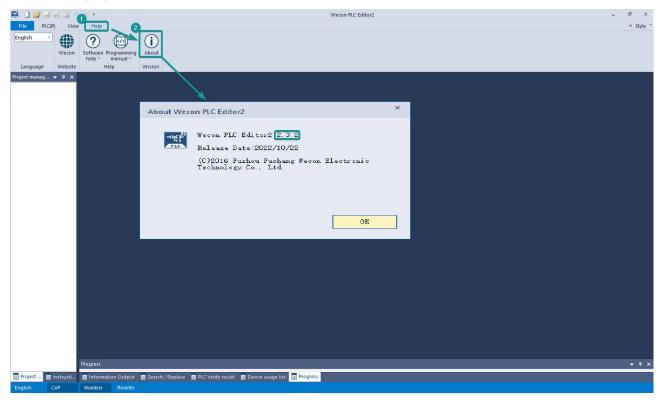
PLC model	BD Model	Device	Description		Devices	Description				
		SM2010	CH1 thermal resistance input channel open flag	OFF: Open	SD2010	The temperature of CH1 at 0.1° C (-100 $^{\circ}$ C to 600 $^{\circ}$ C: -1000 to 6000)				
LX5V	LX5V 2PT2DAI	SM2011	CH2 thermal resistance input channel open flag		SD2011	The temperature of CH2 at 0.1° C (-100 $^{\circ}$ C to 600° C: -1000 to 6000)				
							SM2012	CH3 current output channel open flag	ON: Close	SD2012
		SM2013	CH4 current output channel open flag		SD2013	CH4 digital value 0 to 2000: 4mA to 20mA				

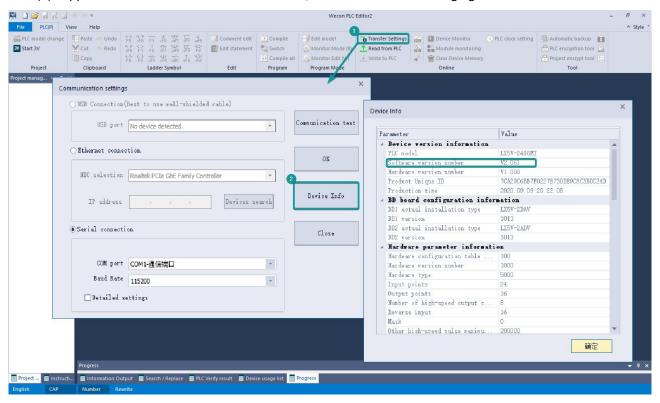

(3) User can select device through I/O mapping to use the configuration function of new BD module. For details, please refer to "6.1 Parameter configuration".

6 Instructions for use

6.1 Parameter configuration

- ① Open the host computer software and create a new project, in "Project Manager" → "Extended Function", double-click "BD Module Configuration" Note to enter "BD settings" interface;
- ② Configure the currently connected PLC (take the LX5V-2416 model as an example) and BD module model on the BD module configuration interface: Select "LX5V-2PTWDAI" in the device bar on the right side of the BD module configuration interface and double-click to add it to the corresponding slot position of PLC (slot number 1 or 2, the software will select slot 1 by default, and right-click to move down to slot 2);
- (3) After adding the BD module to the slot, double-click or right-click to select configuration parameters to enter LX5V-2PT2DAI-BD configuration parameters interface, as shown in the following figure. Configure related parameters on this interface.



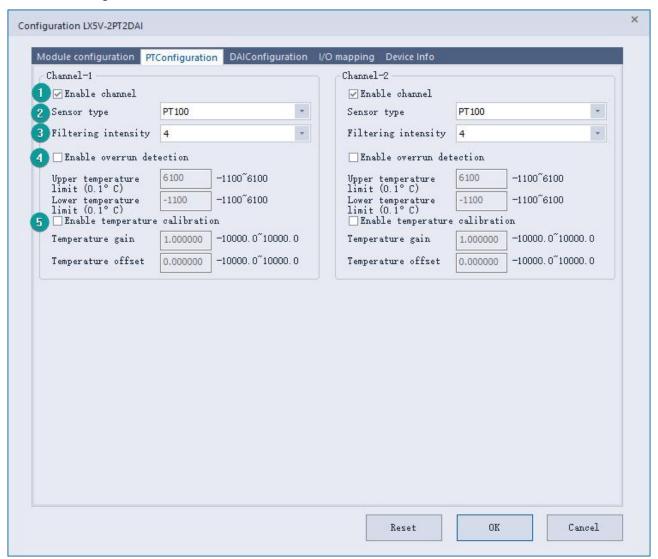

Note: This function is only supported in the following versions of host computer, slave computer and BD module:

(1) Supported host computer software versions: Wecon PLC Editor2 2.1.204 and above, as shown in the following figure:

(2) Supported PLC firmware: 2.051 and above, as shown in the following figure:

(3) Supported BD module version number: 1013 and above, as shown in the following figure:

Slot	Configure de	Device description	Device occupation	Actual insta	Device versi
0	LX5V-2416	LX5V-2416	X0~X27;Y0~Y17	LX5V-2416MT	V2.061
1	LX5V-2PT2DAI	2-channel temperature module; 2-channel digital-t	RO; R1; R2; R3;	LX5V-2PT2DAI	1013
2					



The parameter configuration interface is as follows:

1. Module setting: Set response time (The response time is the interval time between PLC acquisition of BD module data. Range: 0.1ms to 3276.7ms).

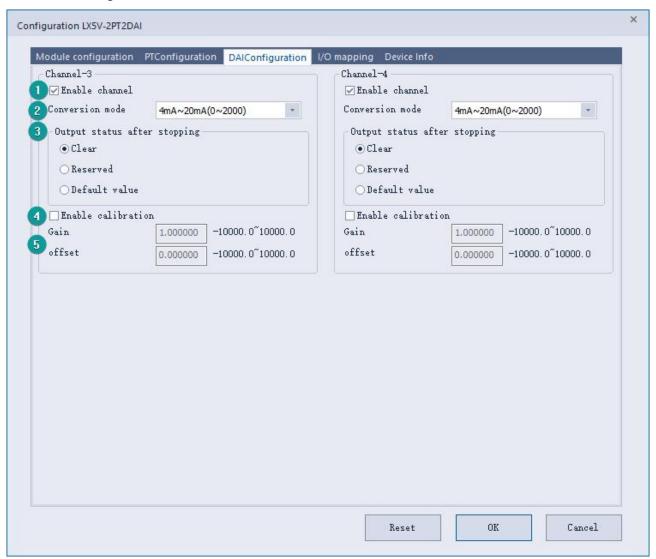
2 PT configuration:

- Check enable channel to set whether to enable the current BD module channel.
- Sensor type: PT100 by default.
- 3 Setting the filtering intensity can reduce the jitter of BD channel value. The default configuration of filter intensity is 4. Level 0 is the lowest and level 9 is the highest. The filter intensity can be adjusted according to actual use.
- 4 Check enable overrun detection to judge that when the upper and lower limits of temperature exceed the current setting temperature, the host computer will prompt an error.
- © Check enable calibration, you could calculate the gain offset according to the following formula to convert the corresponding channel value:
 - Channel value = actual temperature value × gain value + offset value

When the channel value deviates from the actual temperature value, the channel can be calibrated by setting the gain offset, for example:

- The input temperature of control channel is 0° C, the value of acquisition channel is 30 (unit: 0.1° C), and the actual channel value should be 0 (unit: 0.1° C).
- The input temperature of control channel is 500° C, the value of acquisition channel is 5200 (unit: 0.1° C), and the actual channel value should be 5000 (unit: 0.1° C).

Suppose the gain is a, and the offset is b, then
$$\begin{cases} 0 = 30*a + b \\ 5000 = 5200*a + b \end{cases}$$

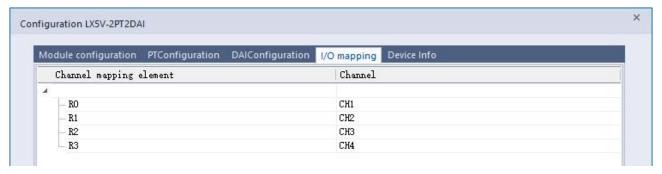

$$\begin{cases} a=0.967118\\ b=-29.0135 \end{cases}$$
 The calibration can be completed by setting the corresponding gain

offset to the current channel.

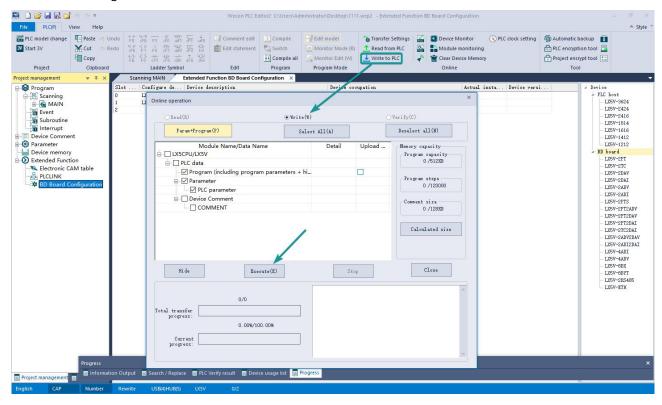
Note: Using gain and offset calibration can only reduce the linear error. Since the PT100 resistance and temperature curve are nonlinear, there is still a certain error in partial temperature after the calibration is successful.

3 DAI configuration:

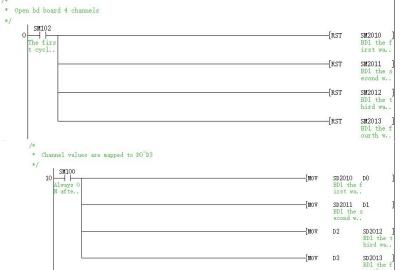
- Check enable channel to set whether to enable the current BD module channel.
- ② The conversion mode is set to DAI conversion mode by default, and the measurement range is $4mA^20mA$ (0~2000).
- 3 Output state after stop: When PLC stops, the output state of BD module channel mainly includes the following three types:
 - Output clear: When PLC stops, the output current of BD module channel is 4mA
 - Output hold: When PLC stops, the channel output of the BD module maintains the digital current value set by the corresponding channel in the current I/O mapping device.
 - Output preset value: When PLC stops, BD module channel outputs preset digital value or preset analog quantity corresponding to the current value.
- 4 Check enable calibration, you could calculate the gain offset according to the following formula to convert the corresponding channel value:
 - Channel input digital value = actual output current corresponds to digital value × gain value + offset value
- (5) When the channel value deviates, you could also set the gain offset to calibrate the channel. For example:
 - When the channel input digital value is 0, the multimeter measures the output current of BD module channel to be 5mA (corresponding digital value is 125).
 - When the channel input digital value is 2000, the multimeter measures the output current of BD module channel to be 5mA (corresponding digital value is 1875).



$$\begin{cases} 0 = 125*a + b \\ 2000 = 1875*a + b \end{cases},$$
 Suppose the gain is a, and the offset is b, then


$$\begin{cases} a=1.142857 \\ b=-142.857 \end{cases}$$
 The calibration can be completed by setting the corresponding gain offset to the current channel.

4. Set I/O mapping. The channels are mapped to R device according to the current number of BD module channels by default. As shown in the following figure, BD module CH1 to CH4 is mapped to device R0 to R3.


5. After the above configuration is completed, check the program, download the configuration to PLC, and STOP→RUN configuration takes effect.

6.2 Ladder Diagram

1. Programming example that does not use the host computer software "BD module configuration" function. For device allocation, please refer to "5 PLC device description".

Open CH1 thermal resistance input

Open CH2 thermal resistance input

Turn on the CH3 current output channel

Turn on the CH4 current output channel

Write the temperature value of CH1 to register D0

Write the temperature value of CH2 to register D1

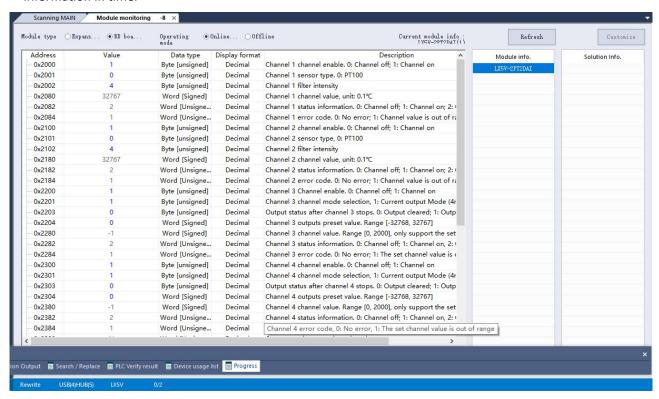
Write the value in D2 to CH3

Write the value in D3 to CH4

2. Programming example using "BD module configuration" function of host computer software:

Map CH1 into R0 device

Map CH2 into R1 device


Set the digital value in D2 to CH3 mapping

Set the digital value in D3 to CH4 mapping

6.3 BD monitoring interface and buffer memory

Open the module monitoring interface, select BD module, select LX5V-2PT2DAI from the list of BD modules on the right to monitor it online, and check the current BD module communication status and error information in time.

(1) PT buffer memory (BFM): used for BD module status monitoring.

<u> </u>		,	((D. 141). asca 101 DD 11101			
BFM Addres s	Power -off hold	Read/ write	Memory name	Default	Range	Description
0x2000	×	R/W	Channel 1 channel enable	1	0 to 1	0: Channel closed; 1: Channel open
0x2001	×	R/W	Channel 1 sensor type	0	0	0: PT100
0x2002	×	R/W	Channel 1 filter intensity	4	0 to 9	0: Minimum filter strength; 9: Maximum filter strength
0x2080	×	R	Channel 1 channel value	32767	-32768 to 32767	Unit: 0.1℃
0x2082	×	R	Channel 1 status information	1	0 to 2	0: Channel closed 1: Channel opened 2: Channel value exceeds the range
0x2084	×	R	Channel 1 error code	0	0 to 1	0: No error; 1: Channel value exceeds the range
0x2100	×	R/W	Channel 2 channel enable	1	0 to 1	0: Channel closed; 1: Channel open
0x2101	×	R/W	Channel 2 sensor type	0	0	0: PT100
0x2102	×	R/W	Channel 2 filter intensity	4	0 to 9	0: Minimum filter strength; 9: Maximum filter strength
0x2180	×	R	Channel 2 channel value	32767	-32768 to 32767	Unit: 0.1℃
0x2182	×	R	Channel 2 status information	1	0 to 2	0: Channel closed 1: Channel opened 2: Channel value exceeds the range
0x2184	×	R	Channel 2 error code	0	0 to 1	0: No error; 1: Channel value exceeds the range

1 DAI buffer memory (BFM): used for BD module status monitoring.

BFM	Power	Read/	Memory name	Default	Range	Description

Addres	-off	write				
S	hold	Wille				
0x2200	×	R/W	Channel 3 channel enable	1	0 to 1	0: Channel closed; 1: Channel open
0x2201	×	R/W	Channel 3 channel mode selection	1	1	1: Current output mode (4mA to 20mA)
0x2203	×	R/W	Output status after channel 3 stops	0	0 to 2	0: Output cleared; 1: Output held 2: Output preset value
0x2204	×	R/W	Channel 3 output preset value	0	-32768 to 32767	
0x2280	×	R	Channel 3 channel value	0	0 to 2000	Only supported in channel mapping device setting
0x2282	×	R	Channel 3 status information	1	0 to 2	0: Channel closed 1: Channel opened 2: Channel value exceeds the range
0x2284	×	R	Channel 3 error code	0	0 to 1	0: No error; 1: Channel value exceeds the range
0x2300	×	R/W	Channel 4 channel enable	1	0 to 1	0: Channel closed; 1: Channel open
0x2301	×	R/W	Channel 4 channel mode selection	1	1	1: Current output mode (4mA to 20mA)
0x2303	×	R/W	Output status after channel 4 stops	0	0 to 2	0: Output cleared; 1: Output held 2: Output preset value
0x2304	×	R/W	Channel 4 output preset value	0	-32768 to 32767	
0x2380	×	R	Channel 4 channel value	0	0 to 2000	Only supported in channel mapping device setting
0x2382	×	R	Channel 4 status information	1	0 to 2	0: Channel closed 1: Channel opened 2: Channel value exceeds the range
0x2384	×	R	Channel 4 error code	0	0 to 1	0: No error; 1: Channel value exceeds the range

② Universal buffer memory (BFM): used to diagnose the communication status of the currently connected BD module.

BFM Address	Power -off hold	Read/ write Functi on	Memory name	Default	Range	Description
0x200	×	R	Current maximum package length	0	0 to 0xFFFF	The maximum length of the currently sent package
0x202	×	R	Number of retransmissions	0	0 to 0xFFFF	Number of retransmissions
0x204	×	R	Number of retransmissions of subpackages	0	0 to 0xFFFF	Number of retransmissions of subpackages
0x206	×	R	Received times of sync frame	0	0 to 0xFFFF	Received times of sync frame
0x208	×	R	Sent times of sync frame	0	0 to 0xFFFF	Sent times of sync frame
0x20A	×	R	Control the number of transmissions	0	0 to 0xFFFF	Control the number of transmissions
0x20C	×	R	Control the number of receptions	0	0 to 0xFFFF	Control the number of receptions
0x20E	×	R	Number of subscriptions sent	0	0 to 0xFFFF	Number of subscriptions sent
0x210	×	R	Number of subscriptions received	0	0 to 0xFFFF	Number of subscriptions received
0x212	٧	R/W	Latest error code	0	Only 0 can be written.	Protocol internal error code, write 0 to clear
0x214	×	R	Number of bytes sent	0	0 to 0xFFFFFFF	Number of bytes sent
0x218	×	R	Number of valid bytes sent	0	0 to 0xFFFFFFF	Number of valid bytes sent

0x21C	×	R	Number of bytes received	0	0 to 0xFFFFFFF	Number of bytes received
0x220	×	R	Number of valid bytes received	0	0 to 0xFFFFFFF	Number of valid bytes received
0x224	×	R	Communication time (unit s)	0	0 to 0xFFFFFFF	Normal communication time since the BD module is powered on