【▲ ELLIN 好团队 好产品 助力智能制造

Preface

This user manual is applicable to Wecon VD3E series bus servo drives.

In order to use this series of servo drives correctly, please read this manual carefully in advance and save it for later use.

During use, if you have any doubt about the function and performance of this equipment, please contact our technicians for relevant assistance to use this equipment smoothly.

The company's products are constantly being improved and upgraded, and the contents of this manual are subject to change without notice.

This manual is suitable for introductory and use reference books for elementary and intermediate readers. At the same time, all interpretation rights of this manual belong to our company.

The danger caused by failure to operate as required may result in serious injuries or even death.

The danger caused by failure to operate as required may result in moderate or minor injuries, and equipment damage.

User Manual Change Record

Date	Changed Changed content version		Applicable models
October 2022	V1.0	First edition	★ VD3E-0□□SA1G model
August 2023	ν2.0	Chapter 7: Add the supplementary explanation of touch probe function and DI touch probe function; Add homing mode 35, and add 60E6 to set absolute coordinates and relative coordinate modes; Chapter 8: Add 60E0, 60C5h and 60C6h object dictionaries; Delete 6071, 6074, 607D: 01 object dictionaries; Modify the data range and default value of some object dictionaries; U0-57 is added to support 64-bit absolute position display; Add U0-48 servo power-on counting description, U0-52 encoder bit monitoring value; Update the object dictionary table and add 6000 groups of data format standard device sub-protocol areas; Add 2001-17, 2000-18, 2000-1F and other object dictionaries; Add JOG acceleration time 2001-25 and JOG deceleration time 2001-26; Add 2004-12 speed feedback filter time; Add 2004-05 motor model and 200A-07 manual motor code; Speed feedforward filtering time P2-10 default value and range unit changed; Torque limit source P1-14 added: EtherCAT control; Chapter 10: Add Er.43 driver overload fault and A-80 power limit alarm; Er.27 [Encoder disconnected] changed to be unclearable. Modify the fault logic and troubleshooting method of A-91; Add temporary solutions to A-93; Chapter 11: Add the hardware requirements of European EMC	★VD3E-0□□SA1G model

	certification standard;	
	Add EMC input noise filter recommendation;	
	Add cable and wiring requirements, etc.	

ECUN 好团队 好产品 助力智能制造

Content

Chapter 1 Safety Reminder	1
1.1 Safety Precautions	
1.2 Precautions for Storage and Transportation	2
1.3 Precautions During Installation	2
1.4 Precautions During Wiring	2
1.5 Precautions During Operation	
1.6 Precautions During Maintenance and Inspection	
Chapter 2 Product Information	5
2.1 Servo Drives	5
2.1.1 Servo Drive Model Naming	5
2.1.2 The Composition of Servo Drive	6
2.1.3 Specification of Servo Drive	7
2.2 Servo Motors	
2.2.1 Servo Motor Model Naming	10
2.2.2 Composition of Servo Motor	11
2.2.3 Specification of Servo Motor	
2.3 Servo System Wiring Diagram	
Chapter 3 Installation of Servo Drive and Motor	14
3.1 Installation of Servo Drive	
3.1.1 Dimensions (Unit: mm)	
3.1.2 Installation Site	
3.1.3 Installation Environment	15
3.1.4 Installation Precautions	15
3.2 Installation of Servo Motor	
3.2.1 Dimensions (unit: mm)	
3.2.2 Installation Site	20
3.2.3 Installation Environment	20
3.2.4 Installation Precautions	21
Chapter 4 Wiring	22
4.1 Main Circuit Wiring	22
4.1.1 Main Circuit Terminals	22
4.1.2 Power Wiring Example	
4.1.3 Precautions for Main Circuit Wiring	
4.2 Power Line Connection of Servo Drive and Servo Motor	27
4.2.1 Power Cable	27
4.2.2 Brake Device Cable	
4.3 Encoder Cable Connection of Servo Drive and Servo Motor	

4.4 Servo Drive Control Input and Output Terminal Wiring	
4.4.1 CN2 Pin Distribution	
4.4.2 Digital Input and Output Signals	
4.4.3 Brake Wiring	
4.5 Communication Signal Wiring	
Chapter 5 Panel Composition	40
5.1 Panel Composition	
5.2 Panel Display	
5.2.1 Display Switching	
5.2.2 Status Display	
5.2.3 Parameter Display	
5.2.4 Fault Display	
5.2.5 Monitor Display	
5.3 Panel Operation	
5.3.1 Parameter Setting	
5.3.2 Jog Operation	
5.3.3 Factory Reset	
Chapter 6 Communication Network Configuration	52
6.1 EtherCAT Operation	
6.2 EtherCAT Communication Fundamentals	53
6.2.1 EtherCAT Communication Specification	53
6.2.2 Communication Structure	
6.2.3 State Machines	54
6.2.4 Communication Indicator Lamp	55
6.2.5 Process Data PDO	
6.2.6 Email Data SDO	
6.2.7 Distributed Clock	
6.2.8 Status Indication	
6.2.9 Introduction to CiA402 Control	
6.2.10 Basic Characteristics	
Chapter 7 Operation Running	65
7.1 Basic Settings	
7.1.1 Pre-operation Inspection	65
7.1.2 Power on	65
7.1.3 Jog Operation	65
7.1.4 Rotation Direction Selection	
7.1.5 Braking Resistance	67
7.1.6 Servo Operation	67

	68
7.1.8 Brake Holding Device	69
7.2 Servo State Setting	76
7.2.1 Control Word	77
7.2.2 Status Word	78
7.3 Servo Mode Settings	80
7.3.1 Servo Mode Introduction	80
7.3.2 Mode Switching	80
7.3.3 Communication Cycles Supported by Different Modes	80
7.4 Cyclic Synchronous Position Mode (CSP)	81
7.4.1 Control Block Diagram	81
7.4.2 Related Objects	82
7.4.3 Related Function Settings	83
7.4.4 Recommended Configuration	
7.5 Homing Mode (HM)	85
7.5.1 Control Block Diagram	85
7.5.2 Related Objects	86
7.5.3 Related Function Settings	86
7.5.4 Introduction of Zero Return Mode	87
Chapter 8 Object Dictionary	137
8.1 Overview of Object Dictionaries	137
8.1.1 Object Dictionary Area Allocation	
8.1.2 Explanation of Related Terms in Object Dictionary	137
8.2 Communication Sub-protocol Area (1000h to 1FFFh)	139
8.3 Vendor Customized Area (2000h to 2FFFh)	146
Group 2000h: Basic Settings	146
Group 2001h: Control Parameters	150
	153
Group 2002h: Gain Adjustment	
Group 2002h: Gain Adjustment Group 2003h: Self-adjusting Parameters	154
Group 2002h: Gain Adjustment Group 2003h: Self-adjusting Parameters Group 2004h: Vibration Suppression	154 157
Group 2002h: Gain Adjustment Group 2003h: Self-adjusting Parameters Group 2004h: Vibration Suppression Group 2005h: Signal Input and Output	154 157 159
Group 2002h: Gain Adjustment Group 2003h: Self-adjusting Parameters Group 2004h: Vibration Suppression Group 2005h: Signal Input and Output. Group 2006h: DIDO Configuration	154 157 159 161
Group 2002h: Gain Adjustment Group 2003h: Self-adjusting Parameters Group 2004h: Vibration Suppression Group 2005h: Signal Input and Output. Group 2006h: DIDO Configuration Group 200Ah: Auxiliary Function	154 157 159 161 166
Group 2002h: Gain Adjustment Group 2003h: Self-adjusting Parameters Group 2004h: Vibration Suppression Group 2005h: Signal Input and Output. Group 2006h: DIDO Configuration Group 200Ah: Auxiliary Function Group 200Dh Communication Input and Output Terminal	
Group 2002h: Gain Adjustment Group 2003h: Self-adjusting Parameters Group 2004h: Vibration Suppression Group 2005h: Signal Input and Output Group 2006h: DIDO Configuration Group 200Ah: Auxiliary Function Group 200Ah: Auxiliary Function Group 200Dh Communication Input and Output Terminal Group 201Eh Universal Monitoring	
Group 2002h: Gain Adjustment Group 2003h: Self-adjusting Parameters Group 2004h: Vibration Suppression Group 2005h: Signal Input and Output Group 2006h: DIDO Configuration Group 200Ah: Auxiliary Function Group 200Ah: Auxiliary Function Input and Output Terminal Group 201Eh Universal Monitoring	
Group 2002h: Gain Adjustment Group 2003h: Self-adjusting Parameters Group 2004h: Vibration Suppression Group 2005h: Signal Input and Output Group 2006h: DIDO Configuration Group 200Ah: Auxiliary Function Group 200Ah: Auxiliary Function Group 200Dh Communication Input and Output Terminal Group 201Eh Universal Monitoring 201Fh Group: Warning Monitoring	

Chapter 9 Adjustments	204
9.1 Overview	
9.2 Inertia identification	205
9.3 Gain Adjustment	207
9.3.1 Automatic Gain Adjustment	207
9.3.2 Manual Gain Adjustment	209
9.3.3 Feedforward Gain	
9.4 Mechanical Resonance Suppression	
9.4.1 Mechanical Resonance Suppression Methods	
9.4.2 Notch Filter	
Chapter 10 Malfunctions	217
10.1 Faults and Warnings Handling at Startup	217
10.2 Faults and Warnings Handling During Operation	217
10.2.1 Overview	217
10.2.2 Fault and Warning Code Table	219
10.2.3 Troubleshooting	222
Chapter 11 Appendix	258
11.1 Object Dictionary List	258
Group 1000	258
Group 2000	
Group 2001	
Group 2002	
Group 2003	
Group 2004	
Group 2005	
Group 2006	
Group 200A	
Group 200D	
DI/DO channel function definition	
Group 201E	
Group 201F	
Group 2020	
Group 6000	
11.2 List of Fault and Warning Codes	
11.3 Wire	
11.4 Correspondence of International Standards	

Chapter 1 Safety Reminder

1.1 Safety Precautions

This section describes the important items that users must observe, such as product confirmation, storage, transportation, installation, wiring, operation, inspection, and disposal. Please follow the steps required by this manual for trial operation.

◆After the power is turned off for more than 5 minutes and the power indicator is off, use a multimeter to confirm that the voltage across the high-voltage capacitor has dropped to a safe voltage, and then proceed with the disassembly and assembly of the drive, otherwise the residual voltage may cause electric shock.

◆ Please never touch the inside of the servo drive, otherwise it may cause electric shock.

◆ Please insulate the connection part of the power terminal, otherwise it may cause electric shock.

◆ The grounding terminal of the servo drive must be grounded, otherwise it may cause electric shock.

◆ Please install the servo drive, servo motor, and external braking resistor on non-combustible materials, otherwise it may cause a fire.

◆ Be sure to connect an electromagnetic contactor and a non-fuse circuit breaker between the power supply and the main circuit power supply of the servo drive. Otherwise, when the equipment fails, it may cause fire because it cannot cut off the large current.

◆ In the servo drive and servo motor, please do not mix with oil, grease and other flammable foreign objects and screws, metal pieces and other conductive foreign objects, otherwise it may cause a fire.

◆ When the servo motor is connected to the machine, in case of any error in operation, it will not only cause damage to the machine, but also sometimes cause personal safety accidents.

◆ Do not damage or pull the cable forcefully, do not impose excessive force on the cable, or place heavy objects underneath, otherwise electric shock may occur, causing the product to stop operating or burn out.

• Do not use the brake of the brake motor for normal braking, otherwise it may cause a malfunction.

• Except for the designated operator, please do not set up, disassemble and repair the equipment, otherwise it may cause electric shock or injury.

◆ Do not remove the cover, cables, connectors and optional accessories while the power is on, otherwise it may cause electric shock.

◆ Please install a stop device on the machine side to ensure safety.

◆ Please take measures to ensure that your personal safety will not be endangered when restarting, otherwise it may cause injury.

◆ Do not modify this product, otherwise it may cause personal injury or mechanical damage.

1.2 Precautions for Storage and Transportation

Notice		
Please keep and install the product in the following environment:		
Places without direct sunlight;		
Places where the ambient temperature does not exceed product specifications;		
Places where the relative humidity does not exceed product specifications;		
Places where condensation will not occur due to rapid changes in temperature;		
Places free of corrosive gas and flammable gas;		
Places without combustible materials nearby;		
Places with less dust, salt and metal powder;		
Places where there is no splash of water, oil, medicine, etc.;		
igoplus Places where vibration or shock will not affect the product (places that exceed product		
specifications);		
Places that will not be exposed to radiation;		
Storage or installation in environments other than the above may cause product failure or damage:		
Please use the correct method for handling according to the weight of the product;		
$igodoldsymbol{\Phi}$ Do not hold the motor cable or motor shaft for transportation;		
igoplus When operating the servo unit and servo motor, please pay attention to sharp parts such as the		
corners of the device.		
1.3 Precautions During Installation		

◆ Do not install this product in a p2lace free from water splashed or in an environment prone to corrosion;

◆ Please be sure to comply with the device installation direction, otherwise it may cause device failure;

♦ When installing, please make sure to keep the specified distance between the servo drive and the inner surface of the electric cabinet and other machines, otherwise it may cause fire or device failure;

◆ Do not apply excessive impact, otherwise it may cause equipment failure;

◆ Do not sit on the product or place heavy objects on it, otherwise it may cause personal injury;

◆ Do not use this product near flammable gases and combustibles, otherwise there may be a risk of electric shock or fire;

◆ Do not block the suction and exhaust ports, and do not allow foreign objects to enter the product, otherwise it may cause device failure or fire due to the aging of internal components.

1.4 Precautions During Wiring

◆ Do not connect the three-phase power supply to the output terminals U, V, W of the servo drive, otherwise it may damage the device or cause a fire;

◆ Please connect the output U, V, W of the servo drive and the U, V, W of the servo motor directly. Do not use the electromagnetic contactor during the connection, otherwise it may cause abnormal operation or malfunction of the device;

◆ When the DO output terminals are connected to the relay, please pay attention to the polarity of the freewheeling diode, otherwise the drive may be damaged and the signal can not be output normally;

◆ Please fix the power terminal and the motor terminal firmly, otherwise it may cause a fire hazard;

◆ Do not connect the 220V servo unit directly to the 380V power supply;

◆ Do not pass the power line and signal line through the same pipe or bundle them together. When wiring, the power line and signal line should be placed at an interval of more than 30cm;

◆ Use twisted-pair shielded cables for signal cables and encoder cables, and the shielding layer should be grounded at both ends;

◆ The wiring length of the signal input line is recommended to be within 3M, and the wiring length of the encoder is recommended to be within 15M;

♦ When using in the following places, please take adequate shielding measures.

- When interference occurs due to static electricity.
- Places where strong electric or magnetic fields are generated;
- Places where there may be radiation;
- ♦ When checking the status, please make sure that the CHARGE indicator is off.

1.5 Precautions During Operation

• During trial operation, in order to prevent accidents, please run the servo motor without load (not connected to the drive shaft), otherwise it may cause injury.

♦ When the servo motor is running, do not touch its rotating parts, otherwise it may cause injury.

◆ Be sure to set the correct rotational inertia ratio, otherwise it may cause vibration.

◆When it is installed on the supporting machine and starts to run, please set the user parameters in accordance with the machine in advance. If the operation is started without parameter setting, the machine may lose control or fail.

•When installing on the supporting machinery and starting to run, please put the servo motor in a state where it can be stopped in an emergency at any time, otherwise you may get injured.

•When using a servo motor on a vertical axis, please install a safety device to prevent the workpiece

from falling under states such as alarm and overtravel. In addition, please perform servo lock stop setting when overtravel occurs, otherwise the workpiece may fall in overtravel state.

◆Since extreme user parameter adjustments and setting changes will cause the servo system to become unstable, please never make settings, otherwise it may cause injury.

• When an alarm occurs, reset the alarm after removing the cause and ensuring safety, and restart the operation, otherwise it may cause injury.

• Except for special purposes, do not change the maximum speed threshold (P01-10). If user change it carelessly, it may damage the machine or cause injury.

◆ When the power is turned on and within a period of time after the power is cut off, the cooling fin of the servo drive, the external braking resistor, the servo motor, etc. may be exposed to high temperature. Please do not touch it, otherwise it may cause burns.

◆ If the power supply is restored after an instantaneous power failure occurs during operation, the machine may restart suddenly, so please do not stay close to the machine, and press the stop button when the power is off, and operate after the power supply is stable.

1.6 Precautions During Maintenance and Inspection

◆ The power on and off operations should be carried out by professional operators.

•When testing the insulation resistance of the drive, please cut off all the connections with the drive first, otherwise it may cause the drive to malfunction.

◆ Do not use gasoline, alcohol, acid and alkaline detergents to avoid discoloration or damage to the casing.

◆When replacing the servo drive, please transfer the user parameters of the servo drive to be replaced to the new servo drive before restarting operation, otherwise the machine may be damaged.

◆ Do not change the wiring when the power is on, otherwise it may cause electric shock or injury.

◆ Do not disassemble the servo motor, otherwise it may cause electric shock or injury.

Chapter 2 Product Information

2.1 Servo Drives

2.1.1 Servo Drive Model Naming

Figure 2-1 Servo drive model

Wecon VD3E series bus servo drive nameplate and appearance are shown in Figure 2-2 and Figure 2-3

Figure 2-2Type A servo drive nameplate and appearance

2.1.2 The Composition of Servo Drive

Figure 2-5Composition of VD3E type B servo drive

Remarks: When using external braking resistor or internal braking resistor, special short-circuit treatment is required, which is shown in Figure 2-6.

Figure 2-6Short circuit schematic diagram of braking resistance

2.1.3 Specification of Servo Drive

(1) Electrical specification

Project	VD3E Type A		VD3E	Туре В
Model	VD3E-010SA1G	VD3E-014SA1G	VD3E-016SA1G	VD3E-019SA1G
Maximum output current	10A	14A	16A	19A

Control power		
supply	-	Single-phase AC 200V ~ 240V 50/60 Hz
Power supply	Single-phase AC 200V ~ 240V 50/60 Hz	
Braking resistor	Support built-in and external connection	

Table 2-2Electrical specification for type B servo drives

Project	VD3E Type B		
Model	VD3E-021SA1G	VD3E-025SA1G	VD3E-030SA1G
Maximum output			
current	21A	25A	30A
Control power			
supply	Single-phase AC 200V ~ 240V 50/60 Hz		Hz
Power supply	Three-phase AC 200V ~ 240V 50/60 Hz		
Braking resistor	Support built-in and external connection		

(2) Basic specifications

Project		Description	
	Control method	IGBT PWM control, sine wave current drive mode	
Basic	Drive model	VD3E-0□□SA1G	
c info	Encoder feedback	17-bit absolute value encoder	
orma		23-bit absolute value encoder	
ation	Operating temperature	0 ~ 45 °C	
	Operating humidity	Below 90% RH (no condensation)	
Ва	Communication protocol	EtherCAT protocol	
sic Pe	Support services	СоЕ	
rforr	Synchronization mode	DC	
mance of EtherCAT Slave Station	Physical layer	100BASE-TX	
	Baud rate	100Mbit/s	
	Duplex mode	Full duplex	
	Topological structure	Ring, linear	
	Slave station number	Less than 128 sets suggested for actual working	
	Synchronous jitter	1 μs	
Ethe Confij on l	FMMU unit	8	
gurati Unit	Storage synchronization snap-in	8	

	Process data RAM	8KB
	Distributed clock	64-bit
	EEPROM capacity	32Kbit
Input out	Digital input (DI) signal	6-channel DI
t and put	Digital output (DO) signal	3-channel DO

(3) Support function

	Project	Description
п	Digital input (DI) signal	Servo Enable (S-ON), Fault and Warning Clear (A-CLR), Forward Drive Disable (POT), Reverse Drive Disable (NOT), Error Counter Clear (CL), Emergency Stop (E-STOP), Origin Signal (HOMEORG)
put and output	Digital input (DI) signal	Servo Ready (RDY), Fault Signal (ALM), Speed Limited (V-LIMIT) Brake output (BRK-OFF), warning signal (WARN warning signal), servo running state output (SRV-ST), rotation detection (TGON), communication VDO1 output (COM_VDO1), communication VDO2 output (COM_VDO2), communication VDO3 output (COM_VDO3) ZSP (Zero Speed Signal), Positioning Complete (P-COIN), Speed Approach (V-NEAR), Torque Arrival (T-COIN)
	Electronic gear ratio	The range is "0.001 × Encoder Resolution/10000, 4000 × Encoder Resolution/10000"
Built-in fu	Protective function	Overcurrent protection, overvoltage protection, undervoltage protection, overload protection, main circuit lack of phase protection, Overtemperature protection, abnormal parameter protection, encoder protection, others
nctior	LED display function	Panel 5-bit LED
	Others	Gain adjustment, fault and alarm recording, inching operation

2.2 Servo Motors

2.2.1 Servo Motor Model Naming

Figure 2-7Naming of servo motor

Figure 2-8Servo motor nameplate

2.2.2 Composition of Servo Motor

Figure 2-10Composition of 110/130 flange motor

2.2.3 Specification of Servo Motor

Wecon motor model	Motor Code	Flange size	Rated power (KW)	Rated torque (N.m)	Voltage (V)	Rated speed (rpm)	Encoder type	Brake function
WE130M-10025S-A1 F	A091	130	1.0	4.0	220	2500	17-bit single turn absolute magnetic	Not supported
WE130M-15025S-A1	A111	130	1.5	6.0	220	2500	17-bit single turn	Supported

Table 2-3Wecon motor specifications

Chapter 1 Safety reminder

G							absolute magnetic	
WE130M-26025S-C1 F	C191	130	2.6	10	220	2500	17-bit multi turn absolute magnetic	Not supported
WE80M-12030S-C1G	C231	80	1.2	4.0	220	3000	17-bit multi turn absolute magnetic	Supported
WE110M-18030S-D2 G	D131	110	1.8	6.0	220	3000	23-bit multi turn absolute optical	Supported
WE130M-23015S-D2 F	D161	130	2.3	15.0	220	1500	23-bit multi turn absolute optical	Not supported

Note: Only part of the motor models are displayed, please refer to the [Model Selection Manual] for details.

2.3 Servo System Wiring Diagram

Figure 2-11Wiring diagram of single-phase 220V servo drive system

Notice
(1) When using external brake, need to remove the shorting cap or short wiring between terminal C and D of
servo drive before operating!
2 Pay attention to the power capacity of the brake power supply. When powering multiple brake devices at the
same time, if the power supply capacity is insufficient, the brake will fail!
(3) It is strictly forbidden to use electromagnetic brake for motor operation and stop operation! Otherwise, the
instantaneous high voltage generated by the motor may break down the contactor!
4 In order to prevent cross-shock accidents in the servo system, please use a fuse or a circuit breaker for wiring
on the input power supply!

Chapter 3 Installation of Servo Drive and Motor

3.1 Installation of Servo Drive

3.1.1 Dimensions (Unit: mm)

Figure 3-2Installation Dimensions of VD3E Type B Servo drive

3.1.2 Installation Site

①Please install the device in an installation cabinet free from sunlight and rain;

②In a place without vibration;

③Please do not install in the environment exposed to high temperature, humidity, dust and metal dust;

(4) Do not use this product near corrosive and flammable gases such as hydrogen sulfide, chlorine, ammonia, sulfur, chlorinated gas, acid, alkali, salt or combustible materials.

3.1.3 Installation Environment

The installation environment of the servo drive has a direct impact on the normal function of it and its service life. Therefore, the installation environment of servo drive must meet the following conditions:

Project	Specification
Ambient temperature	-10°C~40°C (no freezing)
Ambient humidity	-20%~90%RH (no condensation)
Storage temperature	-20°C~60°C
Storage humidity	-20%~90%RH (no condensation)
Protection level	IP65
Vibration	Less than 0.5G (4.9 m/s) ²), 10 \sim 60Hz (discontinuous operation)
Power Systems	TN system*

Note: The neutral point of the power system is directly connected to the ground, and the exposed metal components are connected to the ground through a protective grounding conductor.

3.1.4 Installation Precautions

(1) Installation specifications

In order to achieve a good cooling cycle effect, ensure that there is enough ventilation space around it when installing the servo drive, and be sure to comply with the installation standards in the control cabinet shown in the figure below, otherwise it may cause the drive to malfunction. Please refer to Figure 3-3 for the typical minimum installation size.

(A) VD3E type A drive

(B) VD3E type B drive

Figure 3-3Minimum mounting size

(2) Parallel installation

When multiple units are installed in parallel, the minimum distance between each other should be 20mm, and the distance between each other in vertical dimension should be at least 100mm. Please refer to Figure 3-4 and Figure 3-5 for details. To prevent temperature rise, a cooling fan can be placed on the upper part. For smaller spacing installation, please consult our company.

Figure 3-6 Parallel installation dimensions of multiple type A drives

Chapter 3 Installation of servo drive and motor

Figure 3-7 Parallel installation dimensions of multiple type B drives

(3) Installation direction

When installing the servo drive, face the front (panel interface) of the servo drive to the operator so that the servo drive is perpendicular to the wall.

3.2 Installation of Servo Motor

3.2.1 Dimensions (unit: mm)

(1) Installation dimensions of WD series 60 flange servo motor

Specification	WD series 60	flange motor
Rated torque (N.m)	0.64	1.27
LA without brake (mm)	75	92
LA with brake (mm)	104.5	121.5

Figure 3-8 WD series 60 flange servo motor installation dimension drawing

(2) Installation dimensions of 80 flange servo motor

1 WD series motor

Specification	WD series 80 flange motor
Rated torque (N.m)	2.39
LA without brake (mm)	98.5
LA with brake (mm)	132.5

Figure 3-9Installation dimension drawing of WD series 80 flange servo motor

2WE series motor

Specification	WE series 80 flange motor						
Rated torque (N.m)			3.5	4.0			
LA without brake (mm)			179	191			
LA with brake (mm)			221	233			

Figure 3-10Installation dimension drawing of WE series 80 flange servo motor

(3) Installation dimensions of WE series 110 flange servo motor

Specification	WE series 110 flange motor							
Rated torque (N.m)	4	5	6					
LA without brake (mm)	189	204	219					
LA with brake (mm)	254	269	284					

Figure 3-11Installation dimensions of WE series 110 flange servo motor

Chapter 3 Installation of servo drive and motor

(4) Installation dimensions of WE series 130 flange servo motor

Specification					WE ser	ies 130 flange	motor		
Rated torque (N m)	Δ	5	6	77		10		1	5
Nated torque (N.III)	-	5	0	7.7		1500rpm	2500rpm	1500rpm	2500rpm
LA without brake (mm)	166	171	179	192	2	213	209	241	231
LA with brake (mm)	226	231	239	252	276		276	304	294

3.2.2 Installation Site

1. Do not use the motor near corrosive, flammable gas environment, combustible materials such as hydrogen sulfide, chlorine, ammonia, sulfur, chlorinated gas, acid, alkali, salt, etc.

2. Do not remove the oil seal in places where there is grinding fluid, oil mist, iron powder, cutting, etc.

3. Do not use the motor in a closed environment. Closed environment will cause high temperature of the motor and shorten the service life.

4. A place far away from heat sources such as stoves.

3.2.3 Installation Environment

The installation environment of the servo motor has a direct impact on the normal function of it and its service life. Therefore, the installation environment of the servo motor must meet the following conditions:

Project	Specification
Ambient temperature	-10°C~40°C (no freezing)
Ambient humidity	-20%~90%RH (no condensation)
Storage temperature	-20°C~60°C
Storage humidity	-20%~90%RH (no condensation)
Protection level	IP65
Vibration	Less than 0.5G (4.9m/s2), 10~60Hz (non-continuous operation)

3.2.4 Installation Precautions

Project	Specification
Rust inhibitor	Before installation, please wipe clean the "anti-rust agent" on the shaft extension end of the servo motor, and then do the relevant anti-rust treatment.
Encoder	When installing a pulley on a servo motor shaft with a keyway, use a screw hole at the shaft end. In order to install the pulley, first insert the double-headed nail into the screw hole of the shaft, use a washer on the surface of the coupling end, and gradually lock the pulley into the pulley with a nut;
nation	See shafts without leaves, adopt friction equaling on similar methods
notice	Show sharts without keyway, adopt friction coupling or similar methods
	when removing the pulley, use a pulley remover to prevent the bearing from being strongly impacted by the load:
	To ensure safety, install a protective cover or similar device in the rotating area, such as a pulley installed on the shaft.
Centering	When linking with the machine, please use the coupling, and keep the axis of the servo motor and the axis of the machine in a straight line.
Installation direction	The servo motor can be installed horizontally or vertically.
Oil and water countermeasures	 When using in a place with dripping water, please use it after confirming the protection level of the servo motor. When using it in a place where oil drips on the shaft penetration part, do not remove the oil seal of the servo motor. The use conditions of the servo motor with oil seal: When using, please make sure the oil level is lower than the lip of the oil seal; The oil seal can be used in a state with a good degree of splashing of oil foam; When the servo motor is installed vertically upwards, please be careful not to accumulate oil on the oil seal lip.
Stress condition	Do not "bend" the wire or apply "tension" to it, especially the signal wire whose core diameter is
of the cable	0.2mm or 0.3mm. During the wiring process, please do not make it too tight.
Processing of the connector part	 Regarding the connector part, please note the following matters: When connecting the connector, please make sure that there is no foreign matter such as garbage or metal pieces in the connector; When connecting the connector to the servo motor, be sure to connect it from the side of the main circuit cable of the servo motor first, and the grounding of the main line cable must be reliably connected. If you connect one side of the encoder cable first, the encoder may malfunction due to the potential difference between PEs; When connecting, please make sure that the pin arrangement is correct; The connector is made of resin, please do not apply impact to avoid damage to the connector; Do not apply stress to the connector part during handling while the cable is connected. If stress is applied to the connector part, the connector may be damaged.

Chapter 4 Wiring

4.1 Main Circuit Wiring

4.1.1 Main Circuit Terminals

(1) Main circuit terminal distribution of VD3E type A servo drive

Figure 4-1VD3E Type A Servo Drive Main Circuit Terminal Schematic

Table 4-1Name and function of main circuit terminal	I of VD3E type A servo drive
---	------------------------------

Terminal number	Terminal name	Terminal function			
L1					
L2	Power input terminal	Single-phase 220V AC input is connected to L1 and L3.			
L3	-				
P+		Use internal braking resistor: short connected C-D.			
С	Braking resistor terminal	Use an external braking resistor: please disconnect the short			
D		resistor between P+ and C;			
U					
V	Motor power line terminal	the motor.			
W					
Ground terminal	Ground terminal	Grounding of the servo drive.			

Chapter 4 Wiring

(2) Main circuit terminal distribution of VD3E type B servo drive

Figure 4-2Schematic Diagram of VD3E Type B Servo Drive Main Circuit Terminal

Terminal number	Terminal name	Terminal function		
L1				
L2	Power input terminal	Single-phase 220V AC input is connected to L1 and L3.		
L3				
L1C	Control power input	Single phase 220V/AC input connected to L1C and L2C		
L1C	terminal	Single-phase 2200 AC input connected to LIC and L2C		
P+		Use internal braking resistor: short connected C-D.		
С	Braking resistor terminal	Use an external braking resistor: please disconnect the short wire between C-D and then connect the external braking		
D		resistor between P+ and C;		
U				
V	Motor power line terminal	Connect with the U, V, W of the motor to supply power to		
W				
Ground terminal	Ground terminal	Grounding of the servo drive.		

Table 4-2 Name and function of main circuit terminal of VD3E type B servo drive

4.1.2 Power Wiring Example

(1) VD3E Type A Drive Single-phase 220V Main Circuit Wiring

Figure 4-3VD3E Type A Drive Single-phase 220V Main Circuit Wiring

Chapter 4 Wiring

Figure 4-4VD3E Type B Drive Single-phase 220V Main Circuit Wiring

(3) VD3E Type B Drive Three-phase 220V Main Circuit Wiring

Figure 4-5VD3E Type B Drive Three-phase 220V Main Circuit Wiring

4.1.3 Precautions for Main Circuit Wiring

① The input power line cannot be connected to the output terminals U, V and W, otherwise the servo drive will be damaged. When using the built-in braking resistor, C and D must be connected (factory default connection).

② When the cables are bundled and used in pipes, etc., due to the deterioration of heat dissipation conditions, please consider the allowable current reduction rate.

⁽³⁾ When the temperature in the cabinet is higher than the cable temperature limit, please choose a cable with a larger cable temperature limit, and it is recommended that the cable wire use Teflon wire. Please pay attention to the warmth of the cable in the low temperature environment. Generally, the surface of the cable is prone to hardening and breakage under the low temperature environment.

④ The bending radius of the cable should be more than 10 times the outer diameter of the cable itself to prevent the core of the cable from breaking due to long-term bending.

4.2 Power Line Connection of Servo Drive and Servo Motor

4.2.1 Power Cable

Figure 4-6Connection schematic diagram of servo drive and servo motor

Wecon VD3E series servo drives have 3 kinds of interface power cables: rectangular plug, aviation plug and in-line type.

Connector exterior	Terminal pin distribution	Pin description			Adaptatio n Motor flange
	1 0	Rectangular plug			
		Pin number	Signal name	Color	
		1	U	Red	60
		2	V	White	80
		3	W	Black	
		4	PE	Yellow-green	
		Aviation plug			
		Pin number	Signal name	Color	
		2	U	Black	110
		4	V	Yellow-green	130
		3	W	Black	
	4	1	PE	Black	

Table 4-3Power	cable servo	motor	side	connector

Chapter 4 Wiring

Note: The color of the lines is subject to the actual product. The lines described in this manual are all lines of Wecon.

4.2.2 Brake Device Cable

Connector shape and terminal pin distribution		Pin description		
		Pin number	Signal name	
		1	DC 24V	
		2	GND	
		3	_	

4.3 Encoder Cable Connection of Servo Drive and Servo Motor

Figure 4-7Encoder cable connection schema

Table 4-4Encoder cable servo drive side connector

Connector exterior	Terminal pin distribution	Pin description			
	5 6 6		Pin number 1	Signal name 5V	
		-	2	GND	
	1 """ 2	-	3	-	
		-	5	SD+	
		-	6	SD-	
Chapter 4 Wiring

Connector shape and terminal pin distribution			
Connect servo drive CN1		Encoder lead-out cable	
View from here	063 062 041	View from here	60 80
Pin number		Signal name	
7	5V		
8	GND		
4	SD+		
5	SD-		
3	Shield		
1		Battery+	
2	Battery-		

Table 4-5Absolute encoder cable connector (rectangular plug)

Table 4-6Encoder cable pin connection relationship

Drive side J1394			Motor sid	e
Pin number	Signal name	Description	Rectangular plug pin number	Cable color
1	5V	Encoder +5v power	7	Blue
2	GND	Encoder power ground	8	Orange
5	SD+	Serial communication signal +	4	Green
6	SD-	Serial communication signal -	5	Brown
Shell	Shield	Shield	3	-
-	-	Battery+	1*	Pink
-	-	Battery-	2*	Pink-Black

Note: The color of the cable is subject to the actual product. The cables described in this manual are all cables

of Wecon!

Connector shape and terminal pin distribution				Adapte d motor Flange
Connect servo drive CN1	onnector of er	ncoder pinout	Encoder connected to a socket	
#2 000 #5	#1 #3 #4 #7		#3 #4 #6 #7 #5	110 130
	Pin number	Signal name		
	7	5V		
	5	GND		
	6	SD+		
	4	SD-		
	1	Shield		
	3	Battery+		
	2	Battery-		

Table 4-7Absolute value encoder cable connector (aviation plug)

Table 4-8Encoder cable pin connection relationship

Drive si	de J1394		Motor si	de
Pin number	Signal name	Description	Aviation plug pin number	Cable color
1	5V	Encoder +5v power	7	Blue
2	GND	Encoder power ground	5	Orange
5	SD+	Serial communication signal +	6	Green

6	SD-	Serial communication	4	Brown
		signal -		
Shell	Shield	Shield	1	-
-	-	Battery+	3*	Pink
-	-	Battery-	2*	Pink-Black

Note: The color of the cable is subject to the actual product. The cables described in this manual are all cables of Wecon!

Table 4-9Absolute value encoder cable connector (in-line type)

Table 4-10Encoder cable pin connection relationship

Drive si	de J1394		Motor si	de
Pin number	Signal name	Description	Aviation plug pin number	Cable color
1	5V	Encoder +5v power	7	Blue
2	GND	Encoder power ground	5	Orange
5	SD+	Serial communication signal +	6	Green
6	SD-	Serial communication signal -	4	Brown
Shell	Shield	Shield	1	-

Note: The color of the cable is subject to the actual product. The cables described in this manual are all cables of Wecon!

4.4 Servo Drive Control Input and Output Terminal Wiring

4.4.1 CN2 Pin Distribution

Figure 4-8Shape and pin distribution of control input and output terminals

Pin number	Signal name	Pin number	Signal name
1	DO2-	9	DI1
2	DO2+	10	DI3
3	SS	11	DO3-
4	DI2	12	DO3+
5	DI4	13	-
6	DO1-	14	DI6
7	DO1+	15	DI5
8	-		

Table 4-11CN2 Interface Definition

4.4.2 Digital Input and Output Signals

Table 4-12DI/DO signal description

Pin number	Signal name	Default function
9	DI1	None
4	DI2	Fault and warning clear
10	DI3	Forward drive prohibition
5	DI4	Reverse drive prohibition
15	DI5	None
14	DI6	None
3	SS	Power input (12 ~ 24V)
6	D01-	Rotation detection
7	DO1+	
1	DO2-	Fault signal
2	DO2+	

11	DO3-	Servo ready	
12	DO3+	Servereday	

1) Digital input circuit

Taking DI1 as an example, the interface circuits of DI1 ~ DI6 are exactly the same.

When the control device(HMI/PLC) is relay output

When the control device(HMI/PLC) is open collector output

Figure 4-10Open collector output

Digital output circuit

Taking DO1 as an example, the interface circuits of DO1 ~ DO3 are exactly the same.

When the control device(HMI/PLC) is relay input

Figure 4-11Relay input

When the control device(HMI/PLC) is optocoupler input

Note1: The maximum current should not exceed 50ma

Figure 4-12Optocoupler input

4.4.3 Brake Wiring

The brake is a mechanism that prevents the servo motor shaft from moving when the servo drive is in a non-operating state, and keeps the motor locked in position, so that the moving part of the machine will not move due to its own weight or external force.

The brake input signal is non-polar, and the user needs to prepare 24V power supply. The standard connection diagram of brake signal BK and brake power supply is as follows:

Figure 4-13Brake wiring (taking three-phase 220V input as an example)

4.5 Communication Signal Wiring

The CN5 port of the first servo drive is connected to Wecon PLC LX6V

Figure 4-14Communication topology networking schema

Pin	Name	Function description
1	DV	Computer sends negative terminal
1	NA-	(drive receives negative)
n	DV ⊥	Computer sends terminal (drive
Z	KA+	receives positive)
2	TX-	Computer receives negative terminal
3		(drive sends negative)
4	GND	Ground terminal
5	Not used	Not used
6	TV+	Computer receives positive terminal
0	1 / 1	(drive sends positive)

Table 4-13CN5\ CN6 interface definition

Chapter 5 Panel

7	NC	Not used
8	NC	Not used

Chapter 5 Panel Composition

5.1 Panel Composition

Figure 5-1Appearance schematic diagram of servo drive panel

The panel of Wecon VD3E series bus servo drive is composed of a display (5-bit LED digital tube) and buttons, which can be used for various display and parameter setting functions of servo drive. Taking parameter setting as an example, the conventional functions of buttons are shown in Table 5-1.

lcon	Name	Function
M	Mode	Mode switching Return to the previous menu
	Increase	Increase the value of the LED flashing bit
\bigtriangledown	Down (decrease)	Decrease the value of the LED flashing bit
		① Change the LED flashing bit
SHIFT (Settings)	(2) View the high-order values of data with a length greater than 4 bits	
		① Enter the next menu
	Confirm (Enter)	(1)Execute instructions such as storing parameter setting values

Table 5-1Brief introduction of key function

5.2 Panel Display

When servo drive is in operation, the panel could be used for status display, parameter display, fault display and monitoring display of the servo.

Status display: Display the current operating status of servo drive.

Parameter display: Display the object dictionary and the setting value of the object dictionary corresponding to different functions.

Fault display: Display the fault code of servo drive.

Monitor display: Display the current operating parameter values of servo drive.

5.2.1 Display Switching

Figure 5-2Switching schema of each display type of panel

Description:

①Power on, the panel display of the servo drive enters [status display mode]

2 When an operation failure occurs, the panel immediately switches to the bit failure display mode, and all the

digital tubes flash synchronously, press the "mode" key to switch to the parameter display mode.

③Press the "Mode" key to switch between different display modes. The switching conditions are shown inFigure 5-2

5.2.2 Status Display

Table 5-2Status display example

Display	Name	Display occasion	Meaning
rESEL	Reset Servo initialization	Servo drive is powered on within 1 second	The servo drive is in an initialized or reset state. After waiting for initialization or reset to complete, automatically switch to other states
nr	nr Servo is not ready	After initialization is complete, but servo is not ready	The servo drive is in a non-operational state
	ry Servo ready	Servo ready	The servo is in a ready state, waiting for the upper computer to give an enable signal
r fi	rn Servo is running	Servo enable signal is active (S-ON is ON state)	The servo drive is in operation

Chapter 5 Panel

nF	nF Servo trouble-free	Servo drive has no fault	Servo drive has no fault
	1 ~ A Control mode	-	Displays the current operation mode of the servo drive in hexadecimal digital form: 1: Contour Position Mode 3: Contour velocity mode 4: Contour torque mode 6: Return to zero mode 8: Cyclic Synchronous Position Mode 9: Periodic Synchronous speed Mode A: Periodic synchronous torque mode
	1 ~ 8 Communication Status	-	Displays the Ether CAT state machine status of the slave station in character form: 1: Initialization state 2: Pre-operating status 4: Safe operation status 8: Operating status
	CN6 Interface Connection Indication	-	Keep dark constantly: No communication connection detected
	CN5 Interface Connection Indication	-	communication connection has been established

Control mode

- 1: Contour position control
- 3: Contour speed mode
- 4: Contour torque mode
- 6: Home return mode
- 7: Interpolation mode
- 8: Periodic synchronous position mode
- 9: Periodic synchronous velocity mode
- A: Periodic synchronous torque mode

Figure 5-1Status indication schema

5.2.3 Parameter Display

Wecon VD3E series bus servo drive is divided into 13 groups of function codes according to different parameters and functions, which can quickly locate the position of function codes according to the group of function codes. For specific parameters, please refer to "Chapter 8 Object Dictionary".

(1) Parameter group display

The parameter display is the display of different function codes. The format of the function code is PXX.YY, where PXX represents the group number of the function code, and YY represents the number within the function code group.

Display	Name	Content
PXX.YY	Function code group number	Number in function code group

For example, the function code 2000.01 is shown as follows:

Display	Name	Content
PII.I I	Function code 2000-01	00: Function code group number 01: Number in function code group

(2) Display of different length data

1 Data display of four digits and below

Using single page display, if it is a signed number, the highest bit of the data is "-".

Examples:

Display Data more than five bits

Display in pages from low to high digits, each 4 bits is a page. Display method: current page + current value, as shown, switch the current page by pressing the "shift" key.

For example: 2147483646 is displayed as follows:

Shift key

Figure 5-32147483646 Display Action

For example: -2147483647 is displayed as follows:

```
Shift key
```


(3) Decimal point display

Digital tube of individual bit data ". "Represents the decimal point, and the decimal point". "No flashing, as shown below:

(4) Parameter setting display

Table 5-3Parameter setting display

Display	Name	Display occasion	Meaning
donE	Done Parameter setting completed	Restore factory settings	
P. in it	P.Init Parameter restore factory setting value	Restore factory settings	The servo drive is in the process of parameter restoration to factory settings
Error	Error parameter error	Parameter setting exceeds the limit (Or not allowed to exceed the limit)	Prompt that the parameter setting exceeds the limit

5.2.4 Fault Display

The panel can display current or historical fault and warning codes. Please refer to the analysis and troubleshooting of faults and warnings"Chapter 7 Failure".

When a single fault or warning occurs, the panel immediately displays the current fault or warning code; when multiple faults or warnings occur, the highest fault code is displayed. When a fault occurs, when switching from the auxiliary function to the parameter display function, the corresponding fault or warning code will be displayed. You can view the current fault and warning codes and the past five fault and warning codes through

Chapter 5 Panel

the monitor display on the panel. You can view the current fault and warning codes and the last five fault and warning codes through the monitoring display of the panel.

Table 5-4Warning display case

Display	Name	Content
	Parameter modification that needs to be powered on again	Modified the parameters that need to be re-powered on to take effect

Table 5-5Fault display case

Display	Name	Content
Er.J4	Motor overload protection	Motor overload protection

5.2.5 Monitor Display

After the servo drive is powered on or the servo enable is turned on, you can press the "Mode" key to enter the monitoring display mode.

Display	Monitoring volume	Name	Unit	Meaning
- 2000	U0-02	Servo motor speed	rpm	Indicates the actual running speed of servo motor, which is expressed in decimal system
][]2.4	U0-31	Bus voltage	V	Represents the voltage value , the DC bus voltage between P+ and - of the drive
DIG DI4 DI2 DI5 DI3 DI1 High High High High High 1 1 1 1 1 1	U0-17	Input signal status	-	Indicates the level status corresponding to the 6 DI terminals. The upper half of the LED light indicates high level, and the lower half light indicates low level.
DO2 DO3 DO1 High Low High 1 0 1	U0-19	Output signal status	-	Indicates the level status corresponding to the 3 DO terminals. The upper half of the LED light indicates high level, and the lower half light indicates low level.

Table 5-6Monitoring quantity display schema

5.3 Panel Operation

5.3.1 Parameter Setting

The servo drive panel can be used to set parameters. For details, please refer to "Chapter 6 Parameters" Taking 2000.01 as an example, the control mode of servo drive is changed from position control mode to speed control mode. The specific setting steps are shown in Figure 5-5.

Description:

The power supply is in Rdy state after power on.

Press "Mode" key to enter the function code parameter interface.

Press "Confirm" key to enter the function code value modification interface after completing the function code selection.

Press the "Up" and "Down" keys to modify the parameter value.

Press the "Confirm" key twice to complete the value modification.

Figure 5-5Schematic diagram of parameter setting steps

5.3.2 Jog Operation

In order to test run the servo motor and the servo drive, you can use the jog running function. The operation steps are shown in . **Description:**

(1) Adjust the function code to P10.01 after power on.

Press the "Enter" key to enter the next menu to set the JOG jog speed.

After the "JOG jog speed" setting is completed, press the "Enter" key, the panel displays "JOG" in a flashing state,

press the "Enter" key again to enter the JOG mode.

Long press the "Up" key and "Down" key to realize the forward and reverse rotation of the motor.

Press the "Mode" key to exit the JOG mode.

Note 1: Press the Up/Down key for a long time, and the motor will continue to rotate; Press the Up/Down key, and the motor will inching and rotating.

Note 2: Exit the "inching operation" status through the "Mode" keyboard and return to the superior menu at the same time.

Note 3: Display Error cause: Please refer to the corresponding fault code"Chapter 10 Failure".

Figure 5-6Inching operation setting step

5.3.3 Factory Reset

The factory settings can be restored through the servo drive panel. The specific operation steps are shown in Figure 5-7.

Illustrate:

After power on, modify the function code to P10.02.

Press the "Enter" key to enter the next menu to set the parameters.

(3) After the parameter is set to 1, press the "Confirm" key, at this time, the digital tube flashes to display "00001", and press the "Confirm" key again, and the digital tube displays P.init.

(4) Long press the "Enter" key for 3s, the panel digital tube will gradually light up from left to right until 88888 is displayed.

(5) You can release the "confirm" key during the display of 8.8. 8.8. 8.

(6) Digital tube shows done, indicating that the factory settings are restored. At this time, it is recommended to re-power up and down the servo drive.

Note 1: Display Error Reason: When the parameter value of P10.02 is set beyond the set range (0 \sim 1), Error will be displayed.

Note 2: When the setting value is displayed as 0, press the Down key, and the panel will display Error. After displaying for 1 second, the setting value will automatically jump to 1.

Chapter 5 Panel

Figure 5-8Restore factory setting steps

6.1 EtherCAT Operation

Figure 6-2EtherCAT Operation Configuration Flow

6.2 EtherCAT Communication Fundamentals

6.2.1 EtherCAT Communication Specification

Hierarchy	Content	Specification
	PDO	Variable PDO mapping
Application layer	SDO	SDO request, SDO reply
CIA 402	Cyclic Synchronous Position Mode(CSP)	
	CIA 402	Origin return mode (HM)
Physical laver	Transport protocol	100BASE-TX (IEEE802.3)
,	Communication interface	RJ45 Port * 2 (IN, OUT)

6.2.2 Communication Structure

Wecon VD3E series bus servo drives adopt IEC 61800-7 (CiA402)-CANOpen motion control sub-protocol.

Figure 6-3Communication structure

PDO (Process Data Object) is composed of Object Dictionary (Object Dictionary) which can be mapped in PDO,

and the content of process data is defined according to PDO mapping.

Email is a kind of aperiodic communication and can read and write all object dictionaries.

6.2.3 State Machines

EtherCAT devices support four states and are responsible for coordinating the state relationship between master and slave applications at initialization and running:

Init: Initialization, abbreviated as I;

Pre-Operational: Pre-Operational, abbreviated as P;

Safe-Operational: Safe operation, abbreviated as S;

Operational: Operational, abbreviated as O.

Figure 6-4Communication structure

When changing from initialization state to operational state, it must be changed in the order of "initialization \rightarrow pre-Operational \rightarrow safe Operational \rightarrow Operational"!

Leapfrog transition when returning from operational state. Refer to the following table for state transition operation and initialization process:

Status	Operate
Initialization	There is no communication in the application layer, and the master station can only read
initialization	and write ESC registers
	The master station configures the site address of the slave station;
Initialization \rightarrow	Configure Email channels;
pre-operational	Configure DC distributed clock;
	Request "pre-Operational" status
Pre-operation	Application Layer Email Data Communication (SDO)
	The master station uses Email to initialize the process data mapping;
Pre-operation \rightarrow safe	The master station configures the SM channel used for process data communication;
operation	The main station is configured with FMMU;;
	Request "safe status"
Safe operation	Allow input data to be read without output signal (SDO, TPDO)
Safe operation \rightarrow	The master station sends valid output data;
operation	Request "operation" status
Operation	Input and output are all valid and can use Email communication (SDO, TPDO, RPDO)

6.2.4 Communication Indicator Lamp

The communication indicator for the VD3E servo drive is located on the CN5 (IN), CN6 (OUT) sockets, as shown INFigure 6-5As shown in.

Figure 6-5Communication indicator position

(1) Connection lamp (yellow)

Used to display the status of CN5 and CN6 communication interfaces, and the display contents are shown in the following table.

Connection lamp status	Explanation
OFF	The port is not connected to the network cable
ON	The port is connected to the network cable

(2) Communication lamp (green)

Used to display the status of CN5 and CN6 communication connections, as shown in the following table.

Connection lamp status	Explanation
ON	No communication connection was established with the master
ÖN	station
BLINKING	A communication connection has been established with the
BLINKING	master station

6.2.5 Process Data PDO

PDO outputs process data in real time. PDO can be divided into RPDO (for receiving instructions from master station) and TPDO (for feeding back its own status from slave station).

Figure 6-6PDO schematic diagram

(1) PDO mapping parameters

PDO mapping is used to establish the mapping relationship between object dictionary and PDO. 1600h-17FFh is RPDO, 1A00h-1BFFh is TPDO:

Name	Parameter	Nature
RPDO	1600h	Variable mapping
	1701h ~ 1705h	Fixed mapping
TPDO	1A00h	Variable mapping
11 00	1B01h ~ 1B04h	Fixed mapping

The following figure is an example of RxPDO mapping.

index	sub-index	name	data type
6040		control word	UINT
607A		target position	DINT

	\rightarrow	index	sub-index	data type
ByPDO	1	6040	00	UINT
(1600h)	2	607A	00	DINT
	10			

Figure 6-7Examples of RxPDO mapping

The data type is defined as follows:

Data type	Description	Numerical range
SINT	Signed 8bit	-128 ~ 127
USINT	Unsigned 8bit	0 ~ 255
INT	Signed 16bit	-32768 ~ 32767
UINT	Unsigned 16bit	0~65535
DINT	Signed 32bit	-21247483648 ~ 21247483647

Chapter 6 Communication Network Configuration

UDINT	Unsigned 32bit	0~4294967295
STRING	String Value	ASCII

The following figure is an example of TxPDO mapping.

index	sub-index	name	data type
6041		control word	UINT
6064		position feedback	DINT
607A		actual speed	DINT

	\rightarrow	index	sub-index	data type
	1	6041	00	UINT
	2	6040	00	DINT
TxPDO (1A00h)	3	606C	00	DINT
	10			

Figure 6-8Examples of TxPDO mapping

The following figure is an example of a SyncManager PDO mapping.

	index	sub-index
nc Manager Assign Object	1C12	RxPDO
Syne Manager Assign Object	1C13	TxPDO
	1600	1stRxPDO
	1601	2ndRxPDO
	1602	3rdRxPDO
Manusia a Ohia at	1603	4thRxPDO
Mapping Object	1A00	1stTxPDO
	1A01	2ndTxPDO
	1A02	3rdTxPDO
	1A03	4thTxPDO

Figure 6-9SyncManager PDO Mapping Example

(2) Synchronize management of PDO allocation settings

In EtherCAT periodic data communication, process data can contain multiple PDO mapping data objects. The data objects 0x1C10 ~ Ox1C2F used in CoE protocol define the corresponding PDO mapping object list of SM (Synchronous Management Channel), and multiple PDO can be mapped in different sub-indexes.

Index (hex)	Sub-index (hex)	Content
1C12	01	Choose to use one of 0x1600, 0x1701-0x1705 as the actual RPDO

Select to use one of 0X1A00, 0X1B01-0X1B04 as the actual IPDO	1C13	01	Select to use one of 0x1A00, 0x1B01-0x1B04 as the actual TPDO
---	------	----	---

(3) PDO configuration

The PDO mapping parameter contains a pointer to the PDO corresponding process data that the PDO needs to send or receive, including index, sub-index and mapping object length. The sub-index 0 records the number N of objects mapped by the PDO, and the length of each PDO data can reach 4N bytes at most, which can map one or more objects at the same time. Sub-index ~ N is the mapping content. The mapping parameter content is defined as follows:

Number of digits	31		16	15		8	7		0
Description	Index			Sub-index		C	Dbject lengt	h	

The index and sub-index together determine the position of the object in the object dictionary, and the object length indicates the specific bit length of the object (hexadecimal representation)

Object length	bit length
08h	8
10h	16
20h	32

For example, the mapping parameter of 6040h-00 (control word) is 60400010h

The PDO configuration can only be designed when the EtherCAT communication state machine is in pre-operation (Pro-Operation, panel display 2), otherwise an error will be reported.

The PDO configuration parameters cannot be stored in the EEPROM. Therefore, after each power-on, please reconfigure the mapping object, otherwise, the mapping object is the default parameter of the drive

The SDO fault codes are returned when:

Modify PDO parameters in non-pre-operation state;

Pre-write values other than 1600/1701 ~ 1705 in 1C12; Values other than 1A00/1B01 ~ 1B04 are pre-written in 1C13.

6.2.6 Email Data SDO

EtherCAT Email data SDO is used to transmit aperiodic data, such as configuration of communication parameters, servo drive operation parameters and so on. EtherCAT's CoE service types include:

(1) Emergency information; ② SDO request; ③ SDO response; ④ TxPDO; ⑤ RxPDO; ⑥ Remote TxPDO sending request; ⑦ SDO information.

We con VD3E series bus servo drives currently support 2 SDO requests; 3 SDO response.

6.2.7 Distributed Clock

Distributed clock enables all EtherCAT devices to use the same system time, thus controlling the synchronous execution of tasks of each device. The slave station device can generate a synchronization signal according to the synchronized system time. We con VD3E series bus servo drives only support DC synchronous mode.

Chapter 6 Communication Network Configuration

6.2.8 Status Indication

Description:

(1) Communication connection status

The first digit tube from the left of the 5-bit LED indicator on the servo drive panel is used to display the connection status of the two Ethernet communication ports: upper "-" CN6 (OUT) and lower "-" CN5 (IN)

Long dark: No communication connection detected

Long Bright: A communication connection has been established

(2) Communication Operating status

The servo drive panel of the 5-bit LED indicator lamp is the second digit tube from the left, which is used to display the EtherCAT state machine status of the slave station in character form.

Panel display	Meaning
0 Q	Initialization state
	Pre-operation status
H	Safe operation status
B	Operating status

(3) Display of servo operation mode

Servo drive panel 5-bit LED indicator from the left of the third digit tube, used to display hexadecimal digital form display servo drive current operation mode.

Panel display	Meaning
() ()	Contour position control mode
[]]	Contour speed control mode
H	Contour torque control mode
6	Origin return mode
	Interpolation mode
	Cyclic Synchronous Position mode

J	Periodic synchronous speed mode
A	Periodic synchronous torque mode

(4)Servo status display

Servo drive panel 5-bit LED indicator from the left of the fourth and fifth digit tube, used to display the servo status of the slave station.

Panel display	Meaning
	Not ready nr
	Get ready ry
	Run rn
nF	Failure-free nF

6.2.9 Introduction to CiA402 Control

The use of Wecon VD3E Series Bus Type servo drives must be guided according to the procedure specified in Standard 402 Protocol.

Status	Description
	Drive initialization, internal self-test has completed.
nitialization	Parameters cannot be set, and servo drive function cannot be
	performed.
Sonya traubla frag	There is no fault in the servo drive.
Servo trouble-free	Parameters can be set.
Sania roadu	Servo drives are ready.
Servoready	Parameters can be set.
Wait to turn on sorve enable	The servo drive waits to turn on the servo enable.
	Parameters can be set.
Servo operation	The servo drive is running normally.
Quick shutdown	The servo drive is performing the quick shutdown function.
	Only function codes with the attribute "Run valid" can be set.
Malfunction chutdown	The servo drive is performing the fault shutdown function.
	Only function codes with the attribute "Run valid" can be set.
	Failure shutdown is complete, and all drive functions are
fault	disabled.
	Allow parameters to be changed to troubleshoot.

6.2.10 Basic Characteristics

The EtherCAT network cable is connected to the CN5 (IN), CN6 (OUT) interfaces, and its electrical characteristics conform to IEEE 802.3 standard.

(a) EtherCAT Ethernet Communication Connection Port (IN)

(b) EtherCAT Ethernet Communication ConnectorMouth (OUT)

Pin	Name	Function description
1	TX+	Sending data+
2	TX-	Sending data-
3	RX+	Receiving data+
4	-	-
5	-	-
6	RX-	Receiving data-
7	-	-
8	-	-

EtherCAT communication topology connections are very flexible, taking linear connections and ring connections as examples:

Figure 6-14Linear connection

Figure 6-15Ring connection

Chapter 7 Operation Running

7.1 Basic Settings

7.1.1 Pre-operation Inspection

Table 7-1Check contents before operation

Number	Content	
Wiring		
1	The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.	
2	The main circuit output terminals (U, V, W) of the servo drive and the main circuit cables (U, V, W) of the	
	servo motor must have the same phase and be connected correctly.	
The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V		
0	of servo drive cannot be short-circuited.	
4	The wiring of each control signal cable of the servo drive is correct: the external signal wires such as brake	
	and overtravel protection have been reliably connected.	
5	Servo drive and servo motor must be grounded reliably.	
6	When using an external braking resistor, the short wiring between drive C and D must be removed.	
7	The force of all cables is within the specified range.	
8	The wiring terminals have been insulated.	
Environment and Machinery		
1	There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.	
2	The servo drive and external braking resistor are not placed on combustible objects.	
3	The installation, shaft and mechanical structure of the servo motor have been firmly connected.	

7.1.2 Power on

Connect the main circuit power supply

(1) After power on the main circuit, the bus voltage indicator shows no abnormality, and the panel display "ry", indicating that the servo drive is in an operational state, waiting for the upper computer to give the servo enable signal.

If the drive panel displays other fault codes, please refer to <u>"Chapter 10 Faults</u>" to analyze and eliminate the cause of the fault.

(2) Set the servo drive enable (S-ON) to invalid (OFF)

Please refer to "6.2.9 CiA402 Control Introduction" for relevant process description

7.1.3 Jog Operation
Inching operation is used to judge whether the servo motor can rotate normally, and whether there is abnormal vibration and abnormal sound when rotating. Inching operation can be through panel inching operation function, and the motor takes the current stored value of object dictionary P10-01 (200A-01) as inching speed.

(1) Panel jog operation

Enter P10-01 (200A-01) through panel key operation. After pressing the confirmation key, the panel will display the current inching speed. At this time, the inching running speed can be adjusted by pressing the "up" or "down" key; After adjusting the inching speed, press the "Confirm" key. At this time, the panel displays "JOG" and is in a flashing state. Press the "Confirm" key again to enter the inching operation mode (at this time, the motor is powered on!) . Press the "up" key and "down" key for a long time to realize the continuous forward or reverse rotation of the motor. Press the "Mode" key to exit the inching operation mode. Please refer to "5.3.2 Inching display".

Index code	Name	Setting method	Valid time	Default	Range	Definition	Unit
200A-01	JOG speed	Execute Setting	Valid immediately	0	0~3000	JOG speed	rpm

(2) Jog operation of the servo debugging platform

Open the jog operation interface of the software "Wecon SCTool", set the jog speed value in the "set rotating speed" in the "manual operation", click the "servo on" button on the interface, and then achieve the jog forward and reverse function through the "forward rotation" or "reverse rotation" button on the interface. After clicking the "Servo Close" button, exit the inching operation mode.

The communication control function of EtherCAT master station and the inching operation of servo drive can not be used at the same time;

If you enter the inching mode, you need to exit the inching operation before you can use EtherCAT to control;

If you enter the EhterCAT activation step, you need to exit the EtherCAT control before you can perform the inching operation of the servo drive.

7.1.4 Rotation Direction Selection

By setting the rotate direction, the rotate direction of the motor can be changed without changing the polarity of the input command

Index code	Name	Setting method	Valid time	Default	Range	Definition	Unit
2000-04	Rotate direction	Shutdown Setting	Valid immediately	0	0 to 1	Forward rotation: Face the motor shaft to watch O: standard setting (CW is forward rotation)	_

			1: reverse mode (CCW is	
			forward rotation)	

7.1.5 Braking Resistance

The servo motor is in the generator state when decelerating or stopping, the motor will transfer energy back to the drive, which will increase the bus voltage. When the bus voltage exceeds the braking point, The drive can consume the feedback energy in the form of thermal energy through the braking resistor. braking resistors can be built-in or external, but they cannot be used at the same time. When selecting an external braking resistor, the short tab on the servo drive needs to be removed.

The basis for judging whether the braking resistor is built-in or external.

(1) The maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value \leq the built-in braking resistor power, use the built-in braking resistor.

(2) The maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value > the built-in braking resistor power, use external braking resistor.

Index code	Name	Setting method	Valid time	Default	Rang e	Definition	Uni t
2000-09	Braking resistance setting	Execute Setting	Valid immediately	0	0 to 3	 0: use built-in braking resistor 1: use external braking resistor and natural cooling 2: use external braking resistor and forced air cooling; (cannot be set) 3: No braking resistor is used, it is all absorbed by capacitor. 	_
2000-0 A	External braking resistor resistance	Execute Setting	Valid immediately	50	0~65 535	Used to set the resistance value of the external braking resistor of a certain type of drive	Ω
2000-0B	External braking resistor power	Execute Setting	Valid immediately	100	0~65 535	It is used to set the external braking resistor power of a certain type of drive.	w

7.1.6 Servo Operation

(1) Set servo enable (S-ON) to active (ON)

The servo drive is in a operation state, and the monitor displays "rn", but because there is no command input at this time, the servo motor does not rotate and is in a locked state.

S-ON can be configured and selected according to the function selection of DI terminal in DIDO configuration of object dictionary.

(2) Input the instruction and the motor rotates

Input appropriate instructions during operation, first run the motor at a low speed, and observe the rotation to see if it conforms to the set rotation direction. Through Wecon SCTools software, the actual running speed, bus voltage and other parameters of the motor were observed.

(3) Timing diagram of power on

Figure 7-16Power on timing diagram

7.1.7 Servo Stop

According to different shutdown modes, it can be divided into free shutdown and zero-speed shutdown, and their respective characteristics are shown in Table 7-2. According to the shutdown state, it can be divided into free running state and position keeping lock, as shown in Table 7-3:

Table 7-2Comparison of two	shutdown modes
----------------------------	----------------

Shutdown mode	Shutdown description	Shutdown characteristics
Free shutdown	Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.	Smooth deceleration, small mechanical shock, but slow deceleration process.
Zero-speed shutdown	The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.	Rapid deceleration with mechanical shock, but fast deceleration process.

Table 7-3Comparison of two shutdown states

Shutdown status	Free operation status	Position locked

Characteristics	After the motor stops rotating, the motor is not energized, and the motor shaft can rotate freely.	After the motor stops rotating, the motor shaft is locked and cannot rotate freely.
	Totate neery.	

Servo enable (S-ON) OFF shutdown

Relevant parameters of servo OFF shutdown mode are shown in Table 7-4.

Index code	Name	Setting method	Valid time	Default	Range	Definition	Unit
2000-05	Servo OFF shutdown mode	Shutdown Setting	Valid immediately	0	0 to 1	0: Free shutdown, and the motor shaft remains free state; 1: Zero speed shutdown, and the motor shaft remains in a free	-

Table 7-4Parameter details of servo OFF shutdown mode

(2) Emergency shutdown

It is free shutdown mode at present, and the motor shaft remains in a free state. The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration".

(3) Overtravel shutdown

Overtravel means that the movable part of the machine exceeds the set area. In some occasions where the servo moves horizontally or vertically, it is necessary to limit the movement range of the workpiece. The overtravel is generally detected by limit switches, photoelectric switches or the multi-turn position of the encoder, that is, hardware overtravel or software overtravel.

Once the servo drive detects the action of the limit switch signal, it will immediately force the speed in the current direction of rotation to 0 to prevent it from continuing, and it will not be affected for reverse rotation. The overtravel shutdown is fixed at zero speed and the motor shaft remains locked.

The corresponding configuration and selection can be selected through the DI terminal function of the object dictionary "DIDO configuration". The default function of DI3 is POT and DI4 is NOT, as shown

(4) Malfunction shutdown

When the machine fails, the servo will perform a fault shutdown operation. The current shutdown mode is fixed to the free shutdown mode, and the motor shaft remains in a free state.

7.1.8 Brake Holding Device

The brake is a mechanism that prevents the servo motor shaft from moving when the servo drive is in a non-operating state, and keeps the motor locked in position, so that the moving part of the machine will not move due to its own weight or external force.

The brake device is built into the servo motor, which is only used as a non-energized fixed special mechanism. It cannot be used for braking purposes, and can only be used when the servo motor is kept stopped; After the servo motor stops, turn off the servo enable (S-ON) in time;

The brake coil has no polarity;

Solution When the brake coil is energized (that is, the brake is open), magnetic flux leakage may occur at the shaft end and other parts. If users need to use magnetic sensors and other device near the motor, please pay attention!

Solution When the motor with built-in brake is in operation, the brake device may make a clicking sound, which does not affect the function.

(1) Wiring of brake device

Brake input signal is no polar. You need to use 24V power . The standard wiring between brake signal BK and brake power is as below.

(2) It is recommended to use the power supply alone for the brake device. If the power supply is shared with other electrical device, the voltage or current may decrease due to the operation of other electrical device, which may cause the brake to malfunction.

③It is recommended to use cables above 0.5 mm².

(2) Brake software setting

For a servo motor with brake, one DO terminal of servo drive must be configured as function 141 (BRK-OFF, brake output), and the valid logic of the DO terminal must be determined.

Related function code

DO function code	Function name	Function		
1/1	BRK-OFE brake output	The output signal indicates that the brake of the servo		
141	BRK-OFF, brake output	motor is released		

Index code	Name	Setting method	Valid time	Default	Range	Definition	Unit
2001-1E	Delay from brake output to instruction reception	Execute Setting	Valid immediately	250	0~500	Set delay that from the brake (BRK-OFF) output is ON to servo drive allows to receive input instruction. Between. When the brake output (BRK-OFF) is not allocated, this function code has no effect.	ms
2001-1F	In the static state, delay from the brake output is OFF to the motor is not energized.	Execute Setting	Valid immediately	150	1~1000	When the motor is in a static state, set the delay time from the brake (BRK-OFF) output is OFF to the servo drive is in the non-powered state. When the brake output (BRK-OFF) is not allocated, this function code has no effect.	ms
2001-20	Rotation status, when the brake output OFF, the speed threshold.	Execute Setting	Valid immediately	30	0~3000	When the motor is rotating, the motor speed threshold that is allowed when the brake (BRK-OFF) output is OFF. When the brake output (BRK-OFF) is not allocated, this function code has no effect.	rpm
2001-21	Rotation status, servo enable OFF to brake output OFF Delay	Execute Setting	Valid immediately	500	1~1000	The motor is rotating, the delay time that is allowed from the brake (BRK-OFF) output OFF to the servo enable (S-ON) OFF. When the brake output (BRK-OFF) is not allocated,	ms

Table 7-5Relevant parameters of brake setting

According to the state of the servo drive, the working sequence of the brake mechanism can be divided into the brake sequence in the normal state of the servo drive and the brake sequence in the fault state of the servo

drive.

(3) Servo drive brake timing in normal state

The brake timing of the normal state can be divided into:

The servo motor is stationary (the actual speed of the motor is lower than 20rpm) and the servo motor is rotating (the actual speed of the motor is 20 rpm and above).

1) Brake timing when the servo motor is stationary

When the servo enable is changed from ON to OFF, if the actual speed of the current motor is lower than 20rpm, the servo drive acts according to the stationary braking timing, and the specific timing actions are as followsFigure 7-18As shown in.

(1) After the brake output is set from OFF to ON, do not input the position/speed/torque command during 2001-1Eh, otherwise the command will be lost or run incorrectly.

SWhen applied to a vertical axis, the external force or the weight of the mechanical moving part may cause the machine to move slightly. When the servo motor is stationary, and the servo enable is OFF, the brake output will be OFF immediately. However, the motor is still powered on within the time of 2001-1Fh to prevent mechanical movement due to its own weight or external force.

Figure 7-18Braking timing when the motor is stationary

Note: Please refer to the relevant specifications of the motor for the delay time of the brake contact at (2) in the figure.

2) The brake timing when the servo motor is rotating

When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in Figure 7-19.

When the servo enable is turned from OFF to ON, within 2001-30, do not input position, speed or torque instructions, otherwise the instructions will be lost or operation errors will be caused;

Solutions when the servo motor rotates, the servo enable is OFF and the servo motor is in the zero-speed shutdown state, but the brake output must meet any of the following conditions before it could be set OFF:

2001-21h time has not arrived, but the motor has decelerated to the speed set in 2001-20h;

2001-21h time is up, but the motor speed is still higher than the set value of 2001-20h.

After the brake output changes from ON to OFF, the motor is still in communication within 50ms to prevent the mechanical movement from moving due to its own weight or external force.

Figure 7-20Braking timing when the motor rotates

(4) Brake timing when the servo drive fails

The brake timing (free shutdown) in the fault status is as follows.

 Time delay from holding brake signal ON/OFF to holding brake action

Figure 7-21Braking timing in fault state (free shutdown)

Note: The "delay arrival" of the brake signal is about 20ms, and the actual parameter is subject to the motor manufacturer.

7.2 Servo State Setting

The use of Wecon VD3E Series Bus Type servo drives must be guided according to the procedure specified in Standard 402 Protocol.

Figure 7-1CiA402 state machine switching schema

Status	Description				
	Drive initialization, internal self-test has completed.				
Initialization	Parameters cannot be set, and servo drive function cannot be				
	performed.				
Comus trauble free	There is no fault in the servo drive.				
Servo trouble-free	Parameters can be set.				
Servo ready	Servo drives are ready.				
	Parameters can be set.				
Moit to turn on convo anoble	The servo drive waits to turn on the servo enable.				
Walt to turn on servo enable	Parameters can be set.				
Servo operation	The servo drive is running normally.				
Quick chutdown	The servo drive is performing the quick shutdown function.				
Quick shutdown	Only function codes with the attribute "Run valid" can be set.				
Malfunction chutdown	The servo drive is performing the fault shutdown function.				
	Only function codes with the attribute "Run valid" can be set.				
	Failure shutdown is complete, and all drive functions are				
Fault	disabled.				
	Allow parameters to be changed to troubleshoot.				

State switching	Control word 6040h	
Power on =>Initialization	Natural transition without control command	
	Natural transition without control command	
Initialization =>Servo trouble-free	If there is an error in the initialization process, go directly to the "failure	
	shutdown" state.	
Servo trouble-free =>Servo ready	0x0006	
Servo ready =>Wait to turn on servo	0,0007	
enable	0x0007	
Wait to turn on servo enable =>Servo	0.000F	
operation	UXUUUF	
Servo operation =>Wait to turn on servo	0,0007	
enable	0x0007	
Wait to turn on servo enable =>Servo	0,000	
ready	0x0008	
Servo ready =>Servo trouble-free	0x0000	
Servo operation =>Servo ready	0x0006	
Servo operation =>Servo trouble-free	0x0000	
Wait to turn on servo enable =>Servo	0x0000	
trouble-free		
Servo operation =>Quick shutdown	0x0002	
Quick shutdown ->Sanya traubla frag	The quick shutdown mode 605A is selected as 0 ~ 3. After the shutdown	
	is completed, it will transition naturally without control instruction.	
->Failura shutdown	Once the servo drive fails, it automatically switches to the "fault	
	shutdown" state without control instruction.	
Failure shutdown ->Malfunction	After the fault shutdown is completed, it will make a natural transition	
	without control instructions.	
Failure =>Servo trouble-free	0x80	
Quick shutdown ->Sonyo operation	The quick shutdown mode 605A is selected as 0 \sim 3, and 0x0F is sent	
Quick shutdown =>Servo operation	after the shutdown is completed.	

7.2.1 Control Word

	Name	Setting method	Valid time	Default	Set range	Application category	Unit	
6040h	Controlword	Operation	Valid	0	0~65525	Basic		
	Control word	setting	immediately	0	0 05555	settings	-	

Used to set control instructions. It is meaningless to assign each bit of a control word separately, and it must be combined with other bits to form a certain control instruction.

bit0 \sim bit3 have the same meaning in each control mode of servo drive, and commands must be sent in sequence before the servo drive can be switched according to CiA402 state machine.

bit	Name	Description
0	Comus an amation and he stanted	0: Invalid
0	Servo operation can be started	1: valid
1	Turn on the main circuit	0: Invalid
1	I furn on the main circuit	1: valid
2	Quick shutdown	0: Invalid
2	2 Quick shutdown	1: valid
2	Sonvo operation	0: Invalid
5	Servo operation	1: valid
4 ~ 6	Operation mode	It is related to the operation mode of servo drive
		Used to clear reset faults:
7	Fault reset	The rising edge of bit7 is valid;
		bit7 is kept at 1, and other control instructions are invalid.

7.2.2 Status Word

	N	ame	Setting method	Valid time	Def	ault	Set range	Application category	Unit
6041h	Statu	is word	Operation setting	Valid immediately		0	0~65535	-	-
Used to re	flect the	status of se	ervo drive.						
bit			Nam	e			Desc	ription	
0			Servo r	eady		0: Inva	alid		
			561101	cuuy		1: Vali	d		
1		Ser	rvo operation	can be started		0: Inva	alid		
1		50	vo operation (1: Vali	d		
2			Servo one	aration		0: Inva	alid		
2			3er vo ope			1: Vali	d		
3			faul	+		0: Invalid			
5			1001	t		1: Valid			
4		Electrical connection of main circuit		ŀ	0: Invalid				
-				L	1: Vali	d			
5		Quick shutdown			0: Inva	alid			
					1: Valid				
6		Servo is not operational			0: Inva	alid			
						1: Vali	d		
7			Warn	ing		0: Inva	alid		
					1: Vali	d			
8		-			-				
9		Remote control			0: Invalid				
					1: Vali	d			
10			Target a	rrival		0: Inva	alid		
			-			1: Vali	d		
	•								

Bit 0 \sim bit 9 have the same meaning in all control modes of servo drive. After the control word 6040h sends commands in sequence, the servo feeds back the determined state.

Chapter 7 Operation Running

Setting value (binary number)	Description
xxxx xxxx x0xx 0000	Servo is not ready
xxxx xxxx x1xx 0000	Startup failure
xxxx xxxx x01x 0001	Servo ready
xxxx xxxx x01x 0011	Start up
xxxx xxxx x01x 0111	Servo enable
xxxx xxxx x00x 0111	Malfunction shutdown valid
xxxx xxxx x0xx 1111	Fault response valid
xxxx xxxx x0xx 1000	Fault

7.3 Servo Mode Settings

7.3.1 Servo Mode Introduction

The object dictionary 6060h is used to display servo modes supported by servo drives.

	Name	Setting method	Valid time	Default	Set range	Application category	Unit
6060h	Servo mode	Shutdown	Valid	0	0~10		
	selection	setting	immediately	U	0 10	-	-
Used to se	t the operation mod	de of servo dri	ve.				
Setting					_		
value	N	ame			Remark		
0		-					
1	Contour positi	ion control mc	ode				
2		-					
3	Contour spee	Contour speed control mode					
4	Contour torqu	Contour torque control mode					
5		-					
6	Origin re	Origin return mode		ase refer to "7.	5 Origin return Mo	ode (HM)" for o	details
7	Interpola	Interpolation mode					
8	Cyclic Synchronous Position mode		n Please I	refer to "7.4 Cy	yclic Synchronous F details	Position mode	(CSP)" for
9	Periodic sync m	d		-			
10	Periodic sync m	hronous torqu node	ie				

7.3.2 Mode Switching

Pay attention to the following when switching modes:

(1) Whatever the servo drive state is, the unexecuted position command will be discarded after switching from the Cyclic Synchronous Position mode to other modes.

(2) Whatever the servo drive state is, after switching into other modes from the periodic synchronous speed mode, servo first executes ramp shutdown, and then switch into other modes after the shutdown is completed.

③ When the servo drive is running the origin return mode, it is not allowed to switch to other modes; When origin return is completed or interrupted (failure or invalid enable), other modes can be switched into.

(4) When the servo drive is in run state, when switching from other modes to periodic synchronous mode, please send command at an interval of at least 1ms, otherwise instructions will be lost or wrong.

7.3.3 Communication Cycles Supported by Different Modes

Mode	Cyclic Synchronous	Periodic synchronous	Homing Mode
Cycle time	Position mode	speed mode	
125us	>	V	~

7.4 Cyclic Synchronous Position Mode (CSP)

7.4.1 Control Block Diagram

7.4.2 Related Objects

(1) Control word 6040h

bit	Name	Description			
0	Servo operation can be started				
1	Turn on the main circuit	When hit 0 to hit 2 are all 1, it indicates the start of energy ion			
2	Quick shutdown	when blo to bits are an 1, it indicates the start of operation			
3	Servo operation				

(2) Status word 6041h

bit	Name	Description
10	Target arrival	-
11	Software internal position overrun	-
12	Slave station following instruction	-
13	Following error	-
14	DDL motor angle identification complete	-
15	Origin return completed	-

Chapter 7 Operation Running

Index (Hex)	Object dictionary name	Accessibility	Unit	Bit length	Set range
603F	Error code	Read only	-	16	0~65535
6040	Control word	Read and write	-	16	0~65535
6041	Status word	Read only	-	16	0~65535
6060	Servo mode selection	Read and write	-	8	0~10
6061	Run mode display	Read only	-	8	0~10
6062	position command	Read only	Instruction unit	32	1 ~ 2 ³² -1
6063	Position feedback	Read only	Encoder unit	32	1 ~ 2 ³² -1
6064	Position feedback	Read only	Instruction unit	32	-
6065	Threshold of excessive position deviation	Read and write	Instruction unit	32	1 ~ 2 ³² -1
6067	Position reaches threshold	Read and write	Encoder unit	32	0~65535
6068	Position arrival window	Read and write	ms	32	0~65535
606C	Actual speed	Read only	Instruction unit/s		-
6072	Max Torque		0.1%		0~5000
6077	Actual torque	Read only	0.1%		-5000~5000
607A	Target location	Read and write	Instruction unit	32	-2 ³¹ ~ 2 ³¹ -1
6091: 01	Electronic gear ratio numerator	Read and write	-	32	0 ~ 2 ³² -1
6091: 02	Electronic gear ratio denominator	Read and write	-	32	0 ~ 2 ³² -1
2002-01	1st position loop gain	Read and write	0.1Hz	16	0~6200
2002-02	1st speed loop gain	Read and write	0.1Hz	16	0~35000
2002-03	1st speed loop integral time constant	Read and write	0.1ms	16	100~65535
2002-09	Speed feedforward gain	Read and write	0.1%	16	0~1000
2002-0A	Speed feedforward filter time constant	Read and write	0.01ms	16	0~10000
2002-0B	Torque feedforward gain	Read and write	0.1%	16	0~2000
2002-0C	Torque feedforward filter time constant	Read and write	0.01ms	16	0~10000

7.4.3 Related Function Settings

(1) Positioning Completed

Index (Hex)	Name	Content
6067	Positioning completion threshold	When the position deviation is in the range of 6067 and the
6068	Positioning completion window	time reaches 6068, the positioning completion signal is valid.

(2) Position deviation limit

Index (Hex)	Name	Content	
6065	Threshold of excessive position	When the position deviation is greater than the set value of	
	deviation	this parameter, Er.36 (excessive position deviation) will occur.	

7.4.4 Recommended Configuration

Please refer to the following table for the basic configuration of this mode:

RPDO	ТРДО	Remark
6040 (control word)	6041 (status word)	Required
607A (target location)	6064 (position feedback)	Optional
6060 (servo mode selection)	6061 (run mode display)	Optional

7.5 Homing Mode (HM)

The mode of origin returning to zero is used to find the mechanical origin and locate the positional relationship between the mechanical origin and the mechanical zero.

Mechanical origin: A fixed position on the machine can correspond to a certain origin switch, which can correspond to the Z signal of the motor.

Mechanical origin: Mechanical absolute origin position.

After the origin returns to zero, the stop position of the motor is the mechanical origin. By setting 607Ch, the relationship between the mechanical origin and the mechanical zero can be set:

Mechanical origin = mechanical zero + 607Ch (origin offset)

When 607Ch=0, the mechanical origin is the same with mechanical zero.

7.5.1 Control Block Diagram

7.5.2 Related Objects

(1) Control word 6040h

bit	Name	Description	
0	Servo operation can be started	When bit0 to bit3 are all 1, it indicates the start of operation	
1	Turn on the main circuit		
2	Quick shutdown		
3	Servo operation		
4	return to zero	$0 \rightarrow 1$: Start return to zero	
		$1 \rightarrow 0$: End return to zero	

(2) Status word 6041h

bit	Name	Description
10	Target arrival	-
12	Slave station following instruction	-
13	Following error	-
15	Origin return completed	-

7.5.3 Related Function Settings

Current Position Calculation Method

Index	Sub-index	Name	Description
60E6	00	Current position calculation method	60E6=0 (absolute return to zero): After returning to zero, 6064h is set to 607Ch 60E6 = 1 (relative return to zero): After returning to zero, the position feedback 6064h superimposes the position offset 607C on the original basis

7.5.4 Introduction of Zero Return Mode

Note: In the figure, "H" stands for 6099: 01h (search for deceleration point signal speed), and "L" stands for 6099: 02h (search for origin signal speed).

(1) 6098H = 1

Mechanical origin: Z signal of motor

Deceleration point: Reverse limit switch (NOT)

① The deceleration point signal is invalid when starting to return to zero

NOT=0 when starting to return to zero, start to return to zero in reverse direction at high speed. After the rising edge of NOT, slow down, change running direction and run in forward direction at low speed, and stop at first Z signal when encountering the falling edge of NOT.

(2) The deceleration point signal is valid when starting to return to zero

NOT=1 when starting to return to zero, run in forward direction immediately at low speed and start to return to zero, and stop at the first Z signal when encountering the falling edge of NOT.

(2) 6098H = 2

Mechanical origin: Z signal of motor

Deceleration point: Forward limit switch (POT)

1 The deceleration point signal is invalid when starting to return to zero

POT=0 when starting to return to zero, run at a high speed in the forward direction. After encountering the rising edge of POT, motor will decelerate, run in reverse directionat low speed, and stop at the first Z signal after encountering the falling edge of POT.

(2) The deceleration point signal is valid when starting to return to zero

		Pc	ositive limit switch	
1//////////////////////////////////////	777777777777777777777777777777777777777	/////		777
Movement trajectory		¥	-L1	
Motor Z signal	「	1		
Positive limit signal			j	

POT=1 when starting to return to zero, run at low speed directly in the reverse direction, and stops at the first Z signal after encountering the falling edge of POT.

(3) 6098H = 3

Mechanical origin: Z signal of motor

Deceleration point: Origin switch (HW)

(1) The deceleration point signal is invalid when starting to return to zero

HW=0 when starting to return to zero, start to return to zero in forward direction at high speed. After encountering rising edge of HW, slow down, run in reverse direction at low speed. After ecnountering the falling edge of HW, continue to run, and then stop when encountering the first Z signal.

2 The deceleration point signal is valid when starting to return to zero

HW=1 when starting to return to zero, start to return to zero at low speed in reverse direction directly, and stop

at the first Z signal after encountering the falling edge of HW;

(4) 6098H = 4

Mechanical origin: Z signal of motor

Deceleration point: Origin switch (HW)

1 The deceleration point signal is invalid when starting to return to zero

HW=0 when starting to return to zero, start to return to zero at low speed in forward direction directly, and stop at the first Z signal after encountering the rising edge of HW;

at the first 2 signal after encountering the fising edge of HW;

2 The deceleration point signal is valid when starting to return to zero

HW=1 when starting to return to zero, start return to zero at high speed in reverse direction, slow down after encountering the falling edge of HW, change running direction and run in forward direction at low speed, and stop at the first Z signal after encountering the rising edge of HW;

(5) 6098H = 5

Mechanical origin: Z signal of motor

Deceleration point: Origin switch (HW)

① The deceleration point signal is invalid when starting to return to zero

HW=0 when starting to return to zero, start to return to zero at high speed in reverse direction, slow down after encountering the rising edge of HW, change running direction and run in forward direction at low speed, and stop at the first Z signal after encountering the falling edge of HW;

(2) The deceleration point signal is valid when starting to return to zero

HW=1 when starting to return to zero, start to return to zero at low speed in forward direction directly, and stop

at the first Z signal after encountering the falling edge of HW will stop;

(6) 6098H = 6

Mechanical origin: Z signal of motor

Deceleration point: Origin switch (HW)

1 The deceleration point signal is invalid when starting to return to zero

HW=0 when starting to return to zero, start to return to zero at low speed in reverse direction directly, and stop at the first Z signal after encountering the rising edge of HW;

2 The deceleration point signal is valid when starting to return to zero

HW=1 when starting to return to zero, start to return to zero at high speed in forward direction, slow down after encountering the falling edge of HW, change running direction and run in reverse direction at low speed, and stop at the first Z signal after encountering the rising edge of HW;

(7) 6098H = 7

Mechanical origin: Z signal of motor

Deceleration point: Origin switch (HW)

(1) The deceleration point signal is invalid when starting to return to zero, the forward limit switch is not encountered

HW=0 when starting to return to zero, start to return to zero at high speed in forward direction. If the limit switch is not encountered, after encountering the rising edge of HW, slow down, change running direction and run in reverse direction at low speed, and stop at the first Z signal after encountering the falling edge of HW;

(2) The deceleration point signal is invalid when starting to return to zero, the forward limit switch is encountered

HW=0 when starting to return to zero, start to return to zero at high speed in forward direction. If the limit switch is encountered, automatically change running direction and run in reverse direction at high speed. After encountering HW rising edge, slow down and continue to run at low speed in reverse direction, stop at the first Z signal after encountering the falling edge of HW;

(3) The deceleration point signal is valid when starting to return to zero

HW=1 when starting to return to zero, start to return to zero at low speed in reverse direction directly, and stop at the first Z signal after encountering the falling edge of HW;

(8) 6098H = 8

Mechanical origin: Z signal of motor

Deceleration point: Origin switch (HW)

1 The deceleration point signal is invalid when starting to return to zero, the forward limit switch is not

encountered

HM-0 when starting to return to zero, start to return to zero at high speed in forward direction. If the limit switch is not encountered, after encountering the rising edge of HW, slow down and change running direction and run in reverse direction at low speed. After encountering the falling edge of HW, change the running direction and run in forward direction at low speed, and stop at the first Z signal after encountering the rising edge of HW;

(2) The deceleration point signal is invalid when starting to return to zero, the forward limit switch is encountered

HW=0 when starting to return to zero, start to return to zero at high speed in forward direction. If limit switch is encountered, automatically change running direction and run in reverse direction at high speed, slow down and run in reverse direction at low speed after encountering HW rising edge; change running direction and run in reverse direction at low speed after encountering HW falling edge, and stop at the first Z signal after encountering HW rising edge;

(3) The deceleration point signal is valid when starting to return to zero

HM=-1 when starting to return to zero, start to return to zero at low speed in reverse direction directly. After encountering the falling edge of HW, change running direction and run in forward direction at low speed, and stop at the first Z signal after encountering the rising edge of HW;

(9) 6098H = 9

Mechanical origin: Z signal of motor

Deceleration point: Origin switch (HW)

(1) The deceleration point signal is invalid when starting to return to zero, the forward limit switch is not encountered

HW=0 when starting to return to zero, start to return to zero at high speed in forward direction. If the limit switch is not encountered, slow down after encountering the rising edge of HW, run at low speed in forward direction; change running direction and run in reverse direction at low speed after encountering the falling edge of HW, and stop at the first Z signal after encountering the rising edge of HW;

(2) The deceleration point signal is invalid when starting to return to zero, the forward limit switch is encountered

HW=0 when starting to return to zero, start to return to zero at high speed in forward direction. If the limit switch is encountered, change the running direction automatically and run in reverse direction at high speed; slow down and change the running direction after encountering the rising edge of HW to resume forward operation. Run in forward direction at low speed and change the running direction after encountering the running direction after encountering the running direction after encountering the falling edge of HW; stops at first Z signal after encountering the rising edge of HW during running in reverse direction at low speed;

(3) The deceleration point signal is valid when starting to return to zero

No. 99Page

HW=1 when starting to return to zero, start to return to zero directly at low speed in forward direction. After encountering the falling edge of HW, change the running direction and stop at the first Z signal after encountering the rising edge of HW during running in reverse direction at low speed;

(10) 6098H=10

Mechanical origin: Z signal of motor

Deceleration point: Origin switch (HW)

(1) The deceleration point signal is invalid when starting to return to zero, the forward limit switch is not encountered

HW=0 when starting to return to zero, start to return to zero at high speed in forward direction. If the limit switch is not encountered, slow down and run at low speed in forward direction after encountering the rising edge of HW. After encountering the falling edge of HW, continue to run at low speed in forward , and then stop at the first Z signal encountered;

(2) The deceleration point signal is invalid when starting to return to zero, the forward limit switch is encountered

HW=0 when starting to return to zero, start to return to zero at high speed in forward direction. If the limit switch is encountered, change the running direction automatically and run in reverse direction at high speed. After encountering the rising edge of HW, slow down and change the running direction to resume forward operation, and stop at the first Z signal after encountering the falling edge of HW during running in forward direction at low speed;

③ The deceleration point signal is valid when starting to return to zero

HW=1 when starting to return to zero, start to return to zero directly in forward direction at low speed, and stop at the first Z signal after encountering the falling edge of HW;

(11) 6098H=11

Mechanical origin: Z signal of motor

Deceleration point: Origin switch (HW)

(1) The deceleration point signal is invalid when starting to return to zero, the reverse limit switch is not

encountered

HW=0 when starting to return to zero, start to return to zero at high speed in reverse direction. If the limit switch is not encountered, slow down and change the running direction after encountering the rising edge of HW, and run in forward direction at low speed and stop at the first Z signal after encountering the falling edge of HW; (2) The deceleration point signal is invalid when starting to return to zero, the reverse limit switch is encountered

HW=0 when starting to return to zero, start to return to zero at high speed in reverse direction. If limit switch is encountered, change the running direction automatically and run in forward direction at high speed. After encountering HW rising edge, slow down and continue to run in forward direction at low speed. Stop at the first Z signal after encountering HW falling edge;

(3) The deceleration point signal is valid when starting to return to zero

HW=1 when starting to return to zero, it will start to return to zero directly in forward direction at low speed, and

stop at the first Z signal after encountering the falling edge of HW;

(12) 6098H=12

Mechanical origin: Z signal of motor

Deceleration point: Origin switch (HW)

① The deceleration point signal is invalid when starting to return to zero, the reverse limit switch is not encountered

HW=0 when starting to return to zero, start to return to zero in reverse direction at high speed; if limit switch is not encountered; slow down and change the running direction after encountering HW rising edge, run in forward direction at low speed; after encountering HW falling edge, change the running direction and run in reverse direction at low speed and stop at the first Z signal after encountering HW rising edge;

(2) The deceleration point signal is invalid when starting to return to zero, the reverse limit switch is encountered

HW=0 when starting to return to zero, start to return to zero in reverse direction at high speed, change the running direction automatically when encountering limit switch and run in forward direction at high speed; slow down after encountering HW rising edge and run in forward direction at low speed; change the running direction after encountering HW falling edge, and run in reverse direction at low speed and stop at the first Z signal after encountering HW rising edge;

3 The deceleration point signal is valid when starting to return to zero

HW=1 when starting to return to zero, start to return to zero in forward direction at low speed. After encountering the falling edge of HW, change the running direction and run in reverse direction at low speed, and stop at the first Z signal after encountering the rising edge of HW;

(13) 6098H=13

Mechanical origin: Z signal of motor

Deceleration point: Origin switch (HW)

(1) The deceleration point signal is invalid when starting to return to zero, the reverse limit switch is not encountered

HW=0 when starting to return to zero, start to return to zero in reverse direction at high speed. If the limit switch is not encountered, slow down and run in reverse direction at low speed after encountering the rising edge of HW. After encountering the falling edge of HW, change the running direction and run in forward direction at low speed, and stop at the first Z signal after encountering the rising edge of HW;

(2) The deceleration point signal is invalid when starting to return to zero, the reverse limit switch is encountered

HW=0 when starting to return to zero, start to return to zero in reverse direction at high speed, change the running direction automatically and run in forward direction at high speed when encountering limit switch, slow down and change the running direction after encountering HW rising edge; run in reverse direction at low speed and change the running direction after encountering HW falling edge; stop at the first Z signal after encountering HW rising edge during running in forward direction at low speed;

③ The deceleration point signal is valid when starting to return to zero

HW=1 when starting to return to zero, start to return to zero directly in reverse direction at low speed. After encountering the falling edge of HW, change the running direction; stop at the first Z signal after encountering the rising edge of HW during running in forward direction at low speed;

(14) 6098H=14

Mechanical origin: Z signal of motor

Deceleration point: Origin switch (HW)

(1) The deceleration point signal is invalid when starting to return to zero, the reverse limit switch is not encountered

HW=0 when starting to return to zero, start to return to zero in reverse direction at high speed; if limit switch is not encountered; slow down and run in reverse direction at low speed after encountering HW rising edge; after encountering HW falling edge, continue to run in reverse direction at low speed, and then stop at the first Z signal encountered;

(2) The deceleration point signal is invalid when starting to return to zero, the reverse limit switch is encountered

HW=0 when starting to return to zero, start to return to zero in reverse direction at high speed; change the running direction automatically and run in forward direction at high speed when encountering limit switch; slow down and change the running direction when encountering HW rising edge, and stop at the first Z signal after encountering HW falling edge during running in reverse direction at low speed;

3 The deceleration point signal is valid when starting to return to zero

HW=1 when starting to return to zero, start to return to zero in reverse direction at low speed directly, and stop

at the first Z signal after encountering the falling edge of HW;

(15) 6098H=17

Mechanical origin: reverse overtravel switch (NOT)

Deceleration point: Reverse overtravel switch (NOT)

① The deceleration point signal is invalid when starting to return to zero

NOT=0 when starting to return to zero, start to return to zero in reverse direction at high speed, slow down and change the running direction after encountering the rising edge of NOT, and run in forward direction at low speed, and stop after encountering the falling edge of NOT;

(2) The deceleration point signal is valid when starting to return to zero

(16) 6098H=18

Mechanical origin: Forward overtravel switch (POT)

Deceleration point: Forward overtravel switch (POT)

1 The deceleration point signal is invalid when starting to return to zero

POT=0 when starting to return to zero, start to return to zero in forward direction at high speed, slow down and change the running direction after encountering the rising edge of POT, run in reverse direction at low speed, and stop after encountering the falling edge of POT;

(2) The deceleration point signal is valid when starting to return to zero

when encountering POT falling edge;

(17) 6098H=19

Mechanical Origin: Origin Switch (HW)

Deceleration point: Origin switch (HW)

1 The deceleration point signal is invalid when starting to return to zero

HW=0 when starting to return to zero, start to return to zero in forward direction at high speed, slow down and change the running direction after encountering the rising edge of HW, and run in reverse direction at low speed, and stop when encountering the falling edge of HW;

(2) The deceleration point signal is valid when starting to return to zero

HW=1 when starting to return to zero, start to return to zero in reverse direction at low speed directly, and stop when encountering HW falling edge;

(18) 6098H=20

Mechanical Origin: Origin Switch (HW)

Deceleration point: Origin switch (HW)

1 The deceleration point signal is invalid when starting to return to zero

HW=0 when starting to return to zero, start to return to zero in forward direction at low speed directly, and stop after encountering the rising edge of HW;

(2) The deceleration point signal is valid when starting to return to zero

HW=1 when starting to return to zero, start to return to zero in reverse direction at high speed, slow down and change the running direction after encountering HW falling edge, run in forward direction at low speed, and stop when encountering HW rising edge;

(19) 6098H=21

Mechanical Origin: Origin Switch (HW)

Deceleration point: Origin switch (HW)

1 The deceleration point signal is invalid when starting to return to zero

HW=0 when starting to return to zero, start to return to zero in reverse direction at high speed, slow down and change the running direction after encountering the rising edge of HW, run in forward direction at low speed, and stop when encountering the falling edge of HW;

(2) The deceleration point signal is valid when starting to return to zero

HW=1 when starting to return to zero, start to return to zero in forward direction at low speed directly, and stop after encountering the falling edge of HW;

(20)6098H=22

Mechanical Origin: Origin Switch (HW)

Deceleration point: Origin switch (HW)

1 The deceleration point signal is invalid when starting to return to zero

HW=0 when starting to return to zero, start to return to zone in reverse direction at low speed directly and stop when encountering HW rising edge;

(2) The deceleration point signal is valid when starting to return to zero

HW=1 when starting to return to zero, start to return to zero in forward direction at high speed, slow down and change the running direction after encountering HW falling edge, run in reverse direction at low speed, and stop when encountering HW rising edge;

(21)6098H=23

Mechanical Origin: Origin Switch (HW)

Deceleration point: Origin switch (HW)

(1) The deceleration point signal is invalid when starting to return to zero, the forward limit switch is not encountered

HW=0 when starting to return to zero, start to return to zero in forward direction at high speed; limit switch is not encountered; slow down and change the running direction after encountering HW rising edge; run in reverse direction at low speed and stop when encountering HW falling edge;

(2) The deceleration point signal is invalid when starting to return to zero, the forward limit switch is encountered

HW=0 when starting to return to zero, start to return to zero in forward direction at high speed, change the running direction automatically when encountering limit switch, run in reverse direction at high speed and slow down when encountering HW rising edge, continue to run in reverse direction at low speed, and stop when encountering HW falling edge;

3 The deceleration point signal is valid when starting to return to zero

HW=0 when starting to return to zero, start to return to zero in forward direction at high speed, change the running direction automatically when encountering limit switch, run in reverse direction at high speed and slow down when encountering HW rising edge, continue to run in reverse direction at low speed, and stop when encountering HW falling edge;

(22)6098H=24

Mechanical Origin: Origin Switch (HW)

Deceleration point: Origin switch (HW)

(1) The deceleration point signal is invalid when starting to return to zero, the forward limit switch is not encountered

HW=0 when starting to return to zero, start to return to zero in forward direction at high speed; limit switch is not encountered; slow down and change the running direction after encountering HW rising edge, then run in reverse direction at low speed, and change the running direction when encountering HW falling edge, run in forward direction at low speed and stop when encountering HW rising edge;

(2) The deceleration point signal is invalid when starting to return to zero, the forward limit switch is encountered

HW=0 when starting to return to zero, start to return to zero in forward direction at high speed; change the running direction automatically when encountering limit switch, run in reverse direction at high speed and slow down and run in reverse direction at low speed when encountering HW rising edge; change the running direction and run in forward direction at low speed when encountering HW falling edge, and stop when encountering HW rising edge;

(3) The deceleration point signal is valid when starting to return to zero

HW=1 when starting to return to zero, start to return to zero in reverse direction at low speed directly; after encountering the falling edge of HW, change the running direction and run in forward direction at low speed, and stop when encountering the rising edge of HW;

(23)6098H=25

Mechanical Origin: Origin Switch (HW)

Deceleration point: Origin switch (HW)

① The deceleration point signal is invalid when starting to return to zero, the forward limit switch is not encountered

HW=0 when starting to return to zero, start to return to zero in forward direction at high speed; limit switch is not encountered; slow down after encountering HW rising edge, run in forward direction at low speed, change the running direction and run in reverse direction at low speed after encountering HW falling edge, and stop when encountering HW rising edge;

(2) The deceleration point signal is invalid when starting to return to zero, the forward limit switch is encountered

limit switch

HW=0 when starting to return to zero, start to return to zero in forward direction at high speed, change the running direction automatically and run in reverse direction at high speed when encountering limit switch; slow down and change the running direction after encountering HW rising edge to resume forward operation; run in forward direction at low speed and change the running direction after encountering HW rising edge;

(3) The deceleration point signal is valid when starting to return to zero

HW=1 when starting to return to zero, when, start to return to zero in the forward direction at low speed directly. After encountering the falling edge of HW, change the running direction and run in verse direction at low speed and stop when encountering the rising edge of HW.

(24) 6098H=26

Mechanical Origin: Origin Switch (HW)

Deceleration point: Origin switch (HW)

(1) The deceleration point signal is invalid when starting to return to zero, the forward limit switch is not encountered

HW=0 wWhen starting to return to zero, start to return to zero in forward direction at high speed; limit switch is not encountered; slow down after encountering HW rising edge, run in forward direction at low speed, and stop when encountering HW falling edge;

(2) The deceleration point signal is invalid when starting to return to zero, the forward limit switch is encountered

HW=0 when starting to return to zero, start to return to zero in forward direction at high speed, change the running direction automatically and run in reverse direction at high speed when encountering limit switch; slow down and change the running direction when encountering HW rising edge to resume forward operation, run in forward direction at low speed and stop when encountering HW falling edge;

③ The deceleration point signal is valid when starting to return to zero

HW=1 when starting to return to zero, start to return to zero in forward direction at low speed directly, and stop when encountering HW falling edge;

(25) 6098H=27

Mechanical Origin: Origin Switch (HW)

Deceleration point: Origin switch (HW)

(1) The deceleration point signal is invalid when starting to return to zero, the reverse limit switch is not encountered

HW=0 when starting to return to zero, start to return to zero in reverse direction at high speed; limit switch is not encountered; slow down and change the running direction after encountering rising edge of HW, run in forward direction at low speed and stop when encountering HW falling edge;

2 The deceleration point signal is invalid when starting to return to zero, the reverse limit switch is encountered

HW=0 when starting to return to zero, start to return to zero in reverse direction at high speed, change the running direction automatically when encountering limit switch and run in forward direction at high speed; slow down when encountering HW rising edge, continue to run in forward direction at low speed and stop when encountering HW falling edge;

③ The deceleration point signal is valid when starting to return to zero

HW=1 when starting to return to zero, start to return to zero in forward direction at low speed directly, and stop

when encountering HW falling edge;

(26) 6098H=28

Mechanical Origin: Origin Switch (HW)

Deceleration point: Origin switch (HW)

① The deceleration point signal is invalid when starting to return to zero, the reverse limit switch is not encountered

HW=0 when starting to return to zero, start to return to zero in reverse direction at high speed; limit switch is not encountered; slow down and change the running direction after encountering HW rising edge, run in forward direction at low speed; change the running direction after encountering HW falling edge, run in reverse direction at low speed and stop when encountering HW rising edge;

2 The deceleration point signal is invalid when starting to return to zero, the reverse limit switch is encountered

HW=0 when starting to return to zero, start to return to zero in reverse direction at high speed, change the running direction automatically when encountering limit switch and run in forward direction at high speed; slow down and run in forward direction at low speed when encountering HW rising edge; change the running direction and run in reverse direction at low speed when encountering HW falling edge, and stop when encountering HW rising edge;

③ The deceleration point signal is valid when starting to return to zero

HW=1 when starting to return to zero, start to return to zero in forward direction at low speed directly. After encountering the falling edge of HW, change the running direction and run in reverse direction at low speed and stop when encountering the rising edge of HW;

(27) 6098H=29

Mechanical Origin: Origin Switch (HW)

Deceleration point: Origin switch (HW)

(1) The deceleration point signal is invalid when starting to return to zero, the reverse limit switch is not encountered

HW=0 when starting to return to zero, start to return to zero in reverse direction at high speed directly; limit switch is not encountered; slow downafter encountering HW rising edge, run in reverse direction at low speed; change the running direction after encountering HW falling edge and run in forward direction at low speed and stop when encountering HW rising edge;

2 The deceleration point signal is invalid when starting to return to zero, the reverse limit switch is encountered

HW=0 when starting to return to zero, start to return to zero in reverse direction at high speed, change the running direction automatically when encountering limit switch and run in forward direction at high speed; slow down and change the running direction when encountering HW rising edge; run in reverse direction at low speed; change the running direction after encountering the falling edge of HW, then run in forward direction at low speed and stop when encountering HW rising edge;

③ The deceleration point signal is valid when starting to return to zero

HW=1 when starting to return to zero, start to return to zero in reverse direction at low speed directly. After encountering the falling edge of HW, change the running direction; stop when encountering the rising edge of HW during running in forward direction at low speed.

(28) 6098H=30

Mechanical Origin: Origin Switch (HW)

Deceleration point: Origin switch (HW)

(1) The deceleration point signal is invalid when starting to return to zero, the reverse limit switch is not encountered

HW=0 when starting to return to zero, start to return to zero in reverse direction at high speed; limit switch is not encountered; slow down after encountering HW rising edge, run in reverse direction at low speed, and stop when encountering HW falling edge;

(2) The deceleration point signal is invalid when starting to return to zero, the reverse limit switch is encountered

HW=0 when starting to return to zero, start to return to zero in reverse direction at high speed, change the running direction automatically when encountering limit switch and run in forward direction at high speed; slow down and change the running direction when encountering HW rising edge, and stop when encountering HW falling edge during running in reverse direction at low speed;

(3) The deceleration point signal is valid when starting to return to zero

HW=1 when starting to return to zero, start to return to zero in reverse direction at low speed directly, and stop when encountering HW falling edge;

(29) 6098H=33 and 34

Mechanical origin: Z signal

Deceleration point: None

Zero return mode 33: running in reverse direction at low speed, stop at the first Z signal encountered Zero return mode 34: running in forward direction at low speed, stop at the first Z signal encountered

(30) 6098h=35

Zero returning mode 35: take the current position as the mechanical origin, and after triggering the origin to return to zero (6040 control word: $0xOF \rightarrow 0x1F$):

The 60E6=0 (absolute return to zero)

After the zero return is completed, the position feedback 6064h is set to the origin offset 607Ch

The 60E6=1 (relative return to zero):

After returning to zero, the position feedback 6064h superimposes the position offset 607C on the original basis

Chapter 8 Object Dictionary

8.1 Overview of Object Dictionaries

8.1.1 Object Dictionary Area Allocation

The object dictionary of CoE (CANopen over EtherCAT) specified in CIA 402 and the object dictionary of VD3E

series are composed as follows:

Index	Content		
0000h ~ 0FFFh	Data type region		
1000h ~ 1FFFh	Communication subprotocol area		
2000h ~ 5FFFh	Vendor customized area		
6000h ~ 9FFFh	Standard equipment subprotocol area		
A000h ~ FFFFh	Reserved		

8.1.2 Explanation of Related Terms in Object Dictionary

★Index: The position of objects of the same class in the object dictionary, expressed in hexadecimal.

★Sub-index: Under the same index, there are multiple objects, and each object is biased under the same index.

★Accessibility: See the following table for details:

Accessibility	Description		
RW	Read and write		
RO	Read only		
WR_PREOP	Writable in preop mode		

★Can you map: See the following table for details:

Accessibility	Description	
NO (NO)	NO (NO) Unmappable	
RPDO	Can be used as RPDO	
TPDO	Can be used as TPDO	

★Set to take effect: See the following table for details:

Set conditions	Description	Set conditions	Description
Shutdown setting	It can be set in the shutdown state	Valid immediately	The set value will take effect
			immediately after the parameter is
			modified and downloaded
			After the parameters are modified
-------------------	-------------------------	----------------	------------------------------------
			and downloaded, the servo drive
Operation setting	Can be set in any state	Power-on again	needs to be powered down and
			then powered up, and the set value
			can take effect

★Data display range: upper and lower limits of parameters.

★Default value: The factory setting value of the parameter.

★Data type: The type of data, as shown in the following table:

Data type	Description	Numerical range
SINT	Signed 8bit	-128 ~ 127
USINT	Unsigned 8bit	0 ~ 255
INT	Signed 16bit	-32768 ~ 32767
UINT	Unsigned 16bit	0~65535
DINT	Signed 32bit	-21247483648 ~ 21247483647
UDINT	Unsigned 32bit	0~4294967295
STRING	String Value	ASCII

 \star Related modes: See the following table for specific contents:

Accessibility	Description
ALL	This parameter is related to all modes
CSP/CSV/HM	This parameter is only related to the corresponding mode
-	This parameter is independent of the control mode

8.2 Communication Sub-protocol Area (1000h to 1FFFh)

1000	Parameter name	Accessibility	Data mapping	Data type	Data display range	Default	Correlation mode		
	Device Type (Device Type)	RO	No	UDINT	-	-	-		
Used to	Jsed to describe the CoE device subprotocol type.								

1001	Parameter name	Accessibility	Data mapping	Data structure	Data display range	Default	Correlation mode		
	Error register (Error register)	RO	No	USINT	-	0x00	-		
Used to	Used to describe error records.								

1008	Parameter name	Accessibility	Data mapping	Data structure	Data display range	Default	Correlation mode		
	Device name (Device name)	RO	No	STRING	-	-	-		
Used to	Used to describe the device name.								

1009	Parameter name	Accessibility	Data mapping	Data structure	Data display range	Default	Correlation mode			
1005	Manufacturer hardware version	PO	No	STRING	-	-				
	(Manufacturer Hardware Version)	ĸŬ					-			
Used to	Used to describe the manufacturer hardware version									

1004	Parameter name	Accessibility	Data mapping	Data structure	Data display range	Default	Correlation mode	
IUUA	Manufacturer software version	DO	No	STRING	-	-	-	
	(Manufacturer Software Version)	ĸŬ						
Used to describe the Manufacturer software version								

1018	Parameter name	Accessibility	Data mapping	Data structure	Data display range	Default	Correlation mode		
	ID Object (ID Object)	-	-	-	-	-	-		
Used to	Used to describe device information.								
01h	Parameter name	Accessibility	Data mapping	Data structure	Data display range	Default	Correlation mode		
	Vendor ID (Vendor ID)	RO	No	UDINT	-	0x00000EFF	-		
Serial n	umber used to describe the drive.								
02h	Parameter name	Accessibility	Data mapping	Data structure	Data display range	Default	Correlation mode		
	Product Code (Product Code)	RO	No	UDINT	-	0x10003101	-		

Used to	Used to describe the encoding inside the drive.										
03h	Parameter name	Accessibility	Data mapping	Data structure	Data display range	Default	Correlation mode				
USII	Revision Number (Revision Number)	RO		UDINT	-	0x00000001	-				
Upgrade	Upgrade record number used to describe the drive.										
04h	Parameter name	Accessibility	Data mapping	Data structure	Data display range	Default	Correlation mode				
	Serial Number (Serial Number)	RO	No	UDINT	-	0x00001419	-				
Used to	describe a serial number.										

	Devementer	Accessibility	Data	Data	Data display	Default	Correlation			
1600	Parameter name	Accessionity	mapping	structure	range	Delault	mode			
	RxPDO	-	-	-	-	-	-			
Mappin	g object for setting RxPDO.									
	Parameter name	Accessibility	Data	Data	Data display	Default	Correlation			
01h		Accessionity	mapping	structure	range	Detault	mode			
010	First mapping object	D\\/		UDINT	-	0.0000000				
	(RxPDO_SI1)	RVV	NF DO			0x60400010	-			
Mapping object for setting RxPDO1.										
	Parameter name	Accossibility	Data	Data	Data display	Dofault	Correlation			
02h		Accessionity	mapping	structure	range	Delaut	mode			
0211	Second mapping object	RW	RPDO	UDINT	-	0,0070020				
	(RxPDO_SI2)					0.0077.0020	-			
Mappin	g object for setting RxPDO2.									
	. .	A	Data	Data	Data display	Default	Correlation			
02h	Farameter name	Accessionity	mapping	structure	range	Delault	mode			
USII	Third mapping object	D\\/		UDINT	-	0,0000010				
	(RxPDO_SI3)	NVV	RFDO			0X00B80010	-			
Mappin	g object for setting RxPDO3.									
	Darameter name	Accessibility	Data	Data	Data display	Default	Correlation			
04h	Parameter name	Accessionity	mapping	structure	range	Delault	mode			
0411	Fourth mapping object	D\\/		UDINT	-	0,00000				
	(RxPDO_SI3)	ΓVV	RPDO			0.00000008	-			
Mappin	g object for setting RxPDO4.									

1701	Parameter name	Accessibility	Data mapping	Data structure	Data display range	Default	Correlation mode		
	RxPDO	-	-	-	-	-	-		
Mappin	Mapping object for setting RxPDO.								
016	Parameter name	Accessibility	Data	Data	Data display	Default	Correlation		
010			mapping	structure	range	Delault	mode		

	First mapping object (RxPDO_SI1)	RW	RPDO	UDINT	-	0x60400010	-
Mappin	g object for setting RxPDO1.						
	Devementer nome	Accessibility	Data	Data	Data display	Default	Correlation
026	Faranieter name	Accessibility	mapping	structure	range	Delault	mode
υzn	Second mapping object	DM/		UDINT	-	0.0740000	
	(RxPDO_SI2)	RVV	RPDO			0x607A0020	-
Mapping object for setting RxPDO2.							
	Parameter name	A	Data	Data	Data display	Default	Correlation
026		Accessionity	mapping	structure	range	Delault	mode
0511	Third mapping object	D\4/	BDDO	UDINT	-	0,0000010	
	(RxPDO_SI3)	r vv	RPDO			000000010	-
Mappin	g object for setting RxPDO3.						
	Devementer nome	Accessibility	Data	Data	Data display	Default	Correlation
04h	Parameter name	Accessionity	mapping	structure	range	Delault	mode
0411	The fourth mapping object	D\A/		UDINT	-	0,40,600,000	
	(RxPDO_SI4)	RVV	RPDO			000000008	-
Mappin	g object for setting RxPDO4.						

	Doromotor namo	Accessibility	Data	Data	Data display	Default	Correlation
1702	Parameter name	Accessionity	mapping	structure	range	Delaun	mode
	RxPDO	-	-	-	-	-	-
Mappin	g object for setting RxPDO.						
	Devementer nome	Accessibility	Data	Data	Data display	Default	Correlation
01h	Parameter name	Accessionity	mapping	structure	range	Delault	mode
0111	First mapping object	D\4/		UDINT	-	0,60400010	
	(RxPDO_SI1)	KVV	RPDO			0x60400010	-
Mappin	g object for setting RxPDO1.						
	Parameter name	Accossibility	Data	Data	Data display	Dofault	Correlation
02h	Farameter name	Accessionity	mapping	structure	range	Delault	mode
UZN	Second mapping object	R\M/	RPDO	UDINT	-	0x60740020	-
	(RxPDO_SI2)		NI DO			0,007,0020	
Mappin	g object for setting RxPDO2.						
	Parameter name	Accessibility	Data	Data	Data display	Default	Correlation
02h	r arameter name	Accessionity	mapping	structure	range	Delaut	mode
USII	Third mapping object	R\\/	RBDO	UDINT	-		_
	(RxPDO_SI3)		NI DO			0,00110020	
Mappin	g object for setting RxPDO3.						
	Parameter name	Accessibility	Data	Data	Data display	Default	Correlation
04h	Farameter name	Accessionity	mapping	structure	range	Delault	mode
0411	The fourth mapping object	R\M/	RPDO	UDINT	-	0v60710008	-
	(RxPDO_SI4)	1.44	111 00			5700710008	·
Mappin	g object for setting RxPDO4.						

Chapter 8 Object Dictionary

OFh	Parameter name	Accessibility	Data mapping	Data structure	Data display range	Default	Correlation mode
USN	The fifth mapping object (RxPDO_SI5)	RW	RPDO	UDINT	-	0x60600008	-
Mappin	g object for setting RxPDO5.						
	Downwotow norma		Data	Data	Data display	Dofault	Correlation
06h	Parameter name	Accessionity	mapping	structure	range	Delault	mode
	Sixth mapping object	D\\/		UDINT	-	0,0000010	
	(RxPDO_SI6)	N V V	KFDO			0X00B80010	-
Mappin	g object for setting RxPDO6.						
	Parameter name	Accessibility	Data	Data	Data display	Default	Correlation
07h	Falameter hame	Accessionity	mapping	structure	range	Delault	mode
0711	The seventh mapping object	D\\/		UDINT	-	0,00750020	
(RxPDO_SI7)		L AA	KPDO			0x007F0020	-
Mappin	g object for setting RxPDO7.						

1A00	Parameter name	Accessibility	Data mapping	Data structure	Data display range	Default	Correlation mode
	TxPDO	-	-	-	-	-	-
Mappin	g object for setting TxPDO.						
016	Parameter name	Accessibility	Data mapping	Data structure	Data display range	Default	Correlation mode
0111	First mapping object (TxPDO_SI1)	RW	TPDO	UDINT	-	0x60410010	-
Mappin	g object for setting TxPDO1.						
02h	Parameter name	Accessibility	Data mapping	Data structure	Data display range	Default	Correlation mode
U2n	Second mapping object (TxPDO_SI2)	RW	TPDO	UDINT	-	0x60640020	-
Mappin	g object for setting TxPDO2.						
	Parameter name	Accessibility	Data mapping	Data structure	Data display range	Default	Correlation mode
U3N	Third mapping object (TxPDO_SI3)	RW	TPDO	UDINT	-	0x60B90010	-
Mappin	g object for setting TxPDO3.						
046	Parameter name	Accessibility	Data mapping	Data structure	Data display range	Default	Correlation mode
04n	The fourth mapping object (TxPDO_SI4)	RW	TPDO	UDINT	-	0x60BA0020	-
Mappin	g object for setting TxPDO4.						
05h	Parameter name	Accessibility	Data mapping	Data structure	Data display range	Default	Correlation mode
	The fifth mapping object	RW	TPDO	UDINT	-	0x60BC0020	-

	(TxPDO_SI5)								
Mapping object for setting TxPDO5.									
	Doromotor nomo	Accessibility	Data	Data	Data display	Default	Correlation		
06h	Parameter name	Accessionity	mapping	structure	range	Delault	mode		
0011	Sixth mapping object	D\\/		UDINT	-	0v60250010			
	(TxPDO_SI6)	NVV	TFDO			0x003F0010	-		
Mappin	g object for setting TxPDO6.								
	Paramotor namo	Accossibility	Data	Data	Data display	Dofault	Correlation		
076	Parameter name	Accessionity	mapping	structure	range	Delault	mode		
0711	The seventh mapping object	D\4/	TDDO	UDINT	-	0,40610008			
	(TxPDO_SI7)	ΓVV	IPDO			000010008	-		
Mappin	g object for setting TxPDO7.								

1B01	Parameter name	Accessibility	Data mapping	Data structure	Data display range	Default	Correlation mode
1001	ТхРDО	-		-	-	-	-
Mappin	g object for setting TxPDO.			I			
	Demonster	A	Data	Data	Data display	Default	Correlation
01h	Parameter name	Accessibility	mapping	structure	range	Default	mode
UTII	First mapping object	R\M	ΤΡΟΟ	UDINT	-	0x603E0010	-
	(TxPDO_SI1)	I V V	TFDO			0x00310010	
Mappin	g object for setting TxPDO1.						
	Parameter name	Accessibility	Data	Data	Data display	Default	Correlation
02h		Accessionity	mapping	structure	range	Delaan	mode
	Second mapping object	RW	TPDO	UDINT	-	0x60410010	-
	(TxPDO_SI2)					0.000120020	
Mapping object for setting TxPDO2.							
	Parameter name	Accessibility	Data	Data	Data display	Default	Correlation
03h		,	mapping	structure	range		mode
0011	Third mapping object	RW	TPDO	UDINT	-	0x60640020	-
	(TxPDO_SI3)					0.00010020	
Mappin	g object for setting TxPDO3.						
	Parameter name	Accessibility	Data	Data	Data display	Default	Correlation
04h		,	mapping	structure	range	201001	mode
·	The fourth mapping object	RW	TPDO	UDINT	-	0x60770010	-
	(TxPDO_SI4)						
Mappin	g object for setting TxPDO4.						
	Parameter name	Accessibility	Data	Data	Data display	Default	Correlation
05h			mapping	structure	range		mode
	The fifth mapping object	RW	TPDO	UDINT	-	0x60F40020	-
	(TxPDO_SI5)						
Mappin	g object for setting TxPDO5.						
06h	Parameter name	Accessibility	Data	Data	Data display	Default	Correlation

			mapping	structure	range		mode	
	Sixth mapping object (TxPDO_SI6)	RW	TPDO	UDINT	-	0x606100108	-	
Mappin	Mapping object for setting TxPDO6.							

1C12	Parameter name	Accessibility	Data mapping	Data structure	Data display range	Default	Correlation mode
	RxPDO assign	-	-	-	-	-	-
Used to set up RPDO assignments.							
	Parameter name	Accessibility	Data mapping	Data structure	Data display range	Default	Correlation mode
01h	Index of objects allocated by RPDO (RPDO Index)	RW	No	ARR	-	0x1701	-
The inde	ex used to set the allocation object o	f RPDO.					
1C13	Parameter name	Accessibility	Data mapping	Data structure	Data display range	Default	Correlation mode
	TxPDO assign	-	-	-	-	-	-
Used to	set TPDO assignments.						
	Parameter name	Accessibility	Data mapping	Data structure	Data display range	Default	Correlation mode
01h	Index of objects assigned by TPDO (TPDO Index)	RW	No	ARR	-	0x0001	-
The inde	ex of the allocation object used to se	t TPDO.	•		•	•	

	Parameter name	Accessibility	Data	Data	Data display	Default	Correlation
		-	mapping	structure	range		mode
1C32	Synchronize management of						
	output parameters	-	-	-	-	-	-
	(SM output parameter)						
Used to	describe synchronization manageme	ent output parar	neters.				
			Data	Data Data Data dis		Default	Correlation
016	r arameter name	Accessionity	mapping	structure	range	Delault	mode
OTU	Synchronization type	P\//	No		_	0v0001	
	(Synchronization Type)	L A A	110	UINT	-	0X0001	-
Used to	set the synchronization type.						
	Devenuedant versue	A	Data	Data	Data display	Default	Correlation
04b	Parameter name	Accessibility	mapping	structure	range	Default	mode
-0411	Synchronization Types support	DO	Ne			0,2007	
	(Synchronization Types support)	KU	No	UDINT	-	0x8007	-
Displays	s the type of distributed clock.						

05h	Parameter name	Accessibility	Data mapping	Data structure	Data display range	Default	Correlation mode		
	Minimum cycle time (Minimum Cycle Time)	RO	No	UINT	-	0x0001E848	-		
Displays the minimum synchronization period supported by the slave station in ns.									

1022	Parameter name	Accessibility	Data mapping	Data structure	Data display range	Default	Correlation mode
1033	SM input parameter						
	(SM input parameter)	-	-	-	-	-	-
Used to describe synchronization manageme		ent input param	eters.				
	Parameter name		Data	Data	Data display	Default	Correlation
01h	rarameter name	Accessionity	mapping	structure	range	Delaute	mode
0111	Synchronization type	D\\/	No			0,0022	
	(Synchronization Type)	L AA	NO	UINT	-	0x0022	-
Used to	set the synchronization type.						
	Parameter name	Accossibility	Data	Data	Data display	Dofault	Correlation
046		Accessionity	mapping	structure	range	Delault	mode
04N	Synchronization Types support	PO	Ne			0.0007	
	(Synchronization Types support)	ĸŬ	NO	UDINT	-	0x8007	-
Displays	the type of distributed clock.						
	Davana akan wana a	A	Data	Data	Data display	Default	Correlation
OFh	Parameter name	Accessibility	mapping	structure	range	Default	mode
050	Minimum cycle time	PO	Ne			0.00015040	
	(Minimum Cycle Time)	RO	NO	UINT	-	0X0001E848	-
Displays	the minimum synchronization perio	d supported by	the slave stati	on in ns.			

8.3 Vendor Customized Area (2000h to 2FFFh)

Group 2000h: Basic Settings

P00-04	Parameter n	ame Setting Vali method		Valid time	Default	Set range	Application category	Unit	
2000-04	Rotate direc	tion	ion Shutdown		0	0 to 1	Basic		
	RotationD	Dir setting imm		immediately	0	0101	settings	-	
Set the positive direction of the motor rotation when view					the motor axis.				
Setting value Rotation direction				Remark					
	0 Take CW as the forward direction				wed from the m	otor axis, the motor clockwise	rotates		
	Take CCW as the forward 1 direction			ard Vie	Viewed from the motor axis, the motor rotates counterclockwise				
direction counterclockwise									

	Para	meter name	Setting method	Valid time	Defa	ult	Set range	Application category	Unit
2000-	Brak	ing resistance setting ExtResSel	Operation setting	Valid immediately	0		0 to 3	Basic settings	-
Used to	set the mode of absorbing a		nd releasing bra	king energy.					
	Setting value		Brake resistance setting			Remark			
	0	U	se built-in braking resistor						
	1	Use external	l braking resistor and natural cooling						
	2	Use external l	braking resistor and forced air cooling (not settable)		Pleas s	se refer to "7.1. 5 Bra elect the appropriat	iking Resistance e braking mode	" to	
	з	No braking re	sistors are used	, and all are abs	orbed				
	3		by capacita	nce					

P00-10	Parameter name	Setting	Valid time	Default	Set range	Application	Unit
P00-10	Farameter hame	method	valia time	Delault	Set lange	category	onic

2000-0A	External braking resistor resistance	Operation setting	Valid immediately	50	0~65535	Basic settings	Ω		
	the newer of external hre	king register of	convo drivo M/h	on the maximu	m hraking anargy cal	aulatad valua ia	graatar		
Used to set	Used to set the power of external braking resistor of servo drive. When the maximum braking energy calculated value is greater								
than the ma	ximum braking energy ab	sorbed by capa	citor, and the br	aking power cal	lculated value is grea	ter than the bu	ilt-in braking		
resistor pow	ver, use external braking r	esistor.							
If the value	If the value of P00-10 is too large, Er.25 (too large braking resistor value) or Er.22 (main power supply is over voltage) will occur.								
When exter	When external braking resistor is connected, please disconnect the short tab between C and D and connect the external braking								
register between D L and C. Diagon refer to "2.1.2. Composition of some drive" for specific experision									
resistor between P + and C. Please refer to "2.1.2 Composition of servo drive" for specific operation.									

P00-11 2000-0B	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit			
	External braking resistor power ExtResPwr	Operation setting	Valid immediately	100	0~65535	Basic settings	W			
Used to set	Used to set the power of the external braking resistor of the servo drive.									
External bra	External braking resistor power "P00-11" is not allowed to be less than the calculated value of braking resistor power!									

P00-23	Parameter name	Setting method	Effective time	Default	Set range	Application category	Unit
2000-17	Z pulse output OZ polarity PulseOutPcPolarity	Operation setting	Power-on again	0	0 to 1	Basic settings	-
Used to se	t the logic level of Z pulse		1				
		Setting					
		value	Func	tion			
		0	Z pulse is	active at			
			high l	evel			
		1	Z pulse is	active at			
			low l	evel			

P00-24	Parameter name	Setting method	Effective time	Default	Set range	Application category	Unit
2000-18	Z pulse output width	Operation	Power on	2	1~200	Basic	mc
	PulseOutZWidth	setting	again	5	1 200	settings	1115
Set the wid	dth of Z pulse output.						
		Setting					
		value	Func	tion			
		1	Pulse wid	dth 1ms			
		2	Pulse wid	dth 2ms			
		200	Pulse widt	:h 200ms			

DO0 20	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit
P00-30 2000-1E	Shield multi-turn absolute encoder	Operation	Power-on again	0	0 to 1	Basic	-
	battery fault	setting				settings	

Chapter 8 Object Dictionary

	EncBatEr	rMask								
Used to set t	Used to set the battery fault alarm setting function of multi-turn absolute value encoder.									
	Setting Function value				Remark					
	0 Unshielded		Detect battery undervoltage and battery low voltage faults of multi-turn absolute value encoder							
	1 Shield		Shield m and batte	nulti-turn ab ery low-volta failure,	solute end age fault. T please us	coder battery This would cau e with caution	under voltage ise mechanical i.			

P00-31	Parameter name	Setting method	Effective time	Default	Set range	Application category	Unit	
2000-1F	Encoder read-write verification exception threshold setting EncCommWarmThreshold	Operation setting	Effective immediately	20	0 to 100	Basic settings	-	
Encoder re 0: no alarr	der read-write verification exception is too frequent. Alarm threshold setting. alarm:							
Others: W	Others: When this setting value is exceeded, report A-93.							

Group 2001h: Control Parameters

D01 10	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit	
P01-10 2001-0A	Maximum speed threshold MaxSpeedLimit	Operation setting	Valid immediately	3600	0~5000	Protection and restriction	rpm	
Used to set the maximum speed limit value. If the actual speed of motor exceeds this value, Er.32 would occur (Exceed the maximun speed of motor).								

D01 11	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit		
2001-0B	Warning speed threshold WarmSpeedTh	Operation setting	Valid immediately	3300	0 ~5000	Protection and restriction	rpm		

Used to set the limit value of maximum speed. If the actual speed of motor exceeds this value, A-81 would occur (Exceed the maximum speed of motor).

001 13	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit			
2001-12 2001-0C	Forward speed threshold PosSpeedTh	Operation setting	Valid immediately	3000	0~5000	Protection and restriction	rpm			
Used to set t	Used to set the limit value of forward speed.									

D01 13	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit		
2001-0D	NegSpeedTh NegSpeedTh	Operation setting	Valid immediately	3000	0~5000	Protection and restriction	rpm		
Used to set the limit value of reverse speed									

P01-14	Parameter name	Setting method	Effective time	Default	Set range	Application category	Unit
2001-0E	Torque limit source	Shutdown	Effective	0	0 to 2	Protection and	-
	IoqEinitSite	Setting	ininculately			restriction	

Used to set the torque limit source.

Setting value	Restricted source	Remarks
0	Internal	Internal torque limit.
1	Reserved	Reserved
2	[thorCAT	External torque limit, controlled by object dictionaries 6072,
2	EtherCAI	60E0 and 60E1 through EtherCAT communication.

P01-15 2001-0F	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit		
	Forward torque limit	Operation	Valid	3000	0~3000	Protection and	0.1%		
	FIOqLIII	setting	immediately			restriction			
When P01-1	4 is set to 0 (internal), the	set value of this	s function code	is used as the li	mit value of positive	torque.			
If the value of P01-15 and P01-16 is set too small, the servo motor may be insufficient torque phenomenon when performing									
acceleration	and deceleration movem	ents. Please refe	er to "6.4.3 Torq	ue command lir	nit".				

D01 16	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit			
P01-16 2001-10	Reverse torque limit RToqLim	Operation setting	Valid immediately	3000	0~3000	Protection and restriction	0.1%			
When P	When P01-14 is set to 0 (internal), the setting value of this function code is reverse torque limit value									

When P01-14 is set to 0 (internal), the setting value of this function code is reverse torque limit va	alue
--	------

D01 10	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit			
2001-13	Torque Limit Time ToqLimTime	Operation setting	Valid immediately	1000	0~65535	Protection and restriction	ms			
When torque is limited by the setting value of P01-15 or P01-16, and exceeds the setting time, drive would report fault "abnormal torque saturation".										

Note: When the value of this function code is set to 0, the torque saturation timeout fault detection is not done, and this fault is ignored.

	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit		
P01-30	Delay from brake output								
2001-1E	ON to instruction	Operation	Valid	250	0~500		200		
	reception	setting	immediately			-	ms		
	BK_ONtoCmdEnaDelay								
Used to set the braking (BRK-OFF) output ON, until the servo drive allows the start of receiving the input command. When the brake									
output (BRK-	OFF) is not allocated, this fu	nction code has	s no effect.						

	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit
P01-31	In the static state, delay						
2001-1F	from the brake output is	Operation	Valid	150	1~1000		200 G
	OFF to the motor is not	setting	immediately	150	1 1000	-	ms
	energized.						

	BK_OFFtoPwmOFFDelay							
When the m	When the motor is in a static state, set the delay time from the brake (BRK-OFF) output is OFF to the servo drive is in the non-powered							

state. When the brake output (BRK-OFF) is not allocated, this function code has no effect.

	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit	
P01-32	Rotation status, when the							
2001-20	brake output OFF, the	Operation	Valid	20	0~2000		****	
	speed threshold.	setting	immediately	30	0 3000	-	rpm	
	BK_OFFSpdTh							
When the motor is rotating, the motor speed threshold that is allowed when the brake (BRK-OFF) output is OFF. When the brake output								

(BRK-OFF) is not allocated, this function code has no effect.

	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit	
P01-33	Rotation status, Delay from							
2001-21	servo enable OFF to brake	Operation	Valid	500	1~1000			
	output OFF	setting	immediately	500	1.1000	-	ms	
	BK_OFFSinceSofDelay							
When the motor rotates, the delay time from the servo enable (S-ON) OFF to the brake (BRK-OFF) output OFF is allowed. When the								
brake output	t (BRK-OFF) is not allocated, thi	is function code	has no effect.					

P01-37	Parameter name	Setting method	Effective time	Default	Set range	Application category	Unit			
2001-25	JOG acceleration time	Operation	Effective	E00	1 to 5000		20			
	SpdRefJOGAccTime	setting	immediately	500	1 10 5000	-	1115			
The time for	The time for JOG instruction to accelerate from 0 to 1000rpm.									

P01-38	Parameter name	Setting method	Effective time	Default	Set range	Application category	Unit
2001-26	JOG deceleration time	Operation setting	Effective	500	1 to 5000	-	ms
The time for JOG instruction to decelerate from 1000rpm to 0.							

Group 2002h: Gain Adjustment

P02-01	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit		
2002-01	1st position loop gain	Operation	Vvalid	400	0~6200	Cain control	0 1 4 7		
	PosLoop1stGain	setting	immediately	400	0 8200	Gain control	0.1HZ		
It is used for setting the proportional gain of the first position loop to determine the responsiveness of the position control system.									

P02-02	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit	
2002-02	The first speed loop	Operation	valid	6F	0~25000	Coin control	0 111-	
	gain SpdLoop1stGain	setting	immediately	60	0 35000	Gain control	U.1HZ	
It is used for setting the proportional gain of the first position loop to determine the responsiveness of the position control system.								

It is used for setting the proportional gain of the first position loop to determine the responsiveness of the position control system.

D02 02	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit		
2002-03	speed loop 1st integral time SpdLoop1stIntgTime	Operation setting	Valid immediately	1000	100~65535	Gain control	0.1ms		
Used to set the integral constant of the first speed loop. The smaller the set value, the stronger the integral effect.									

D02.00	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit
2002-09	Speed feedforward gain SpdFeedForwardGain	Operation setting	Valid immediately	0	0~1000	Gain control	0.1%

It is used for setting the proportional gain of the second position loop to determine the responsiveness of the position control system.

P02-10	Parameter name	Setting method	Effective time	Default	Set range	Application category	Unit		
2002-10 2002-0A	Speed feed forward filter constant SpdFeedForwardFilter	Operation setting	Effective immediately	3	0 to 500	Gain control	1ms		
Used to set the time constant of the one power delay filter associated with the speed feedforward input.									

P02-11 2002-0B	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit		
	Torque feedforward gain ToqFeedForwardGain	Operation setting	Valid immediately	0	0~2000	Gain control	0.1%		
Used to set the torque feedforward gain.									

P02-10 2002-0C	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit		
	Torque feedforward filter time constant ToqFeedForwardFilter	Operation setting	Valid immediately	50	0~10000	Gain control	0.01ms		
Used to set the time constant of the primary delay filter associated with the torque feedforward input.									

Group 2003h: Self-adjusting Parameters

P03-01 2003-01	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit		
	Load inertia ratio LoadInerRatio	Operation setting	Valid immediately	300	100~10000	Automatic parameter tuning	0.01		
Used to set the load inertia ratio, 1.00 ~ 100.00 times.									

DO2 02	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit	
2003-02	Load rigidity selection RigiditySel	Operation setting	Valid immediately	14*	0~31	Automatic parameter tuning	-	
Used to set the load inertia ratio, 1.00 ~ 100.00 times.								

D02 02	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit
2003-03	Self-adjusting mode	Operation	Valid			Automatic	
2003-03	selection	setting	immediately	0	0 to 2	parameter	-
	SelfAdjustMode					tuning	

Used for setting different gain adjustment modes, the related gain parameters can be set manually or automatically according to the rigidity grade table.

Setting value	Function	Description				
0	Self-adjusting mode.	Position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter settings are automatically adjusted according to the rigidity grade setting.				
1	Manual setting	The user manually sets the position loop gain, speed loop gain, speed loop integral time constant and torque filter parameter settings.				
2	Online automatic self-adjusting mode	Not yet realized.				

	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit
P03-04 2003-04	Online inertia identification sensitivity InerldOnline	Operation setting	Valid immediately	0	0 to 2	Automatic parameter tuning	-
Not yet realize	zed.						

	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit			
2003-05	Number of cycles of inertia identification InerldCircle	Shutdown setting	Valid immediately	2	1 to 20	Automatic parameter tuning	Circle			
Used to set the load inertia identification process and set the number of rotations of the motor.										

D02.06	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit			
2003-06	Maximum speed of inertia identification InerIdMaxSpd	Shutdown setting	Valid immediately	1000	300 to 2000	Automatic parameter tuning	rpm			
Used to set the maximum allowable motor speed command in offline inertia identification mode. The faster the speed during inertia identification, the more accurate the identification result will be. Generally, keep the default value.										

	Parameter name	S m	etting iethod	Valid time	Default	Set rang	e	Application category	Unit
P03-07 2003-07	Parameter identification rotation direction InerIdRollMode	Shi s	utdown etting	Valid immediately	0	0 to 2		Automatic parameter tuning	-
Used to set	Jsed to set parameters identification rotation direction.								
			Setting value	Rota	tion direction				
			0	Forwa	Forward and reverse				
			recipro	reciprocating rotation					
			1	Forward	Forward one-way rotation				
			2	Reverse	one-way rotatio	on			

	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit					
P03-08 2003-08	Parameter identification waiting time InerIdWaitTime	Shutdown setting	Valid immediately	1000	300 to 10000	Automatic parameter tuning	ms					
During offline	During offline inertia identification, the time interval between two consecutive speed instructions											

Group 2004h: Vibration Suppression

D04.01	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit
2004-01	Pulse instruction filtering method PulseFilterType	Shutdown setting	Valid immediately	0	0 to 1	Position mode	-
Used f	for setting different gain a	djustment mod	es, the related ${ m g}$	gain parameters	can be set manually	or automatical	ly according
to the rigidi	ty grade table.						
		Setting value	Filte	ering method			
		0	First-order method	low-pass filteri	ng		
		1	Mean filte	ring method			

	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit
P04-02 2004-02	Position command first-order low-pass Filtering time constant LowpassFilterTime	Shutdown setting	Valid immediately	0	0~1000	Position mode	ms
It is used to	set the filtering time constant	Position instruction	der low-pass filt	ering mode.	Input position i First order filte	nstruction r	
	The position command is trapezoidal wave	Position instruction			Input position in Average filterin	nstruction g	

P04-03	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit
2004-03	position command	Shutdown	Valid	0	0 to 128	Position	ms
	average filter time	setting	immediately	,	0 10 128	mode	

	constant AveragingFilterTime						
Used to set a	average filtering time const	ant.					
	The position commands is rectangular waves	Position 4 instruction	l de la de	t	 Input position Average filteri Time 	instruction ing	
	The position command is trapezoidal wave	Position instruction	j <u>e 2t</u> →l		Input position First order filt	i instruction ter	

P04-04	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit		
2004-04	Torque filter time constant	Operation	Valid	50	10~2500	Vibration	0.01ms		
	TogFiltertTime	setting	immediately	50	10~2500	suppression	0.01113		
Used to set	Used to set torque filtering time constant. When the function code P03-03(Self-adjustment mode selection) is set to 0, the								
parameter	is automatically set by servo.								

P04-05	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit
2004-05	1st notch filter frequency	Operation	Valid	300	250 to 5000	Vibration	Hz
	NotchFilter1_Freq	setting	immediately	300	250 10 5000	suppression	112
Use to set the center frequency of the 1st notch filter. When the function code is set to 5000, the function of the notch filter is							
invalid.							

P04-06	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit	
2004-06	1st notch filter depth	Operation	Valid	100	0 to 100	Vibration		
	NotchFilter1_Deep	setting	immediately	100		suppression	-	
It is use to s	set the notch filter depth grade	e (the ratio bety	ween input and	output at the c	enter frequenc	y of the notch fi	ilter).The	
larger the set value of this function code is, the smaller the notch filter depth is, and the weaker the suppression effect of								
mechanical	vibration is. However, setting	too large could	cause system ir	nstability.				

P04-07 2004-07	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit
	1st notch filter width	Operation	Valid	4	0 to 12	Vibration	-

	NotchFilter1_Band	setting	immediately			suppression			
Use to set the notch filter width grade (the ratio between input and output at the center frequency of the notch filter)									

Use to set the notch filter width grade (the ratio between input and output at the center frequency of the notch filter)
--

D04 09	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit			
nixn2004-08	2nd notch filter frequency NotchFilter2_Freq	Operation setting	Valid immediately	500	250 to 5000	Vibration suppression	Hz			
Use to set the center frequency of the 2nd notch filter. When the function code is set to 5000, the function of the notch filter is invalid.										

P04-09	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit
2004-09	2nd notch filter depth	Operation	Valid	100	0 to 100	Vibration	-
	NotchFilter2_Deep	setting	immediately	100	0 10 100	suppression	

P04-10	Parameter name	Setting method	Valid time	Default	Set range	Application Unit category	
2004-0A	2nd notch filter width	Operation	Valid	4	0 to 12	Vibration	-
	NotchFilter2_Band	setting	immediately	7	0 10 12	suppression	

P04-18	Parameter name	Setting method	Effective time	Default	Set range	Application ange category		
2004-12	Speed feedback filter time	Operation	Effective	10	1 to 1000	Vibration	0.01mc	
	SpdFdbFilterTime	setting	immediately	10	1 10 1000	suppression	0.01115	

Group 2005h: Signal Input and Output

P05-16 2005-10	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit		
	Rotation detection speed threshold RotateSpdDtTh	Operation setting	Valid immediately	20	0~1000	Speed mode	rpm		
Set the speed threshold that triggers the motor rotation signal. The motor rotation signal (TGON) is used to confirm that the motor									
has rotated.									

P05-19 2005-13	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit
	Zero speed output	Operation setting	Valid immediately	10	0~6000	Speed mode	rpm
	signal threshold						
	SpdZeroOutTh						

Use to set the speed threshold that triggers the motor rotation signal. Motor output zero speed signal (ZSP) means that the actual speed of the motor is close to stationary.

Group 2006h: DIDO Configuration

DOG (22	Parameter name	Setting method	Valid t	ime	Defa	ault	Set range	Application category	Unit
2006-	02 DI_	1 channel function selection Di1FunSel	Operation setting	Power agai	ver-on gain)	0~32	DI/DO	-
Set DI functions corresponding to hardware DI_1. Refer to the following table for the functions corresponding to the set value:										
	Setting value	DI channel function			Set va	Setting DI channel function value		l function		
	0	OFF (not u	ised)		6			CL (deviation counter cleared)		
	1	SON (servo e	nabled)			8		E-STOP (Emergency stop)		
	2	A-CLR (Fault and w	varning clear)			26		HOMEORG (origin signal)		
	3	3 POT (Forward drive prohibit			Rem	aining	None			
	4	4 NOT (Reverse drive prohibition)								
If P06-	If P06-02 is set to a value other than that in the preceding table, the DI port function is not require									
The sa	me DI chan	nel function could not b	e allocated to n	nultiple D	l port	s, other	wise sei	rvo drive will oc	cur A-89 (dupli	cate DI port

configuration)

DOC 02	Parar	neter name	Setting method	Valid time	Default	Set range	Application category	Unit	
2006-03	DI_1 c si D	hannel logic election i1LogSel	Operation setting	Valid immediately	0	0 to 1	DI/DO	_	
DI port inp	ut logic valid	lity function select	y function selection						
	Setting value		Content			Specification			
	0	Normally open i	nput. Active lov on);	v level (switch	high level >3ms high level valid				
	1	Normally closed input. Active high (switch off);			high le high le	evel val	id ns		

	Parameter name	Sett met	ting hod	Valid time	Default	Set rang	ge	Application category	Unit
2006-04	DI_1 input source selection Di1SrcSel	Oper sett	ation ting	Valid immediately	0	0 to 1		DI/DO	-
Select the e	enabled DI_1 port type								
		Setting value		Port cat	tegory				
		0		Hardware DI_1	input terminal				

1	Virtual VDI_1 input terminal	

	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit
2006-05	DI_2 channel function selection Di2FunSel	Operation setting	Power-on again	2	0~32	DI/DO	-

	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit
2006-06	DI_2 channel logic selection Di2LogSel	Operation setting	Valid immediately	0	0 to 1	DI/DO	-
DOC 07	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit
2006-07	DI_2 input source selection Di2SrcSel	Operation setting	Valid immediately	0	0 to 1	DI/DO	-

	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit
2006-08	DI_3 channel function selection Di3FunSel	Operation setting	Power-on again	3	0~32	DI/DO	-

	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit
2006-09	DI_3 channel logic selection Di3LogSel	Operation setting	Valid immediately	0	0 to 1	DI/DO	-

DOC 10	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit
2006-0A	DI_3 input source selection Di3SrcSel	Operation setting	Valid immediately	0	0 to 1	DI/DO	-

P06-11	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit
2000-00	DI_4 channel function	Operation	Power-on	4	0~32	DI/DO	-

selection	setting	again		
Di4FunSel				

DOC 12	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit
2006-0C	DI_4 channel logic selection Di4LogSel	Operation setting	Valid immediately	0	0 to 1	DI/DO	-

DOC 12	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit
2006-0D	DI_4 input source selection Di4SrcSel	Operation setting	Valid immediately	0	0 to 1	DI/DO	-

DOC 14	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit
2006-0E	DI_5 channel function selection Di5FunSel	Operation setting	Power-on again	0	0~32	DI/DO	-

D06 15	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit
2006-0F	DI_5 channel logic selection Di5LogSel	Operation setting	Valid immediately	0	0 to 1	DI/DO	-

D06 16	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit
2006-10	DI_5 input source selection Di5SrcSel	Operation setting	Valid immediately	0	0 to 1	DI/DO	-

DOC 17	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit
2006-11	DI_6 channel function selection Di6FunSel	Operation setting	Power-on again	0	0~32	DI/DO	-

P06-18	Parameter name	Setting	Valid time	Default	Set range	Application	Unit
2006-12	Falameter hame	method	valia time	Delault	Set lange	category	Onit

Chapter	8	Object	Dictionary

DI_6 channel logic selection Di6LogSel	Operation setting	Valid immediately	0	0 to 1	DI/DO	-
--	----------------------	----------------------	---	--------	-------	---

DOC 10	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit
2006-13	DI_6 input source selection Di6SrcSel	Operation setting	Valid immediately	0	0 to 1	DI/DO	-

DOC 26	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit
2006-1A	DO_1 channel function selection Do1FunSel	Operation setting	Valid immediately	132	128 ~ 148	DI/DO	-

Use to set DO functions corresponding to hardware DO_1. Refer to the following table for the functions corresponding to the set value:

Setting value	DI channel function
128	OFF (not used)
129	RDY (Servo ready)
130	ALM (fault signal)
131	WARN (warning signal)
132	TGON (rotation detection)
133	ZSP (zero speed signal)
134	P-COIN (positioning completed)
137	V-NEAR (speed approach)
138	T-COIN (torque arrival)

Setting	DI channel function
value	Di channel function
139	T-LIMIT (Torque limit)
140	V-LIMIT (speed limited)
141	BRK-OFF (brake output)
142	SRV-ST (Servo on state output)
145	COM_VDO1 (communication
145	VDO1 output)
146	COM_VDO1 (communication
140	VDO1 output)
147	COM_VDO1 (communication
147	VDO1 output)
Others	None

If P06-26 is set to a value other than that in the preceding table, the DO port function is not required The same DO channel function could not be allocated to multiple DO ports, otherwise servo drive will occur A-90 (duplicate DO port configuration)

DOC 27	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit
2006-1B	DO_1 channel logic selection Do1LogSel	Operation setting	Valid immediately	0	0 to 1	DI/DO	-

DO Port input logic vali	DO Port input logic validity function selection.									
	Setting	Setting								
	value	Content								
		Output transistor is on when the output is valid, and output								
	U	transistoris off when the output is invalid.								
	1	Output transistor is off when the output is valid, and output								
	I	transistor is on when the output is invalid.								

DOC 39	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit
2006-28 2006-1C	DO_2 channel function selection Do2FunSel	Operation setting	Valid immediately	130	128 ~ 148	DI/DO	-
DOC 30	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit
2006-1D	DO_2 channel logic selection Do2LogSel	Operation setting	Valid immediately	0	0 to 1	DI/DO	_

DOC 20	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit
2006-1E	DO_3 channel function selection Do3FunSel	Operation setting	Valid immediately	129	128 ~ 148	DI/DO	-

DOC 21	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit
2006-1F	DO_3 channel logic selection Do3LogSel	Operation setting	Valid immediately	0	0 to 1	DI/DO	-

Group 200Ah: Auxiliary Function

P10-01	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit				
200A-01	JOG speed	Operation	Valid	100	0~2000	Auxiliary					
	SpdRefJOG	setting	immediately	100	100 0.3000		rpm				
Used to set	Used to set JOG speed										

P10-02	Parameter name	Setti meth	ng od	Valid time	Default	Set range	Application category	Unit
200A-02	Factory value resetting	Shutdo	own	Valid	0	0 + - 1	Auxiliary	
	RstFuncFac	setti	ng	immediately	U	0 to 1	function	-
Used to rest	ore function code parame	ters to facto	ry valu	ies.				
		Setting value		Operational meaning				
		0		No op	eration			
		1		Restore factory setting value				

P10-03	Paran	neter name	Setting method	Valid time	Default	Set range	Application category	Unit			
200A-03	Faul	t clearing	Operation	Valid	0	0 to 1	Auxiliary				
	Serv	voErrClear	setting	immediately			function	-			
Fault reset	operation se	lection									
	Setting	Function.	Permark								
	value	Function		Kemark							
	0	No operation			-						
	1	Fault clearing	For clearable function code state again.	For clearable faults, after the cause of fault is removed, and write 1 to the function code, the drive will stop the fault display and enter the Rdy (or RUN) state again.							
Note: If	the servo S-C	ON is valid, when t	the fault is remo	oved and cleared	d, the servo wil	directly enter	the Run state. W	/hen			
performing	g fault clearin	g actions, be sure	e to stop sendin	g control instruc	tions such as p	ulses to ensure	personal safety	.			

D10.04	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit		
200A-04	Motor overload protection time factor MotOLProtect_Coef	Operation setting	Valid immediately	100	0 to 800	Accessibility	%		
Set the ti	me for code A-82 (Motor	overload wa	rning) and Er	.34 (Motor o	verload prote	ection fault) t	hrough this		
function code.									
According	According to the heating condition of the motor, modifying this value can make the overload protection time								

fluctuate up and down the reference value, 50 corresponds to 50%, that is, the time is reduced by half; 300 corresponds to 300%, that is, the time is extended to 3 times. When it is set to 0, the overload protection fault detection function will be shielded, so please use it carefully!

Chapter 8 Object Dictionary

D10 0C	Paramete	er name	Setting method	Valid time	Default	Set range	Application category	Unit
200A-06	Multi-turn encoder	absolute r reset	Shutdown	Valid	0	0 to 1	Accessibility	-
	AbsEn	cRst	setting	immediately				
Used to clea	r the rotation n	umber of mult	i-turn absolute	encoder (U0-55)	, current positio	n (U0-56) or cle	ar the encoder f	ault
alarms								
		Setting valu	Je	Fu				
		0	No opera	ation				
		1	Clear mu encoder	ilti-turn data, en fault alarms	coder current po	osition and		
Note: Afte	er reset (P10-06	is set to 1), th	e absolute posit	tion of the encod	ler will change s	uddenly, and th	e mechanical ori	igin
return opera	ition is required	l.						

D10.07	Parameter name	Setting method	Effective time	Default	Set range	Application category	Unit				
200A-07	Manual setting motor code ManualSetMotoCode	Operation setting	Power-on again	0	0 to 1	Auxiliary function	-				
Used to moc code is read Note: Do	Used to modify the Motor Code of the servo drive. When it is set to 0, Motor Code is read from motor. When it is set to 1, Motor code is read from P10-5 motor model.										

Group 200Dh Communication Input and Output Terminal

P13-01	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit
200D-01	Virtual VDI_1 input value	Operation	Valid	0	0 to 1	00/ום	_
	CommVdi_1	setting	immediately	0	0101	51750	
When P06-0	04 is set to 1, DI_1 channel lo						
		Setting value	VDI_1 in	put level			
		0	Low level				
	-	1	High level				

P13-02	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit
200D-02	Virtual VDI_2 input value	Operation	Valid	0	0 to 1		
	CommVdi_2	setting	immediately	0	0 to 1	DI/DO	-
When P06-0	07 is set to 1, DI_2 channel log	ic is controlled	by this function	code.			

Chapter 8 Object Dictionary

P13-03	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit			
200D-03	Virtual VDI_3 input value	Operation	Valid	0	0 to 1	00/וס				
	CommVdi_3	setting	immediately	0	0 10 1	DI/DO	-			
When P06-10 is set to 1, DI_3 channel logic is control by this function code.										

P13-04	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit			
200D-04	Virtual VDI_4 input value	Operation	Valid	0	0 to 1					
	CommVdi_4	setting	immediately	U	0101	טעיום	-			
When P06-13 is set to 1, DI_4 channel logic is control by this function code.										

P13-05	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit				
200D-05	Virtual VDI_5 input value	Operation	Valid	0	0 to 1						
	CommVdi_5	setting	immediately	U	0 10 1	טטעוט	-				
When P06-2	When P06-16 is set to 1, DI_5 channel logic is control by this function code.										

P13-06	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit			
200D-06	Virtual VDI_6 input value	Operation	Valid	0	0 to 1					
CommVdi_6 setting immediately 0 0 to 1 DI/DO										
When P06-19 is set to 1, DI_6 channel logic is control by this function code.										

D12 11	Parameter name	Setting method	Valid time	Default	Set ı	range	Application category	Unit
200D-0B	Virtual VDO_1 output value CommVdo_1	Operation setting	Valid immediately	0	01	to 1	DI/DO	_
Used to set	the input level logic when t	he DO functio	on selected by V	DO_1 is active	е.			
		Setting value	VDO_	_1 input leve	el .			
		0		Low level				
		1	1	High level				

D12 12	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit
200D-0C	Virtual VDO_2 output value CommVdo_2	Operation setting	Valid immediately	0	0 to 1	DI/DO	-

012 12	Parameter name	Setting method	Valid time	Default	Set range	Application category	Unit
200D-0D	Virtual VDO_3 output value CommVdo_3	Operation setting	Valid immediately	0	0 to 1	DI/DO	-

110.01	Monitorir	ng name	Range	Category	Panel dis	splay	Unit	Data type
201E-01	Servo s SrvSta	itatus atus	0~8	Universal	Decimal		-	16 Bit
Display the	status of servo drive.						I	
	Display value		Status	Display va	lue		Status	
	0	Pc	ower-on	5		Servo operation		
	1	Init	ialization	6		Quick shutdown		
	2	Failur	e-free (nF)	7		Malfunction shutdow		n
	3	Servo	ready (Ry)	8			Fault	
	4	Wait for	servo enabled					

Group 201Eh Universal Monitoring

110.02	Monit	oring name	Range	Cat	egory	Panel display	Unit	Data type
2015 02	Servo r	notor speed	E000~E000	Lini	ivercel	Decimal	rnm	16 Dit
2016-02	SpeedDis		-5000 5000 01106		versar	Decimal	rpin	TO BIL
Display the	the actual speed of servo dr		ive. The accuracy	is 1 rpn	n. The disp	play of servo drive	e panel is as belo	w.
	50		Orpm display		-500rpm display		,	
			50[1) J		- 50		

	Monite	oring name	Range	Cat	tegory	Panel display	Unit	Data type
U0-03	Inp	ut speed						
201E-03	inst	truction	-5000~5000	Un	iversal	Decimal	rpm	16 Bit
	Sp	odCmd						
Display serv	o input sp	eed instructio	n. The accuracy is	s 1 rpm	. The displ	ay of servo drive	panel is as bel	ow.
		300	Orpm display			-3000rpm displa	y	
				7) 0	0	300		

	Monit	oring name	Range	Cat	tegory	Panel display	Unit		Data type
110.04	Correspo	onding speed							
2015 04	of	position	E000~E000	Lin	ivorcal	Docimal	rom		16 Di+
2016-04	CO	mmand	-3000-3000	011	IVEISAI	Decimal	ipin		10 Bit
	PosC	CmdToSpd							
Display the	current sp	eed instructio	n value of servo d	lrive in	position m	node. The accurac	cy is 1 rpm. Th	he dis	splay of servo
drive panel	is as belov	w.							
		300	Orpm display			-3000rpm displa	у		
				1) 0	0	300			

No. 171Page

	Monitoring name	Range	Category	Panel display	Unit	Data type				
U0-09	Input instruction				Instruction					
201E-09	pulse number	-2 ³¹ ~2 ³¹	Universal	Decimal	unit	32 Bit				
	PulsTotal				um					
Display ins	truction pulse number t	hat input the serv	vo drive. If U0-09	is set to -2147483	3646, the panel o	f servo drive is				
	displayed as below.									
			Shift							
			Ŷ							
	Shift Shift									
	lower 4 bits middle 4 bits high 2 bits page 1 page 2 page 3									

	Monitoring name	Range	Category	Panel display	Unit	Data type
U0-13 201E-0D	Encoder cumulative	-2 ³¹ ~2 ³¹		l Decimal Encoder unit	Freedorunit	22 Dit
	position		Universal			
	(Low 32 bits)		Universal		52 BIL	
	EncTotal_LowWord					

	Monitoring name	Range	Category	Panel display	Unit	Data type
U0-15 201E-0F	Encoder cumulative	-2 ^{31~} 2 ³¹			Frank dan unit	22 Dit
	position		Universal	Decimal Encoder unit		
	(High 32 bits)		Universal		32 BIL	
	EncTotal_HighWord					
Display the cumulative data of encoder position. It is used with U0-13 cooperatively.						

U0-17 Monitoring name Range Category Panel display Unit Data type

201E-11	DI input signal status	00000000~	Universal	Dinory	Encodor unit	16 Dit		
	DiData1	11111111	Universal	Billary		10 BIC		
Displays the current level status of 6 DI terminals.								
Display mode: The upper part of the digital tube of the servo drive panel is bright to indicate high level (represented by								
"1"); The lower light indicates low level (denoted by "0").								
Take the DI1~DI4 terminal as the high level and DI5~D16 as the low level as the example: the corresponding binary code								
is "001111", and Wecon servo control device debugging platform U0-17 displays the 0b0000 1111. The panel of servo								
drive is displayed as below:								
DI6 DI4 DI2								
DI5 DI3 DI1								
Low low high high high high $0 \ 0 \ 1 \ 1 \ 1$								

	Monitoring name	Range	Category	Panel display	Unit	Data type
U0-19 201E-13	DO output signal status DoData1	00000000~ 00001111	Universal	Binary	Encoder unit	16 Bit

Displays the current level status of 3 DO terminals.

Display mode: The upper part of the digital tube of the servo drive panel is bright to indicate high level (represented by "1"); The lower light indicates low level (denoted by "0").

Take the DO1, DO2 and DO3 terminals as the high level and DO2 as the low level as an example. The corresponding binary code is "101", and Wecon servo upper computer debugging platform U0-17 displays the current binary value is 0b0000 0101. The panel of servo drive is displayed as below.

Monitoring name Panel display Unit Range Category Data type U0-20 Real-time load 201E-14 16 Bit inertia ratio Universal Decimal % InerRatioReal Displays the current load inertia ratio. If the load inertia ratio is 3 times (300%), the panel of servo drive is displayed as

Displays the current load inertia ratio. If the load inertia ratio is 3 times (300%), the panel of servo drive is displayed as below.

110-23	Monitoring name	Range	Category	Panel display	Unit	Data type
201E-17	Vibration Frequency	-	Universal	Decimal	Hz	16 Bit
	DisVibFreq					

U0-24 201E-18	Monitoring name	Range	Category	Panel display	Unit	Data type
	Vibration Amplitude	-	Universal	Decimal	rpm	16 Bit
	DisVibMag				•	-

	Monitoring name	Range	Category	Panel display	Unit	Data type	
U0-25	Forward torque limit						
201E-19	value	0~300	Universal	Decimal	%	16 Bit	
	PToqLimitDis						
Display the set value of P01-15 (forward torque limit) of servo drive. If U0-25 is 288%, the panel of servo drive is							
displayed as	below.						
288							

	Monitoring name	Range	Category	Panel display	Unit	Data type	
U0-26	Reverse torque limit						
201E-1A	value	-300~0	Universal	Decimal	%	16 Bit	
	NToqLimitDis						
Display the set value of P01-16 (reverse torque limit) of servo drive. If U0-26 is 300%, the panel of servo drive is							
displayed as below.							

	Monitoring name	Range	Category	Panel display	Unit	Data type	
U0-27	Forward speed limit						
201E-1B	value	0~5000	Universal	Decimal	rpm	16 Bit	
	PSpdLimitDis						
Display the set value of P01-12 (forward speed threshold) of servo drive. If P01-12 is set to 2000, the panel of servo drive							
		is di	splayed as below				

	Monitoring name	Range	Category	Panel display	Unit	Data type	
U0-28	Reverse speed limit						
201E-1C	value	-5000~0	Universal	Decimal	rpm	16 Bit	
	NSpdLimitDis						
Display the set value of P01-13 (reverse speed threshold) of servo drive. If P01-13 is set to 3000, the panel of servo drive							

is displayed as below.

-][[[

U0-29 201E-1D	Monitoring name	Range	Category	Panel display	Unit	Data type	
	Mechanical angle	0~359	Universal	Decimal	o	16 Bit	
	MachineAngle						

Display current mechanical angle of motor. 0 corresponds to a mechanical angle of 0 degree.

U0-30 201E-1E	Monitoring name	Range	Category	Panel display	Unit	Data type	
	Electrical angle ElecAngle	0~359	Universal	Decimal	٥	16 Bit	
Display current electrical angle of motor. The accuracy is 1° . When the motor rotates, the electrical angle range is 360 $^\circ$.							
When the motor is 4 poles, every time the motor is rotated one turn, it undergoes a change process of 0 $^\circ$ to 359 $^\circ$ for							
four times.							

U0-31	Monitoring name	Range	Category	Panel display	Unit	Data type		
dain201E	Bus voltage			Decimal	V	16 Bit		
-1F	DcBusVoltDisp	-	Universal					
Display the DC bus voltage of the main circuit input voltage of servo drive after rectification.								
If the bus voltage is 310.9, the panel of servo drive is displayed as below.								

	Monitoring name	Range	Category	Panel display	Unit	Data type
U0-32	Radiator					
201E-20	temperature	-	Universal	Decimal	°C	16 Bit
	Temperature_IPM					

	Monitoring name	Range	Category	Panel display	Unit	Data type
U0-33	Instantaneous output					
201E-21	power	-	Universal	Decimal	W	16 Bit
	OutputPowerInst					

	Monitoring name	Range	Category	Panel display	Unit	Data type
U0-34	Average output					
201E-22	power	-	Universal	Decimal	W	16 Bit
	OutputPowerAverage					

U0-35	Monitoring name	Range	Category	Panel display	Unit	Data type

Chapter 8	Object	Dictionary
-----------	--------	------------

201E-23	Total operation time									
	(hour)	-	Universal	Decimal	h	16 Bit				
	HourTotalRun									

	Monitoring name	Range	Category	Panel display	Unit	Data type
U0-37	Total operation time					
201E-25	(minute)	-	Universal	Decimal	min	16 Bit
	MinTotalRun					

	Monitoring name	Range	Category	Panel display	Unit	Data type
U0-38	Total operation time					
201E-26	(second)	-	Universal	Decimal	S	16 Bit
	SecTotalRun					

110.20	Monitoring name	Range	Category	Panel display	Unit	Data type			
00-59 201E-27	Load torque percentage		Universal	Docimal	0/	16 Bit			
2012-27	ToqOutRate	-	Oniversal	Decimal	70				
Display current load torque percentage. If the current load torque percentage is 10.3%, the panel of servo drive is displayed									
as below.									
				7					
				→					

	Monitoring name	Range	Category	Panel display	Unit	Data type
U0-40	Current operation time					
201E-28	(hour)	-	Universal	Decimal	h	16 Bit
	HourCurrentRun					

	Monitoring name	Range	Category	Panel display	Unit	Data type
U0-42	Current operation time					
201E-2A	(minute)	-	Universal	Decimal	min	16 Bit
	MinCurrentRun					

	Monitoring name	Range	Category	Panel display	Unit	Data type
U0-43	Current operation					
201E-2B	time (second)	-	Universal	Decimal	S	16 Bit
	SecCurrentRun					

	Monitoring name	Range	Category	Panel display	Unit	Data type
U0-44	Instantaneous					
201E-2C	braking resistor	-	Universal	Decimal	W	16 Bit
	power					

Chapter 8 Object Dictionary								
	DisPwrInst]	

	Monitoring name	Range	Category	Panel display	Unit	Data type
U0-46	Average braking					
201E-2E	resistor power	-	Universal	Decimal	W	16 Bit
	DisPwrAvg					

	Monitoring name	Range	Category	Panel display	Unit	Data type
00-48 201E-30	Power-on times	-	Universal	Decimal	Times	16 Bit
PwrUpCount	PwrUpCount		eersar	2.0011101		20 2.0

	Monitoring name	Range	Category	Panel display	Unit	Data type	
	Motor cumulative						
201E-32	number of circles (Low 32 bits) MotoTotal_LowWord	0~(2 ³² -1)	Universal	Decimal	Circle	32 Bit	
Displays the cumulative number of revolutions of the motor. It is used with U0-13 cooperatively.							

	Monitoring name	Range	Category	Panel display	Unit	Data type
U0-51 201E-33	Motor cumulative	0~(2 ³² -1)	Universal	Decimal	Circle	32 Bit
	(High 32 bits)					
	MotoTotal_HighWord					

U0-52	Monitoring name	Range	Category	Panel display	Unit	Data type
201E-34	Encoder bits EncoderBit	17 to 23	Universal	Decimal	Bit	16 Bit

110 50	Monitoring name	Range	Category	Panel display	Unit	Data type			
00-53	Motor model code			Hexadecima		10 04			
2012-35	MotoModel	-	Universal	I	-	TO BIL			
Displays the Motor Code of the current servo drive connected motor. Taking WD80M-07530S-A1F (A026) as an example,									
the descriptio	the description panel is displayed as below:								
ACZE									

	Monitoring name	Range	Category	Panel display	Unit	Data type
U0-54	Absolute encoder				Freedor	
201E-36	position in 1 lap	0~(2 ³² -1)	Universal	Decimal	Encouer	32 Bit
	AbsEncIn1Cycle				unit	

Display the single turn position feedback value of absolute encoder

	Monitoring name	Range	Category	Panel display	Unit	Data type	
U0-55	Absolute encoder						
201E-37	number of circles	0 to 65535	Universal	Decimal	Circle	32 Bit	
	AbsEncMultiTurn						
Circle numbers of multi-turn absolute encoder							

	Monitoring name	Range	Category	Panel display	Unit	Data type		
	Current position of							
U0-56	the multi-turn				Instruction			
201E-38	absolute encoder	-231~231	Universal	Decimal		32-bit		
	(Low 32 bits)				unit			
	EncTotal_CmdUnit							
Display the al	Display the absolute position of the current motor (Instruction unit). It is only valid in multi-turn absolute encoder motor.							

	Monitoring name	Range	Category	Panel display	Unit	Data type			
	Current position of								
U0-57	the multi-turn				Instruction				
201E-39	absolute encoder	-231~231	Universal	Decimal	instruction	32-bit			
	(High 32 bits)				unit				
	EncTotal_CmdUnit								
Display the al	Display the absolute position of the current motor (Instruction unit). It is only valid in multi-turn absolute encoder motor.								

111 01	Monitoring name	Range	Category	Panel display	Unit	Data type		
2015-01	Current error code		Marping			16 Dit		
2011-01	NowErrorCode	-	warning	-	-	TO BIL		
If there is fault in servo drive, it would display the corresponding fault. If not, the panel displays "", Taking the failure of								
"encoder d	"encoder disconnection" as an example, the panel of servo drive is displayed as below.							
	Servo drive has ar	n fault " e	ncoder Servo d	rive has no fault				
	disconnection"							
	F		1					
		n han		0 0 0	0 0			

201Fh Group: Warning Monitoring

111.02	Monitoring name	Range	Category	Panel display	Unit	Data type		
01-02 201E 02	Current warning code		Warning			16 Dit		
2011-02	NowWarmCode	-	vvarning	ning -	-	TO BIC		
If there is warning in servo drive, it would display the corresponding warning. If not, the panel displays "". Taking the								
warning of	"duplicate DI port configuration" as an example, the panel is displayed as below.							
	Servo drive has an warning "duplicate DI port configuration"			drive has no warni	ng			
				000	0 0			

	Monitoring name	Range	Category	Panel display	Unit	Data type
U1-03	U phase current when					
201F-03	faults occur	-	Warning	Decimal	А	16 Bit
	luWarmOccur					

	Monitoring name	Range	Category	Panel display	Unit	Data type
U1-04	V phase current when					
201F-04	faults occurmalfunction	-	Warning	Decimal	А	16 Bit
	lvWarmOccur					

	Monitoring name	Range	Category	Panel display	Unit	Data type
U1-05	Bus voltage when faults					
201F-05	occur	-	Warning	Decimal	V	16 Bit
	UdcWarmOccur					

	Monitoring name	Range	Category	Panel display	Unit	Data type
U1-06	IGBT temperature when					
201F-06	faults occur	-	Warning	Decimal	°C	16 Bit
	T_IPMWarmOccur					

	Monitoring name	Range	Category	Panel display	Unit	Data type
U1-07	Torque component when					
201F-07	faults occur	-	Warning	Decimal	%	16 Bit
	IqWarmOccur					

	Monitoring name	Range	Category	Panel display	Unit	Data type
U1-08	Excitation component					
201F-08	when faults occur	-	Warning	Decimal	%	16 Bit
	IdWarmOccur					

	Monitoring name	Range	Category	Panel display	Unit	Data type
U1-09	Position deviation when					
201F-09	faults occur	-	Warning	Decimal	Encoder unit	32 Bit
	PosErrWarmOccur					

	Monitoring name	Range	Category	Panel display	Unit	Data type
U1-10	Speed value when					
201F-0A	faults occur	-	Warning	Decimal	rpm	16 Bit
	SpdWarmOccur					

	Monitoring name	Range	Category	Panel display	Unit	Data type
U1-11	Time when the fault					
201F-0B	occurred	-	Warning	Decimal	S	16 Bit
	Time 1WarmOccur					

	Monitoring name	Range	Category	Panel display	Unit	Data type
U1-12 201F-0C	Number of faults during current	-	Warning	Decimal	-	16 Bit
	operation					
	ErrCntCurRun					

	Monitoring name	Range	Category	Panel display	Unit	Data type
U1-13 201F-0D	Number of warnings	-	Warning	Decimal	-	16 Bit
	during current					
	operation					
	WarmCntCurRun					

	Monitoring name	Range	Category	Panel display	Unit	Data type
U1-14	Total number of					
201F-0E	historical faults	-	Warning	Decimal	-	16 Bit
	ErrorTotalCnt					

	Monitoring name	Range	Category	Panel display	Unit	Data type
U1-15	Total number of					
201F-0F	historical warnings	-	Warning	Decimal	-	16 Bit
	WarmTotalCnt					

111 16	Monitoring name	Range	Category	Panel display	Unit	Data type		
201F-10	Latest 1st fault code ErrCodeLast1st	-	Warning	-	-	16 Bit		
Display the 1st fault code of the most recent of servo drive								

111 17	Monitoring name	Range	Category	Panel display	Unit	Data type
201F-11	Latest 2nd fault code					16 Bit
	ErrCodeLast2nd	-	warning	-	-	
U1-18 201F-12	Monitoring name	Range	Category	Panel display	Unit	Data type
	Latest 3rd fault code	-			-	16 Bit
	ErrCodeLast 3rd		vvarning	-		

111 10	Monitoring name	Range	Category	Panel display	Unit	Data type
01-19 2015-13	Latest 4th fault code	_	Warning	_	_	16 Bit
2017-13	ErrCodeLast 4th	-	vvarillig	-	_	10 Bit

111 20	Monitoring name	Range	Category	Panel display	Unit	Data type
01-20 201F-14	Latest 5th fault code	_	Warning	-	-	16 Bit
	ErrCodeLast 5th					

	Monitoring name	Range	Category	Panel display	Unit	Data type		
U1-21	Latest 1st warning							
201F-15	code	-	Warning	-	-	16 Bit		
	WarmCodeLast1st							
Display the 1st warning code of the most recent of servo drive								

	Monitoring name	Range	Category	Panel display	Unit	Data type
U1-22	Latest 2nd warning					
201F-16	code	-	Warning	-	-	16 Bit
	WarmCodeLast 2 nd					

	Monitoring name	Range	Category	Panel display	Unit	Data type
U1-23	Latest 3rd warning					
201F-17	code	-	Warning	-	-	16 Bit
	WarmCodeLast 3 rd					

111 24	Monitoring name	Range	Category	Panel display	Unit	Data type
01-24 201E 19	Latest 4th warning					
2011-10	code	-	Warning	Warning -	-	16 Bit
	WarmCodeLast 4 th					

111.25	Monitoring name	Range	Category	Panel display	Unit	Data type
01-25 201E 10	Latest 5th warning					
2011-10	code	-	Warning	-	-	16 Bit
	WarmCodeLast 5 th					

2020h Group: Device Monitoring

U2-01	Monitoring name	Range	Category	Panel display	Unit	Data type			
2020-01	Product series ProductSer	-	Device	Hexadecimal	-	16 Bit			
Display the product series code of servo drive.									
The VD3E s	ervo drive code is 0x3345	. The panel is dis	played as below:						

U2-02	Monitoring name	Range	Category	Panel display	Unit	Dat	a type
2020-02	Model Model1	-	Device	Hexadecimal	-	1	6 Bit
Display the	servo drive model.						
	U2-01 display		U2-02 dis	Model			
]]45				VD3E-010SA	A1G	
			ПЧ		VD3E-014SA	A1G	
			05		VD3E-016SA	A1G	
			86		VD3E-01954	A1G	
					VD3E-021SA	A1G	
					VD3E-025SA	A1G	
					VD3E-030SA	A1G	

U2-03	Monitoring name	Range	Category	Panel display	Unit	Data type
2020-03	Model Model2	-	Device	Hexadecimal	-	16 Bit

U2-04	Monitoring name	Range	Category	Panel display	Unit	Data type			
2000-04	Firmware version FirewareVer	-	Device	Decimal	-	16 Bit			
Display the firmware version. Display format: X.YY. For example, 1.02. The panel is displayed as below.									

	Monitoring name	Range	Category	Panel display	Unit	Data type		
2000.05	Hardware version		Dovice	Desimal		16 Dit		
2000-03	HardwareVer	-	Device	Decimal	_	TO BIL		
Display the Servo Hardware (FPGA) version.								
Display form	mat: X.YY, 2 decimal places	.For example 1.0	0, the servo driv	e panel is display	ed as follows:			

	Monitoring name	Range	Category	Panel display	Unit	Data type
2000-06	Firmware time (year)	_	Device	Decimal	Vear	16 Bit
2000-00	ExFactoryYear		Device	Decima	icui	10 bit

112.07	Monitoring name	Range	Category	Panel display	Unit	Data type
2000.07	Firmware time					
2000-07	(month)	-	Device	Decimal	Month	16 Bit
	ExFactoryMonth					

U2-08	Monitoring name	Range	Category	Panel display	,	Unit	Data type	
2000-08	Firmware Date (Day)		Dovico	Docimo	,	Dav	16 Dit	
	ExFactoryDay	-	Device	Decimal		Day	16 BIt	
Display the production date of display firmware.								
Taking the	Taking the "VD3E-014SA1G_V1. 03 firmware production date is January 10, 2022" as an example, the drive panel is							
displayed a	s below:							
	U2-06		U2-07			U2-08	3	
	ļļ			() ()				

Chapter 8 Object Dictionary

112 09	Monitoring name	Range	Category	Panel display	Unit	Data type
2000.00	Device serial number					
2000-09	1	-	Device	Decimal	-	16 Bit
	DeviceSerNum1					

112 10	Monitoring name	Range	Category	Panel display	Unit	Data type
2000-0A	Device serial number					
	2	-	Device	Decimal	-	16 Bit
	DeviceSerNum2					

112 11	Monitoring name	Range	Category	Panel display	Unit	Data type
02-11 2000 0D	Device serial number					
2000-0B	3	-	Device	Decimal	-	16 Bit
	DeviceSerNum3					

112 12	Monitoring name	Range	Category	Panel display	Unit	Data type
02-12 2000-0C	Device serial number					
	4	-	Device	Decimal	-	16 Bit
	DeviceSerNum4					

112 12	Monitoring name	Range	Category	Panel display	Unit	Data type
2000 00	Device serial number					
2000-00	5	-	Device	Decimal	-	16 Bit
	DeviceSerNum5					

112 14	Monitoring name	Range	Category	Panel display	Unit	Data type
02-14	Device serial number					
2000-0E	6	-	Device	Decimal	-	16 Bit
	DeviceSerNum6					

112.15	Monitoring name	Range	Category	Panel display	Unit	Data type
02-15 2000-0F	Device serial number					
	7	-	Device	Decimal	-	16 Bit
	DeviceSerNum7					

Chapter 8 Object Dictionary

112	16	Monitoring name	Range	Category	Panel display	Unit	Data type
200	-10	Device serial number					
2000	2000-10	8	-	Device	Decimal	-	16 Bit
		DeviceSerNum8					

8.4 Standard Equipment Sub-protocol Area (6000h to 6FFFh)

603F	Parameter name	Accessibility	Data mapping	Set to take effect	Data display range	Default	Correlation mode			
	Error Code (Error Code)	RO	TPDO	-	0~65535	-	ALL			
When t	When the drive has an error described by DSP402 sub-protocol, 603F is consistent with DS402 protocol;									
603F is	65280 when a user-specified e	xception occurs	on the drive.							

	Parameter name	Accessibility	Data mapping	Set to take effect	Data display range	Default	Correlation mode
6040	Control Word (Control Word)	RW	TPDO	Set value takes effect at the time of shutdown	0~65535	0	ALL

Used to set control instructions. It is meaningless to assign each bit of a control word separately, and it must be combined with other bits to form a certain control instruction.

bit0 ~ bit3 have the same meaning in each control mode of servo drive, and commands must be sent in sequence before the servo drive can be switched according to CiA402 state machine.

Bit	Name	Description
0	Servo operation can be	0: Invalid
0	started	1: Valid
1	Turn on the main	0: Invalid
	circuit	1: Valid
2	Quick shutdours	0: Invalid
2	Quick shutdown	1: Valid
2	Convo operation	0: Invalid
3	Servo operation	1: Valid
4~6	Operation mode	It is related to the operation mode of
4 0	Operation mode	servo drive
		Used to clear reset faults:
7	Fourth woodst	The rising edge of bit7 is valid;
/	Fault reset	bit7 is kept at 1, and other control
		instructions are invalid.

Chapter 8 Object Dictionary

6041 Parame	eter name	Accessibility	Data mapping	Set to take effect	Data display range	Default	Correlation mode
Status Word	(Status Word)	RO	TPDO	-	0~65535	0	ALL
Used to display serv	o drive status						
	Bit		Name	Des	scription		
	0	50	wa raadu	0: Invalid			
	0	561	voreauy	1: Valid			
	1	Servo op	eration can be	0: Invalid			
		5	started	1: Valid			
	2	Comu	(
	2	Serve	operation	1: Valid			
	2		fault Electrical connection of				
	5						
		Electrica					
	4	ma	in circuit	1: Valid			
	-	Quial	(chutdown	0: Invalid			
	5	Quici	shuldown	1: Valid			
	6	Sei	vo is not	0: Invalid			
	0	ор	erational	1: Valid			
	7	V	Varning	0: Invalid			
	/	v	varning	1: Valid			
	8		-	-			
	0	Bom	ata control	0: Invalid			
	9	Kelli		1: Valid			
	10 Tar		tot arrival	0: Invalid			
			get affival	1: Valid			
Bit 0 ~ bit 9 have th	e same mean	ng in all contr	ol modes of se	rvo drive. Aft	er the control wo	rd 6040h send	s commands
in sequence, the ser	rvo feeds back	the determin	ed state.				
	Sett	ing value (bin	ary number)	Des	scription		

Setting value (binary number)	Description
xxxx xxxx x0xx 0000	Servo is not ready
xxxx xxxx x1xx 0000	Startup failure
xxxx xxxx x01x 0001	Servo ready
xxxx xxxx x01x 0011	start up
xxxx xxxx x01x 0111	Servo enable
xxxx xxxx x00x 0111	Malfunction shutdown
	valid

xxxx xxxx x0xx 1111	Fault response valid
xxxx xxxx x0xx 1000	Fault

	Parameter name	Accessibility	Data mapping	Set to take effect	Data display range	Default	Correlation mode		
605A	Quick stop option selection (Quick-stop option code)	RW	NO	-	0~7	2	ALL		
Used to set the quick stop mode.									

605D	Parameter name	Accessibility	Data mapping	Set to take effect	Data display range	Default	Correlation mode			
0030	Halt option code	DW	NO	-	1~3	1				
	(Halt option code)	KVV	NO			T	ALL			
Used to	Used to set the quick stop mode.									

	Parameter name	Accessibility	Data mapping	Set to take effect	Data display range	Default	Correlation mode
6060	Servo mode selection (Modes of operation)	RW	RPDO	Set value takes effect at the time of shutdown	0~10	0	ALL

Used to set the operation mode of servo drive.

Setting value	Name	Remarks
1	Contour position	
	control mode	-
2	Contour speed control	
5	mode	-
4	Contour torque control	
4	mode	-
		Please refer to "7.5 Origin Regression Mode" for
6	Origin return mode	details
7	Interpolation mode	-
8	Cyclic Synchronous	Please refer to "7.4 Cyclic Synchronous Position
8	Position mode	mode (CSP)" for details

٥	Periodic synchronous		
9	speed mode	_	
10	Periodic synchronous		
10	torque mode	-	

6061	Pa	irameter na	me	Accessibility	Data mapping	Set to take effect	Data display range	Default	Correlation mode	
0001	Ru (M	n mode disp odes operat	olay ion)	RO	TPDO	-	0~10	0	ALL	
Used to	display t	he current o	operation	mode of servo o	drive.				<u> </u>	
	Setting				_					
		value		Name		Remarks				
			Con	tour position						
		1	сс	ontrol mode			-			
			Conto	ur speed contro	ol					
		3		mode		-				
			Contour torque control		ol					
		4		mode		-				
		6	Origi	n return mode	Please r	efer to "7.5 O	rigin Regression N	lode" for		
						details				
		7	Inter	polation mode		-				
			Cycli	Cyclic Synchronous		Please refer to "7.4 Cyclic Synchronous Position				
		8	Position mode			mode (CSP)" for details				
			Periodic synchronous		s					
	g speed		beed mode			-				
		40	Periodic synchronous		s					
		10	to	orque mode			-			

6062	Parameter name	Accessibility	Data mapping	Set to take effect	Data display range	Default	Correlation mode	
	position command	PO		-		0		
	(Position demand value)	NO	TFDO	-	_	0	CSF TIM FF	
It is used to reflect the position command (command unit) that has been input by the servo in the enabled state.								

c0c2	Parameter name	Accessibility	Data mapping	Set to take effect	Data display range	Default	Correlation mode
0003	Position feedback	PO				0	A11
	(Position actual value)	ĸŬ	TPDO	-	-	0	ALL

Used to reflect the absolute position of motor.

6064	Parameter name	Accessibility	Data mapping	Set to take effect	Data display range	Default	Correlation mode	
	Position feedback (Position actual value)	RO	TPDO	-	-	0	ALL	
Used to "Positio	Used to reflect real-time absolute position. "Position Feedback 6064h" * "Gear Ratio 6091h" = "Position Feedback 6063h"							

	Parameter name	Accessibility	Data mapping	Set to take effect	Data display range	Default	Correlation mode			
6065	Threshold of excessive position deviation (Following error window)	RW	RPDO	Set value takes effect at the time of shutdown	0 ~ (2 ³¹ -1)	0	СЅР НМ РР			
Used to When tl	Used to set the position deviation exceeds threshold. When the position deviation exceeds the set value of 6065h, Er.36 (excessive position deviation) will occur in servo.									

	Parameter name	Accessibility	Data mapping	Set to take effect	Data display range	Default	Correlation mode	
				Set value	0 ~ 2 ³²	0		
				takes				
6067	Position arrival threshold (Position window)		RPDO	effect at				
		Ň		the time			CSP HIM PP	
				of				
				shutdown				
Used to set the threshold value for position arrival.								
When the position deviation is within the set value of \pm 6067h, the position is determined to have arrived.								
In positi	ion mode, bit10=1 for status w	ord 6041						

6068	Parameter name	Accessibility	Data mapping	Set to take effect	Data display range	Default	Correlation mode
------	----------------	---------------	-----------------	-----------------------	-----------------------	---------	---------------------

				Set value						
				takes effect						
	Position window time (Position window time)	RW	RPDO	at the time	0~65535	0	PP IP CSP			
	(of						
				shutdown						
Used to	Used to set the position window time of the servo drive under the position mode.									

606C	Parameter name	Accessibility	Data mapping	Set to take effect	Data display range	Default	Correlation mode		
	Actual velocity (Velocity actual value)	RO	TPDO	-	-	-	ALL		
Used to display the actual rotating speed of the servo drive.									

	Parameter name	Accessibility	Data mapping	Set to take effect	Data display range	Default	Correlation mode			
				Set value						
606D	Velocity arrival threshold (Velocity window)	RW	RPDO	takes effect	-0 ~65535	10	PV			
				at the time						
				of						
				shutdown						
Used to	Used to set the velocity arrival threshold of servo drive under the velocity mode.									

	Parameter name	Accessibility	Data mapping	Set to take effect	Data display range	Default	Correlation mode			
				Set value						
606E				takes effect	-0 ~65535	10	PV			
	Velocity window time (Velocity window time)	RW	RPDO	at the time						
				of						
				shutdown						
Used to	Used to set the velocity window time of servo drive under the velocity mode.									

6074	Parameter name		Data	Set to take	Data display	Default	Correlation
6071	Parameter name	Accessibility	mapping	effect	range	Default	mode

	Target torque (Target torque)	RW	RPDO	Set value takes effect at the time of shutdown	-5000~500 0	0	PT CST	
Used to	Used to set the target torque of servo drive under the torque mode.							

	Parameter name	Accessibility	Data mapping	Setting in force	Data display range	Default value	Correlation mode	Data type	
6072	Maximum torque Instruction (Max torque)	RW	RPDO	Operation setting Effective immediately	0~3000	3000	PT CST	16-bit	
Used to s	Used to set the maximum torque instruction of the servo drive in PT/CST mode.								

6074	Parameter name	Accessibility	Data mapping	Set to take effect	Data display range	Default	Correlation mode	
0074	Torque given by user	PO			5000~5000	0	DT CST	
	(Torque demand)	NO	TFDO	-	-3000-3000	0	FICSI	
Used to	Used to display the torque of servo drive given by user under the torque mode.							

6077	Parameter name	Accessibility	Data mapping	Set to take effect	Data display range	Default	Correlation mode	
0077	Actual torque	PO			F000~F000	0	DT CCT	
	(Torque actual value)	ĸŬ	TPDO	-	-3000 3000	0	PTCST	
Used to	Used to display the actual torque value of servo drive under the torque mode.							

	Parameter name	Accessibility	Data mapping	Set to take effect	Data display range	Default	Correlation mode	
607A	Target location (target position)	RW	RPDO	Set value takes effect at the time of shutdown	(-2 ³¹) ~ (2 ³¹ -1)	0	СЅР НМ РР	
Used to	Used to set the servo target position of the servo drive in the periodic synchronous mode (CSP).							

	607C	Parameter name	Accessibility	Data	Set to take	Data display	Default	Correlation
--	------	----------------	---------------	------	-------------	--------------	---------	-------------

Chapter 8 Object Dictionary

			mapping	effect	range		mode	
	Home offset (Home offset)	RW	RPDO	Set value takes effect at the time of shutdown	(-2 ³¹) ~ (2 ³¹ -1)	0	HM	
Used to set the physical position of the mechanical Origin return mode from the motor origin in home return mode. This object								
dictionary only takes effect when the servo is powered on, the origin return operation is completed, and the status word 6041 is								
bit15=1	bit15=1.							

	Parameter name	Accessibility	Data mapping	Set to take effect	Data display range	Default	Correlation mode
607D	Software absolute position						
	limit	-	-	-	-	-	ALL
	(Software position limit)						

Set the minimum value and maximum value of the software absolute position limit.

Minimum software absolute position limit: 607D-1h:

Maximum software absolute position limit: 607D-2h.

The internal position limit of the softare is used to judge the absolute position and the internal position limit of software is

meaningless when the servo does not perform the origin regression.

	Parameter name	Accessibility	Data mapping	Set to take effect	Data display range	Default	Correlation mode
01h	Minimum software absolute position limit (Min position limit)	RW	RPDO	Set value takes effect at the time of shutdown	-2 ³¹ ~ (2 ³¹ -1)	-2 ³¹	ALL

Used to set the motor resolution.

	Parameter name	Accessibility	Data mapping	Set to take effect	Data display range	Default	Correlation mode
02h	Maximum software absolute position limit (Max position limit)	RW	RPDO	Set value takes effect at the time of shutdown	1 ~ (2 ³² -1)	2 ³¹ -1	ALL
Set the	maximum software absolute r	osition limit. i.e	the position th	nat corresponds	to the mechanical	vero.	

	Parameter name	Accessibility	Data mapping	Set to take effect	Data display range	Default	Correlation mode
607E	Polarity (Polarity)	RW	TPDO	Set value takes effect at the time	00~ FF	0	ALL

Chapter 8 Object Dictionary

		of shutdown
Set the polarity of position comman	instruction and torque instruction.	
	Bit	Description
	0-4	Reserved
	5	Polarity of torque instruction: 0: remain the existing value; 1: follow the opposite instruction.
	6	Polarity of velocity instruction: 0: remain the existing value; 1: follow the opposite instruction.
	7	Polarity of position command: 0: remain the existing value; 1: follow the opposite instruction.

	Parameter name	Accessibility	Data mapping	Set to take effect	Data display range	Default	Correlation mode			
607F				Set value						
	Maximum profile velocity (Max profile velocity)		RPDO	takes effect	0~(2 ³¹ -1)	0	ALL			
		RW		at the time						
				of						
				shutdown						
Set the maximum operating speed of user.										
The set	The set value takes effect when the velocity instruction of slave station changes.									

	Parameter name	Accessibility	Data mapping	Set to take effect	Data display range	Default	Correlation mode		
6081	Profile velocity (Profile velocity)	RW	RPDO	Set value takes effect at the time of shutdown	0 ~ (2 ³¹ -1)	100	PP		
Set the constant operating speed of the shift instruction under the profile position mode. The set value takes effect after the salve station receives the shift instruction.									

6083 Parameter name Accessibility Data Set to take Data display Default Correl
--

Chapter 8 Object Dictionary

			mapping	effect	range		mode
				Set value			
	Profile acceleration			takes effect			
	(Profile acceleration)	RW	RPDO	at the time	0 ~ (2 ³¹ -1)	100	PP PV
	(FIGHE acceleration)			of			
				shutdown			

Set the acceleration under the profile position mode and profile velocity mode.

Under the profile position mode, the set value takes effect after the position command is triggered. The minimum value of the

periodic position command increment of each position loop is 1.

Under the profile velocity mode, the operation takes effect.

If the parameter value is set to be 0, it will be converted to 1 compulsorily.

	Parameter name	Accessibility	Data mapping	Set to take effect	Data display range	Default	Correlation mode
6084	Profile deceleration (Profile deceleration)	RW	RPDO	Set value takes effect at the time of shutdown	0 ~ (2 ³¹ -1)	100	PP PV CSP CSV

Set the deceleration under the profile position mode and profile velocity mode.

Under the profile position mode, the set value takes effect after the position command is triggered.

Under the profile velocity mode, the operation takes effect.

Under PP CSV PV mode, the quick-stop option code (605A) is equal to 1 or 5, the deceleration of slope shutdown takes effect when

the quick-stop command is valid;

Under PP CSV PV mode, the halt option code (605D) is equal to 1, the deceleration of slope shutdown takes effect when halt

command is valid.

	Parameter name	Accessibility	Data mapping	Set to take effect	Data display range	Default	Correlation mode
6085	Quick stop deceleration (Quick stop deceleration)	RW	RPDO	Set value takes effect at the time of shutdown	0 ~ (2 ³¹ -1)	100	PP PV HM CSP CSV

Under PP CSV PV HM mode, the quick-stop option code (605A) is equal to 2 or 6, the deceleration of slope shutdown takes effect

when the quick-stop command is valid.

Under PP CSV PV HM mode, the halt option code (605D) is equal to 2, the deceleration of slope shutdown takes effect when the halt command is valid.

	Parameter name	Accessibility	Data mapping	Set to take effect	Data display range	Default	Correlation mode			
6086	Motion profile type (Motion profile type)	RW	RPDO	Set value takes effect at the time of shutdown	2 ^{15~} (2 ¹⁵ -1)	0				
Set the 0: linea	Set the profile type of the motor position command or velocity command. 0: linear									

	Parameter name	Accessibility	Data mapping	Set to take effect	Data display range	Default	Correlation mode
6087	Torque slope (Torque slope)			Set value	0 ~ (2 ^{31_} 1)	100	
				takes effect			PT
		RW	RPDO	at the time			
				of			CST
				shutdown			

Set the torque command acceleration under the profile torque mode, which means the torque command increment per second.

6091	Parameter name	Accessibility	Data mapping	Set to take effect	Data display range	Default	Correlation mode				
	Gear Ratio	-	-	-	-	-	CSP HM PP PV CSV				
Set range of electronic gear ratio: "0.001* encoder resolution/10000, 4000* encoder resolution/10000"											
Beyond	Beyond this set range, Er.35 (electronic gear ratio overrun) will occur in servo drive.										
	Parameter name	Accessibility	Data mapping	Set to take effect	Data display range	Default	Correlation mode				
01h	Electronic gear ratio numerator (Motor revolutions)	RW	RPDO	Set value takes effect at the time of shutdown	1 ~ (2 ³² -1)	1	-				
Used to	set the motor resolution.										
	Parameter name	Accessibility	Data mapping	Set to take effect	Data display range	Default	Correlation mode				
02h	Electronic gear ratio denominator (Shaft revision)	RW	RPDO	Set value takes effect at the time of shutdown	1 ~ (2 ³² -1)	1	-				
Used to	set the load shaft resolution.										

	Parameter name	Accessibility	Data mapping	Set to take effect	Data display range	Default	Correlation mode
6098	Zero return mode (Homing method)	RW	RPDO	Set value takes effect at the time of shutdown	1~35	1	HM

method	Deceleration point	Origin	method	Deceleration point	Origin
1	Reverse overtravel switch	Motor Z signal	19	Origin switch	Origin switch
2	Forward overtravel switch	Motor Z signal	20	Origin switch	Origin switch
3	Origin switch	Motor Z signal	21	Origin switch	Origin switch
4	Origin switch	Motor Z signal	22	Origin switch	Origin switch
5	Origin switch	Motor Z signal	23	Origin switch	Origin switch
6	Origin switch	Motor Z signal	24	Origin switch	Origin switch
7	Origin switch	Motor Z signal	25	Origin switch	Origin switch
8	Origin switch	Motor Z signal	26	Origin switch	Origin switch
9	Origin switch	Motor Z signal	27	Origin switch	Origin switch
10	Origin switch	Motor Z signal	28	Origin switch	Origin switch
11	Origin switch	Motor Z signal	29	Origin switch	Origin switch
12	Origin switch	Motor Z signal	30	Origin switch	Origin switch
13	Origin switch	Motor Z signal	33	None	Motor Z signal
14	Origin switch	Motor Z signal	34	None	Motor Z signal
17	Reverse overtravel switch	rerse overtravel Reverse overtravel switch switch		-	Current position
10	Forward overtravel	Forward overtravel			
19	switch	switch			

6099	Parameter name	Accessibility	Data mapping	Set to take effect	Data display range	Default	Correlation mode			
	Homing speed (Homing speeds)	-	-	-	-	-	НМ			
Used to	set two speed values in homir	ng mode								
	Parameter name	Accessibility	Data mapping	Set to take effect	Data display range	Default	Correlation mode			
01	Speed during search for switch (Speed during search for switch)	RW	RPDO	Set value takes effect at the time of shutdown	0 ~ (2 ³² -1)	100	НМ			
Used to (back-to	Used to set the speed of searching deceleration point signal. It is recommended to set the speed to a higher value to prevent Er.44 (back-to-original timeout fault) caused by too long zero return time									
	Parameter name	Accessibility	Data mapping	Set to take effect	Data display range	Default	Correlation mode			
02	Speed during search for zero(Speed during search	RW	RPDO	Set value takes effect	10 ~ (2 ³² -1)	100	НМ			

at the time

for zero)

				of			
				shutdown			
Used to	set the speed of searching o	origin signal.It i	s recommende	d to be set to	a lower value to p	prevent oversho	ot caused by

high-speed stop.

	Parameter name	Accessibility	Data mapping	Set to take effect	Data display range	Default	Correlation mode			
609A	Home acceleration (Home acceleration)	RW	RPDO	Set value takes effect at the time of shutdown	0 ~ (2 ³² -1)	100	HM			
Used to set the acceleration in homing mode. When the origin zero return operation is started, the set value takes effect.										
Home a	Home acceleration refers to the increment of position command (command unit) per second.									

	Parameter name	Accessibility	Data mapping	Set to take effect	Data display range	Default	Correlation mode		
60B0	Position offset (Position offset)	RW	RPDO	Set value takes effect at the time of shutdown	(-2 ³¹) ~ (2 ³¹ -1)	0	CSP		
Used to set the servo position command offset amount in the Cyclic Synchronous Position mode (CSP).									
After of	iset, serve target position = 60	TA (larget posit	ion) + 6080 (po	sition offset).					

	Parameter name	Accessibility	Data mapping	Set to take effect	Data display range	Default	Correlation mode	
60B1	Velocity offset (Velocity offset)	RW	RPDO	Set value takes effect at the time of shutdown	(-2 ³¹) ~ (2 ³¹ -1)	0	CSP/CSV	
Used to set the EtherCAT external velocity feedforward signal under the periodic synchronization position mode.								
Used to set the servo torque command offset amount under the periodic synchronization velocity mode; after offset, servo target								
torque=	=60FFh+60B1h.							

Chapter 8 Object Dictionary

	Parameter name	Accessibility	Data mapping	Set to take effect	Data display range	Default	Correlation mode
60B2	Torque offset (Torque offset)	RW	RPDO	Set value takes effect at the time of shutdown	-5000~ 5000 (unit 0.1%)	0	CSP/CSV/CST

Used to set the EtherCAT external velocity feedforward signal under the periodic synchronization position mode and periodic synchronization velocity;

Used to set the servo torque command offset amount under the periodic synchronization torque mode; after offset, servo target torque=6071h+60B2h.

	Parameter name	Accessibility	Data mapping	Set to take effect	Data display range	Default	Correlation mode				
60B8	Touch probe function (Touch probe function)	RW	RPDO	Set value takes effect at the time of shutdown	0~65535	100	-				
Used to	Used to set the function of probe 1 and probe 2.										

60B9	Parameter name	Accessibility	Data mapping	Set to take effect	Data display range	Default	Correlation mode		
	Touch probe status	RO	TPDO	-	-	-	-		
	(Touch probe status)								
Used to	Used to read the status of probe 1 and probe 2.								

	Parameter name	Accessibility	Data mapping	Set to take effect	Data display range	Default	Correlation mode
60BA	Probe 1 rising edge position value (Touch Probe Pos1 Pos Value)	RO	TPDO	-	-	-	-
Used to	display the rising edge and po	sition value of p	orobe 1 signal (c	command unit).			
60BB	Parameter name	Accessibility	Data mapping	Set to take effect	Data display range	Default	Correlation mode

	Probe 1 falling edge position value (Touch Probe Pos1 Neg	RO	TPDO	-	-	-	-
	value)						
Used to display the falling edge and position value of probe 1 signal (command unit).							

	Parameter name	Accessibility	Data mapping	Set to take effect	Data display range	Default	Correlation mode		
60BC	Probe 2 rising edge								
UDC	position value	RO	TPDO	-	-	-			
	(Touch Probe Pos2 Pos						-		
	Value)								
Used to display the rising edge and position value of probe 2 signal (command unit).									

	Parameter name	Accessibility	Data mapping	Set to take effect	Data display range	Default	Correlation mode	
60BD	Probe 2 falling edge position value (Touch Probe Pos2 Neg	RO	TPDO	-	-	-	-	
Used to display the falling edge and position value of probe 2 signal (command unit).								

	Doromotor nomo	Accessibility	Data	Setting in force	Data display	Default	Correlation	Data type			
	Farameter hame	Accessionity	mapping		range	value	mode				
60E0				Operation							
	Forward direction	RW	RPDO	setting	0 to 3000	2000	ALL	16-bit			
	maximum torque limit			Effective		5000					
				immediately							
Set the p	Set the positive maximum torque limit of the servo.										
Note:	Solution Note: It takes effect when the parameter P1-14=2.										

	Parameter name	Accossibility	Data	Setting in force	Setting in force Data display		Correlation	Data type	
	Falameter hame	Accessionity	mapping		range	value	mode		
60E1	OE1 Reverse direction			Operation					
		RW	RPDO	setting	0 to 3000	3000	ALL	16-bit	
	lineit			Effective					
	limit			immediately					
Set the negative maximum torque limit of the servo.									
Note:	It takes effect when t	he parameter P1-	14=2.						

	Parameter name	Accessibility	Data mapping	Set to take effect	Data display range	Default	Correlation mode			
60F4	Position deviation (Following error actual value)	RO	TPDO	-	-	_	PP HM CSP			
Used to	Used to display following error actual value (command unit).									

60FC	Parameter name	Accessibility	Data mapping	Set to take effect	Data display range	Default	Correlation mode
	Position demand value (Position demand value)	RO	TPDO	-	-	-	PP HM CSP

Used to display the position demand value (encoder unit).

When the servo is enabled, if there is no warning, the relationship between the position demand value (encoder unit) and position demand value (command unit) is shown as follows:

Position demand value 60FCh (encoder unit)= position demand value 6062h (command unit)* gear ratio (6091h).

60FD	Parameter name	Accessibility	Data mapping	Set to take effect	Data display range	Default	Correlation mode		
	Digital input (Digital Input)	RO	TPDO	-	-	-	-		
Used to reflect the current DI terminal logic of drive:									
0 -logic	0 -logic invalid;								
1- logic	valid.								

60FF	Parameter name	Accessibility	Data mapping	Set to take effect	Data display range	Default	Correlation mode			
	Profile velocity (Profile velocity)	RW	RPDO	-	(-2 ³¹) ~ (2 ³¹ -1)	0	PV CSV			
Used to	Used to set the user velocity command under the profile velocity mode and periodic synchronization velocity mode.									

Chapter 9 Adjustments

9.1 Overview

The servo drive needs to make the motor work without delay as much as possible in accordance with the instructions issued by the host controller. In order to make the motor run based on command as much as possible and maximize the mechanical performance, it is necessary to adjust the gain. The flow of gain adjustment is as shown in Figure 9-1.

Figure 9-1Gain adjustment process

The servo gain is composed of multiple sets of parameters such as position loop, speed loop, filter, load inertia ratio, etc., and they affect each other. In the process of setting the servo gain, the balance between the setting values of each parameter must be considered.

The gain adjustment process description is shown in Table 9-1.

Tahle 9-1Gain ad	liustment	nrocess	description
	ijustinent	process	uescription

	Gain adjustment	process	Function	Detailed chapter
1	Inertia idei	ntification	Automatic load inertia ratio identification is carried out by using the upper computer debugging platform software matched with the drive.	9.2
2	Automatic gain adjustment		On the premise of setting the inertia ratio correctly, the drive automatically adjusts a set of matching gain parameters.	9.3.1
3	Manual gain	Basic gain	On the basis of automatic gain adjustment, if the expected effect is not achieved, manually fine-tune the gain to optimize the effect.	9.3.2
	adjustment	Feedforward gain	The feedforward function is enabled to improve the followability.	9.3.3
4	Vibration suppression	Mechanical resonance	The notch filter function is enabled to suppress mechanical resonance.	9.4.1

9.2 Inertia identification

Load inertia ratio "2003-01" refers to:

Load inertia ratio = $\frac{\text{Total moment of inertia of mechanical load}}{\text{Moment of inertia of the motor}}$

Load inertia ratio is an important parameter of servo system. Correct setting of load inertia ratio is helpful to complete debugging quickly.

the limit switch has been installed on the machine, and the motor has a movable stroke of more than 1 circle respectively in the forward and reverse directions to prevent overtravel during the inertia identification process, which may cause accidents.

Meet the requirements of inertia identification turns [2003-05]; make sure that the motor's movable stroke at the stop position is greater than the set value of the number of inertia identification circles [2003-05], otherwise the maximum speed of inertia identification [2003-06] should be appropriately reduced.

During the automatic load inertia identification process, if vibration occurs, the load inertia identification should be stopped immediately.

Related function codes are shown in Table 9-2.

Function code	Name	Setting method	valid time	Default	Range	Definition	Unit
2003-01	Load inertia ratio	OperationSetting	valid immediately	300	100~10000	Set load inertia ratio, 0.00~100.00 times	0.01
2003-05	Inertia identificationcircles	Shutdown Setting	valid immediately	2	1~20	Offline load inertia identification process, motor rotation number setting	Circle
2003-06	Maximum speed of inertia identification	Shutdown Setting	valid immediately	1000	300~2000	Set the allowable maximum motor speed instruction in offline inertia identification mode. The faster the speed during inertia identification is, the more accurate the identification result will be. Generally, keep the default value.	rpm

Table 9-2Details of inertia identification related parameters

						0: Forw	ard and	
	Parameter	Shutdown	valid			reverse reciprocat	ting	
2003-07	identification of rotation direction	Setting	immediately	0	0 to 2	rotation 1: one-way r 2:	Forward rotation Reverse	_

9.3 Gain Adjustment

In order to optimize the responsiveness of the servo drive, the gain set in the servo drive needs to be adjusted. Servo gain needs to set multiple parameter combinations, which will affect each other. Therefore, the adjustment of servo gain must consider the relationship between each parameter.

Under normal circumstances, high-rigidity machinery can improve the response performance by increasing the servo gain. But for machines with lower rigidity, when the servo gain is increased, vibration may occur, which will affect the increase in gain. Therefore, selecting appropriate servo gain parameters can achieve higher response and stable performance.

The servo supports automatic gain adjustment and manual gain adjustment. It is recommended to use automatic gain adjustment first.

9.3.1 Automatic Gain Adjustment

Automatic gain adjustment means that through the rigidity level selection function [2003-02], the servo drive will automatically generate a set of matching gain parameters to meet the requirements of rapidity and stability. The rigidity of the servo refers to the ability of the motor rotor to resist load inertia, that is, the self-locking ability of the motor rotor. The stronger the servo rigidity is, the greater the corresponding position loop gain and speed loop gain can achieve, and the faster the response speed of the system will be.

Before adjusting the rigidity grade, set the appropriate load inertia ratio correctly[2003-01].

The value range of rigidity grade is between 0~ 31. The value range of the rigidity grade is between 0 and 31. Grade 0 corresponds to the weakest rigidity and minimum gain, and grade 31 corresponds to the strongest rigidity and maximum gain. According to different load types,Table 9-3 Empirical values can be used for reference.

Table 9-3Experience reference of rigidity grade

Rigidity grade	Load mechanism type
Grade 4 to 8	Some large machinery
Grade 8 to 15	Low rigidity applications such as belts
Grade 15 to 20	High rigidity applications such as ball screw and direct connection

When the function code [2003-03] is set to 0, the gain parameters are stored in the first gain by modifying the rigidity grade.

When debugging with the upper computer debugging software, automatic rigidity level measurement can be carried out, which is used to select a set of appropriate rigidity grades as operating parameters. The operation steps are as follows:

Step 1 Confirm that the servo is in the ready state, the panel displays "ry", and the communication line is connected;

Step 2 Open the servo drive debugging software, enter the trial run interface, set the corresponding parameters, and click "Servo on";

Step 3 Click the "forward" or "reverse" button to confirm the travel range of the servo operation;

Step 4 After the "Start Identification" of inertia identification lights up, click "Start Identification" to start inertia identification to measure the load inertia.

Step 5 After the inertia identification test is completed, click "Save inertia value";

Step 6 Click "Next" at the bottom right to go to the parameter adjustment interface, click "Parameter Measurement" to start parameter measurement.

Step 7 After the parameter measurement is completed, the servo drive debugging software will pop up a confirmation window for parameter writing and saving.

There may be a short mechanical whistling sound during the test. Generally, the servo will automatically stop the test. If it does not stop automatically or in other abnormal situations, you can click the "Servo Off" button on the interface to turn off the servo, or power off the machine!

For the detailed operation of the upper computer debugging software, please refer to "Wecon SCTool Software User Manual".

Index code	Name	Setting method	Valid time	Default	Range	Definition	Unit
2003-03	Self-adjusting mode	OperationSetting	Valid immediately	0	0 to 2	0: Rigidity grade self-adjusting mode. Position loop gain, speed loop gain,	-

Table 9-4Self-tuning mode selection parameter details

sele	ection		speed loop integral time constant,	
			torque filter parameter settings are	
			automatically adjusted according to	
			the rigidity grade setting.	
			1: Manual setting. Users need to	
			manually set the position loop gain,	
			speed loop gain, speed loop integral	
			time constant, and torque filter	
			parameter setting	
			2: Online automatic parameter	
			self-adjusting mode (Not	
			implemented yet)	

9.3.2 Manual Gain Adjustment

When the servo automatic gain adjustment fails to achieve the desired result, you can manually fine-tune the gain to achieve better results.

The servo system consists of three control loops, from the outside to the inside are the position loop, the speed loop and the current loop. The basic control block diagram is shown as below.

Figure 9-3Basic block diagram of servo loop gain

The more the inner loop is, the higher the responsiveness is required. Failure to comply with this principle may lead to system instability!

The default current loop gain of the servo drive has ensured sufficient responsiveness, generally no adjustment is required, only the position loop gain, speed loop gain and other auxiliary gains need to be adjusted.

(1) Speed loop gain

The speed loop gain determines the highest frequency of the changing speed command that the speed loop can follow.
Chapter 9 Adjustments

In the case of no vibration or noise in the mechanical system, the larger the speed loop gain setting value is, the better the response of servo system and the better the speed followability can achieve. When noise occurs in the system, reduce the speed loop gain. Related function codes are shown in Table 9-5.

Index code	Name	Setting method	Valid time	Default	Range	Definition	Unit
2002-02	1st speed loop gain	OperationSetting	Valid immediately	65	0~35000	Set the speed loop proportional gain to determine the responsiveness of the speed loop.	0.1Hz

Figure 9-3 Gain Effect Schematic Diagram of Velocity Loop

(2) Speed loop integral time constant

The speed loop integral time constant is used to eliminate the speed loop deviation. Decreasing the integral time constant of the speed loop can increase the speed of the speed following. If the set value is too small, is will easily cause speed overshoot or vibration. When the setting value of time constant is too large, the integral action will be weakened, resulting in a deviation of the speed loop. Related function codes are shown in Table 9-6.

Index Setting Valid Definition Unit Name Default Range code method time speed Set the speed loop integral Valid loop 1st constant. The smaller the 2002-03 100~65535 OperationSetting 1000 0.1ms integral immediately set value is, the stronger time the integral effect will be.

Table 9-6Details of speed loop integral time constant parameters

Figure 9-4Sketch for the effect of integrating time constant of velocity loop

(3) Position loop gain

Determine the highest frequency of the position command that the position loop can follow the change. Increasing this parameter can speed up the positioning time and improve the ability of the motor to resist external disturbances when the motor is stationary. However, if the setting value is too large, the system may be unstable and disrupted. Related function codes are shown in Table 9-7.

Index code	Name	Setting method	Valid time	Default	Range	Definition	Unit
2002-01	1st position loop gain	OperationSetting	Valid immediately	400	0~6200	Set the position loop proportional gain to determine the responsiveness of the position control system.	0.1Hz
	17		Increase 2002-01			Real speed Position instruction	

Table 9-7 Details of position loop gain parameters

Figure 9-5Gain effect schematic diagram of position loop

(4) Torque instruction filter time

Selecting an appropriate torque filter time constant could suppress mechanical resonance. The larger the value of this parameter, the stronger the suppression ability. If the setting value is too large, it will decrease the current loop response frequency and cause needle movement. Related function codes are shown in Table 9-8.

Index code	Name	Setting method	Valid time	Default	Range	Definition	Unit
2004-04	Torque filtering time constant	Operation Setting	Valid immediately	50	10~2500	This parameter is automatically set when "Self-adusting Mode Selection" is selected as 0	0.01ms

Table 9-8Details of torque filter time constant parameters

Figure 9-6Time Constant Effect Schematic Diagram of Torque Filtering

9.3.3 Feedforward Gain

Speed feedforward could be used in position control mode and full closed-loop function. It could improve the response to the speed instruction and reduce the position deviation with fixed speed. Speed feedforward parameters are shown inTable 9-9. See Table 9-10 for details of torque feedforward parameters.

Figure 9-7Effect schematic of speed feedforward parametersTorque feedforward can improve torque command response and reduce position deviation during fixed acceleration and deceleration.

Table 9-10

Table 9-9Speed feedforward parameters

Index code	Name	Adjustment description						
2002.00	Speed feedforward	When the speed feedforward filter is set to 50 (0.5 ms), gradually increase the						
gain	gain	speed feedforward gain, and the speed feedforward will take effect. The position						
	Speed feedforward 2002-0A filtering	deviation during operation at a constant speed becomes smaller according to the						
2002.04		value of the speed feedforward gain as shown in the following formula.						
2002-0A		Position deviation (pulse instruction) = instruction speed[instruction						
	time constant	unit/s]+position loop gain [1/s]×(100 $-$ speed feedforward gain [%])+100						

Torque feedforward can improve torque command response and reduce position deviation during fixed acceleration and deceleration.

Table 9-10Torque feedforward parameters

Index code	Name	Adjustment description
	Torque feedforward	Increase the torque feedforward gain, because the position deviation during certain
2002-0B	gain	acceleration and deceleration can be close to 0, so under the ideal condition that
		the torque does not act when the external disturbance occurs, when driving under
		the trapezoidal speed model, the position deviation can be made in the entire
	Torque feedforward	action range close to 0. In fact, there must be external disturbance torque, so the
2002-0C	filter time constant	position deviation cannot be 0. In addition, like the speed feedforward, the larger
		the constant of the torque feedforward filter is, the smaller the action will be, with
		greater positional deviation of the acceleration change point.

9.4 Mechanical Resonance Suppression

9.4.1 Mechanical Resonance Suppression Methods

When the mechanical rigidity is low, vibration and noise may occur due to resonance caused by shaft twisting,

and it may not be possible to increase the gain setting. In this case, by using a notch filter to reduce the gain at a

specific frequency, the servo gain can continue to increase after the resonance is validly suppressed. There are 2 methods to suppress mechanical resonance.

(1) Torque instruction filter

By setting the filter time constant, the torque instruction is attenuated in the high frequency range above the cutoff frequency, so as to achieve the expectation of suppressing mechanical resonance. The cut-off frequency of the torque instruction filter could be calculated by the following formula:

Filter cutoff frequency
$$fc(Hz) = \frac{1}{2 \pi * \text{Set parameter value} * 0.001}$$

(2) Notch filter

The notch filter can achieve the expectation of suppressing mechanical resonance by reducing the gain at a specific frequency. When setting the notch filter correctly, the vibration can be validly suppressed. You can try to increase the servo gain. The principle of notch filter is shown in Figure Figure 9-8.

9.4.2 Notch Filter

VD3E Ethernet servo drivehave 2 sets of notch filters, each of which has 3 parameters, namely notch frequency, width grade and depth grade.

(1) Width grade of notch filter

The notch width grade is used to express the ratio of the notch width to the center frequency of the notch:

Notch filter width grade
$$=\frac{f_H - f_L}{f_T}$$
 (9-1)

In formula (9-1), f_T It is the center frequency of notch filter, that is, the mechanical resonance frequency; $f_H - f_L$ is the width of notch filter, which represents the frequency bandwidth with an amplitude attenuation rate of -3dB relative to the center frequency of notch filter.

(2) Depth grade of notch filter

The depth grade of notch filter represents the ratio relationship between input and output at center frequency.

When the depth level of notch filter is 0, the input is completely suppressed at the center frequency; When the notch filter depth level is 100, the input is completely passable at the center frequency. Therefore, the smaller the the notch filter depth grade is set, the deeper the the notch filter depth will be, and the stronger the suppression of mechanical resonance can achieve, but it may lead to system instability, so attention should be paid when using it. Specific relationships are shown in Figure 9-9.

Figure 9-10Notch characteristics, notch width and notch depth

Figure 9-11Frequency characteristics of notch filter

Index code	Name	Setting method	Valid time	Default	Range	Definition	Unit
2004-05	1st notch filter frequency	Operation Setting	Valid immediately	300	250~5000	Set the center frequency of the 1st notch filter. When the set value is 5000,	Hz

Table 9-11Details of notch filter function code parameters

						the function of the notch filter is invalid.	
2004.06	1st notch filter	Operation	Valid	100	0~100	0: all truncated	
2004-06	depth	Setting	immediately	100	0 100	100: All passed	-

 enapter o Aujustinento								
2004-07	1st notch filter width	Opera tion Settin g	Valid imme diatel y	4	0~12	0: 0.5 times the bandwidth 4: 1 times the bandwidth 8: 2 times the bandwidth 12: 4 times the bandwidth	-	
2004-08	2nd notch filter frequency	Opera tion Settin g	Valid imme diatel y	500	250~50 00	Set the center frequency of the 2nd notch filter. When the set value is 5000, the function of the notch filter is invalid.	Hz	
2004-09	2nd notch filter depth	Opera tion Settin g	Valid imme diatel y	100	0~100	0: all truncated 100: All passed	-	
2004-0A	2nd notch filter width	Opera tion Settin g	Valid imme diatel y	4	0~12	0: 0.5 times the bandwidth 4: 1 times the bandwidth 8: 2 times the bandwidth 12: 4 times the bandwidth	-	

Chapter 10 Malfunctions

10.1 Faults and Warnings Handling at Startup

Boot process	Fault phenomenon	Reason	Confirmation method						
	 Digital tube is not 	① The power terminal is disconnected	☆Rewiring						
Power supply (L1,	 Not display "ry" 	② Servo drive failure	☆Contact technician for repair						
LS)	Panel display "Er.xx"	Refer to"10.2 Faults and warnings han the cause and tro	dling during operation" to find ubleshoot						
	After troubleshooting, the servo drive panel should display"ry"								

10.2 Faults and Warnings Handling During Operation

10.2.1 Overview

The faults and warnings of Wecon VD3E series servo drives are graded according to their severity, which can be

divided into four grades: Category 1, Category 2, Category 3, Category 4.

Severity level: Category 1> Category 2> Category 3 > Category 4. The specific types are as follows:

Category 2: non-clearable faults;

Category 2: clearable faults;

Category 3: clearable faults;

Category 4: clearable warning.

Among them, "clearable" means that the panel stops the fault display state by giving a "clear signal". The specific operations are as follows:

① Set the parameters 200A-03=1 (fault clearing) or use DI function 02 (02-A-CLR, fault and warning clearing) and set it to logic valid, which can stop the fault display on the panel.

The clearing method of category 2 and category 3 clearable faults: first turn off the servo enable signal (set
 S-ON to OFF), then set P10-03=1 or use DI function 2.

③ The clearing method of category 4 of clearable warnings: set 200A-03=1 or use DI function 2.

re-powered to take effect, the device must be re-powered; for the changes that need to stop the device to take effect, the servo must be disabled. After the changes take effect, the servo drive is running normally.

Associated function code:

Function code	Name	Setting method	Valid time	Default	Range	Definition
200A-03=1	Fault clearing	Operation Setting	Valid immediately	0	0 to 1	 0: No operation 1: For clearable faults, after the cause of fault is removed, and write 1 to the function code, the drive will stop the fault display and enter the Rdy (or RUN) state again. Note: If the servo S-ON is valid, when the fault is removed and cleared, the servo will directly enter the Run state. When performing fault clearing actions, be sure to stop sending control instructions such as pulses to ensure personal safety.

Associated function number:

Number	Name	Function name	Function
n		Fault and warning clear	Invalid, does not reset faults and warnings
2	A-CLR	Fault and warning clear	valid, reset faults and warnings

We con VD3E series bus servo drives have a fault recording function, which could record the latest 5 faults and the latest 5 warning names and the status parameters of servo drive when the fault or warning occurs. After the fault or warning is cleared, the fault record will still save the fault and warning.

The current fault code could be viewed through the monitoring parameter U1-01, and the current warning code could be viewed through U1-02. The monitoring U1-16 to U1-25 could display the latest 5 fault codes and warning codes. Please refer to "201Fh Group: warning monitoring".

10.2.2 Fault and Warning Code Table

Category	Fault/warning name	Fault code	Can it be cleared
Category 1	Parameter damage	Er.01	No
Category 1	Parameter storage error	Er.02	No
Category 1	ADC reference source error	Er.03	No
Category 1	AD current sampling conversion error	Er.04	No
Category 1	Abnormal FPGA communication	Er.05	No
Category 1	Wrong FPGA program version	Er.06	No
Category 1	Clock abnormality	Er.07	No
Category 1	ADC conversion is not completed	Er.60	No
Category 1	Internal software fault	Er.61	No
Category 1	Internal software fault	Er.62	No
Category 1	Internal software fault	Er.63	No
Category 1	Internal software fault	Er.64	No
Category 1	Internal software fault	Er.65	No
Category 1	Wrong motor model	Er.26	No
Category 1	Encoder Z pulse is lost	Er.28	No
Category 1	Encoder UVW signal error	Er.30	No
Category 1	Exceeding motor maximum speed	Er.32	No
Category 1	Overcurrent	Er.20	No
Category 1	The braking resistor is turned on abnormally	Er.24	No
Category 2	Main power supply is overvoltage	Er.22	Yes
Category 2	Encoder is disconnected	Er.27	Yes
Category 2	Power line disconnection	Er.31	Yes

Category 2	Abnormal network status switching	Er.09	Yes
Category 2	Loss of synchronization	Er.10	Yes
Category 2	Unburned XML configuration file	Er.11	Yes
Category 2	Network initialization failed	Er.12	Yes
Category 2	Synchronization period setting error	Er.13	Yes
Category 2	Synchronization period error is too large	Er.14	Yes
Category 3	Main power supply is undervoltage	Er.21	Yes
Category 3	Braking resistor is not connected	Er.23	Yes
Category 3	Wrong motor model	Er.25	Yes
Category 3	Power module is over temperature	Er.33	Yes
Category 3	Motor overload protection	Er.34	Yes
Category 3	Electronic gear ratio exceeds limit	Er.35	Yes
Category 3	Position deviation is too large	Er.36	Yes
Category 3	Abnormal torque saturation	Er.37	Yes
Category 3	Main circuit electrical phase loss	Er.38	Yes
Category 3	Emergency stop	Er.39	Yes
Category 3	Encoder battery failure	Er.40	Yes
Category 3	Motor (encoder) over temperature	Er.41	Yes
Category 3	Encoder write failure	Er.42	Yes
Category 3	Back to original timeout fault	Er.44	Yes
Category 4	Over speed alarm	A-81	Yes
Category 4	Overload	A-82	Yes
Category 4	Braking resistor is over temperature or overload	A-83	Yes
Category 4	Parameter modification that needs to be powered on again	A-84	Yes

Category 4	Main circuit instantaneous power failure	A-88	Yes
Category 4	Duplicate DI port configuration	A-89	Yes
Category 4	Duplicate DO port configuration	A-90	Yes
Category 4	Parameter modification is too frequent	A-91	Yes
Category 4	Encoder battery voltage low warning	A-92	Yes
Category 4	Encoder read and write check is abnormal and frequency is too high	A-93	Yes

10.2.3 Troubleshooting

Er.01 Parameter damage

(1) Fault phenomenon

Servo drive panel display	Fault name
	Parameter damage

(2) Troubleshooting methods

Reason	Troubleshooting methods	Handling
	Restore factory setting [200A-02=1] and	
EEPROM could not be read	power on again. If the servo drive still	■Contact the manufacturer's technician
and written	alarms after multiple operations, it is	personnel for maintenance.
	faulty.	

Er.02 Parameter storage error

(1) Fault phenomenon

Servo drive panel display	Fault name
Er.II	Parameter storage error

Reason: The total number of function codes or content transmission changes. It usually occur after firmware

upgrade.

Reason	Troubleshooting methods	Handling
Firmware upgraded	•Check whether the program has been upgraded.	■Repower the servo drive.
Parameter read and write	 After a parameter is changed, power it on again and check whether the parameter is saved 	■If the parameters are not saved and the problem persists after multiple power-on, contact the manufacturer's technical personnel for repair.
exceptions	•Restore factory setting [200A-02=1] and power on againIf the servo drive still alarms after multiple operations, it is faulty.	■Contact the manufacturer's technician personnel for maintenance.

Er.03 ADC reference source error

(1) Fault phenomenon

Servo drive panel display	Fault name
	ADC reference source error

(2) Troubleshooting methods

Reason	Troubleshooting methods	Handling
The internal analog reference	Restore factory setting [200A-02=1] and	■If servo still have alarm after powering
source of the drive is not	alarms after multiple operations, it is	manufacturer's technicians for
accurate	faulty.	maintenance.

Er.04 AD current sampling conversion error

(1) Fault phenomenon

Servo drive panel display	Fault name
Er.IH	AD current sampling conversion error

(2) Troubleshooting methods

Reason	Troubleshooting methods	Handling
Current sampling timeout	Restore factory setting [200A-02=1] and	■If servo still have alarm after powering
	power on again. If the servo drive still	on several times, contact the
Current sensor error	alarms after multiple operations, it is	manufacturer's technicians for
	faulty.	maintenance.

Er.05 Abnormal FPGA communication

(1) Fault phenomenon

Servo drive panel display	Fault name
Er.05	Abnormal FPGA communication

Reason		Troubleshooting methods	Handling
Abnormal	FPGA	Restore factory setting [200A-02=1] and	■If servo still have alarm after powering
communication		power on again. If the servo drive still	on several times, contact the

alarms after multiple operations, it is	manufacturer's	technicians	for
faulty.	maintenance.		

Er.06 Wrong FPGA program version

(1) Fault phenomenon

Servo drive panel display	Fault name
Er.06	Wrong FPGA program version

(2) Troubleshooting methods

Reason	Troubleshooting methods	Handling
The FPGA program version does not match firmware version	•Check whether the servo drive monitoring quantities 2020-04 (firmware version) and 2020-05 (hardware version) conform to the corresponding relationship.	■Contact the manufacturer's technician to upgrade FPGA (hardware version).
Servo drive fault	Restore factory setting [200A-02=1] and power on again.If the servo drive still alarms after multiple operations, it is faulty.	If servo still have alarm after powering on several times, contact the manufacturer's technicians for maintenance.

Er.07 Clock abnormality

(1) Fault phenomenon

Servo drive panel display	Fault name
Er.IJ	Clock abnormality

Reason	Troubleshooting methods	Handling
External interference	•Check whether there are strong magnetic fields nearby	Eliminate the interference of strong magnetic field nearby.
		■Try to separate the strong and weak
	$\bullet Check$ whether there are sources of	currents in the wiring, ensure that the
	interference such as power supply	motor and the servo drive are well
	inverter equipment nearby	grounded, and keep away from the power
		cables.
Servo drive fault	•Restore factory setting [200A-02=1]	■If servo still have alarm after powering
	and power on again. If the servo drive	on several times, contact the
	still alarms after multiple operations, it	manufacturer's technicians for

is faulty. mainte	nance.
-------------------	--------

Er.09 Abnormal network status switching

(1) Fault phenomenon

Servo drive panel display	Fault name
Er.09	Abnormal network status switching

(2) Troubleshooting methods

Reason	Troubleshooting methods	Handling
Master station operation error	•Check whether the master station switches the network status when the servo drive is enabled.	■Correct the upper computer network switching program.
Communication cable connection error	•Check whether the communication cable is properly connected.	Correctly connect the communication cable.

Er.10 Loss of synchronization

(1) Fault phenomenon

Servo drive panel display	Fault name
Er. II	Loss of synchronization

Reason	Troubleshooting methods	Handling
	•Check whether the servo drive network port is damaged. (Displayed by the first digital tube from the left of the servo drive panel)	■If damaged, contact the manufacturer's technician for repair.
Communication is disturbed	•Check whether the communication cable is damaged.	■If damaged, replace a reliable communication cable, it is recommended to use twisted-pair shielded cable with shielding function.
	•Check whether the servo drive is well grounded.	■The servo drive is well grounded.
Communication wiring	•Check whether the communication connection follows the sequence of	Correctly connect the communication
	connect each slave station.	

		■If it is determined that the configuration of
Master station	•Cross-verification, using normal PLC	the master station is wrong, correct the
configuration error	for comparative test.	relevant procedures of the master station
		configuration.
The upper computer is shut	•Check whether the upper computer is	Postart the upper computer
down or stuck	shut down or stuck.	Restart the upper computer.
		■If the synchronization period is 0, first
Upper computer synchronization clock is not in effect		check whether the communication cable
	•Measure the synchronization period	connection mode is correct, and then restart
	by oscilloscope.	the network.
		■If the synchronization period is not 0,
		contact the manufacturer's technician.
Come drive fault	•None of the above methods can solve	■If damaged, contact the manufacturer's
Servo drive fault	the fault.	technician for repair.

Er.11 Unburned XML configuration file

(1) Fault phenomenon

Servo drive panel display	Fault name
	Unburned XML configuration file

(2) Troubleshooting methods

Reason	Troubleshooting methods	Handling
Unburned device configuration file (XML file)	• After the upper computer scans the slave station, check whether the slave station ID is empty.	Contact the manufacturer's technician to burn the device file.
Servo drive fault	•After burning the configuration file, the fault still not be solved.	■Contact the manufacturer's technician personnel for maintenance.

Er.12 Network initialization failed

(1) Fault phenomenon

Servo drive panel display	Fault name
Er. IZ	Network initialization failed

Reason	Troubleshooting methods	Handling
Unburned device	•After the upper computer scans the	Contact the manufacturer's technician to
configuration file (XML file)	slave station, check whether the slave	burn the device file.

	station ID is empty.	
Servo drive fault	•After burning the configuration file,	■Contact the manufacturer's technician
	the fault still not be solved.	personnel for maintenance.

Er.13 Synchronization period setting error

(1) Fault phenomenon

Servo drive panel display	Fault name
	Synchronization period setting error

(2) Troubleshooting methods

Reason	Troubleshooting methods	Handling
The synchronization period is not an integer multiple of 125us or 250us	•Check the setting value of synchronization period.	■Modify the synchronization period to an integer multiple of 125us or 250us.

Er.14 Synchronization period error is too large

(1) Fault phenomenon

Servo drive panel display	Fault name
	Synchronization period error is too large

(2) Troubleshooting methods

Reason	Troubleshooting methods	Handling
Device profile mismatch	•Check whether this fault occurs every time, the device profile does not match.	Contact the manufacturer technician to update the device configuration file (XML file) inside the servo drive to the latest version.
The synchronization period error of the controller is large	 Check whether this fault is accidental. 	■Check the upper computer.

Er.20 Overcurrent

(1) Fault phenomenon

Servo drive panel display	Fault name
Er.20	Overcurrent

Reason	Troubleshooting methods	Handling
	•Check whether the phase sequence	
Motor power cable UVW	of the motor power cable on the servo	■According to the drive side UVW, connect
phase sequence is wrong	drive side and motor side corresponds	the motor side UVW correctly.
	to each other.	
Motor power line short	•Check whether power line UVW is	Deplace the neuror cable
circuit	short-circuited to PE	Replace the power cable.
Poor connection of motor	•Check whether the motor power line	■Tighten the fixing screws at the connection
power line terminal	connection port is connected reliably	port of the motor power wire.

	•Internal brake resistance wiring error: check whether C, D are connected to the shorting cap and the contact is normal	Ensure reliable connection between C and D shorting cap or short wiring.
	•External braking resistor wiring error: Check whether the external resistor is connected reliably between P+ and C.	■The external braking resistor is reliably connecting between P + and C.
Abnormal braking resistance	•Short-circuit of the built-in brake resistance: Check whether the built-in brake resistance is short-circuit.	 Remove the shorting cap between C and D, and connect the external braking resistors with equal resistance between P + and C. Contact the manufacturer's technician to replace the internal braking resistor.
	•The resistance value of the external braking resistor is too small: Test the resistance value of the external braking resistor actually selected and compare it with the recommended braking resistor to confirm whether the resistance value of the actual resistor is too small	■Select the appropriate external braking resistor.
	 Check whether the cable port (CN2) of the encoder is properly connected Check whether the serve drive CN2 	■Tighten the fixing screws for CN2 port. ■Replace the cable or cable port if
Encoder wiring error; loose	port jack is deformed	deformed.
plug	•Check whether both ends of the rectangular connector are reliably connected	 Ensure reliable connection at both ends of rectangular connection port; Replace with an encoder cable with higher connection reliability.
	•Check whether 2003-02 (load rigidity	■Appropriately increase the setting value of
Improper parameter setting	level) is set properlyCheck whether the gain parameters are set properly, resulting in overshoot	2003-02 (load rigidity level). ■Reasonably adjust the gain parameters.
Frequent acceleration and deceleration	•Check whether frequent acceleration and deceleration are performed and whether the acceleration and deceleration time is too short.	■Appropriately extend the acceleration and deceleration time.
Internal servo drive fault	•Cross-verification. Use the normal motor, encoder cable to connect to the servo drive, only connect the encoder cable. If the servo drive still alarm, it is failure.	■Contact the manufacturer's technician personnel for maintenance.

Er.21 Main power supply undervoltage

(1) Fault phenomenon

Servo drive panel display	Fault name
	Main power supply is undervoltage

Reason: DC bus voltage is lower than the fault value.

O220V drive: The normal value of DC bus voltage is 310V, and the fault value of DC bus voltage is 200V;

O380V drive: The normal value of DC bus voltage is 540V, and the fault value of DC bus voltage is 420V.

(2) Troubleshooting methods

Reason	Troubleshooting methods	Handling
Power-off when VD3E drive is enabled	•Check whether the servo drive is power off when logic is valid and the S-ON function is enabled in the 2006 Group "DIDO Function configuration parameter".	■It is servo internal software logic, and the alarm will be automatically released after the indicator light of servo drive panel is off.
The power supply is unstable or off	•Observe whether the monitoring quantity 201E-1f (bus voltage) is in the following range: 220V drive: 201E-1F less than 200V; 380V drive: 201E-1F less than 420V.	 Run servo after the power supply is stable; Increase power capacity.
The voltage drops during operation of the servo drive	•Check whether the servo drive shares the same power supply with other high loads	 Turn off other loads of the same main circuit power supply; Servo drive uses a separate power supply
Phase loss (three phase power is running on single phase power)	 Check if the main circuit wiring is correct VD3E A: single-phase 220V input connected to L1, L3; VD3E B: single-phase 220V input connected to L1, L3; three-phase 220V input connected to L1, L2, L3. 	■Correctly connect the main circuit wiring.

Er.22 Main power supply overvoltage

(1) Fault phenomenon

Servo drive panel display

Fault name

		Main power supply is overvoltage
--	--	----------------------------------

Reason: DC bus voltage is higher than the fault value.

O220V drive: The normal value of DC bus voltage is 310V, and the fault value of DC bus voltage is 390V;

O380V drive: The normal value of DC bus voltage is 540V, and the fault value of DC bus voltage is 670V.

Reason	Troubleshooting methods	Handling
The input voltage is too high	 Check that the drive input power specifications meet the specifications: 220V drive: valid value : 198V ~ 242V; 380V drive: valid values : 342V ~ 418V. 	■Change or adjust the power supply.
The power supply is not stable or struck by lightning	•Check whether the input power supply of the servo drive meets the specifications and monitor whether it has been struck by lightning.	 Run servo after the power supply is stable; Connect the surge suppressor, please contact the technical personnel of the manufacturer for the specific connection method.

	•Internal briking resistor wiring error:	
	check whether C, D are connected to	■Reliable connection between C and D
	the shorting cap and the connection is	shorting cap or short wiring.
	normal	
	•External braking resistor wiring error:	
	Check whether the external resistor is	The external braking resistor is reliably segmented between Disord C
	connected reliably between P+ and C.	connected between P + and C.
		■Remove the shorting cap between C and
	•Short-circuit of the built-in braking	D, and reliably connect the external braking
Abnormal braking	resistor: Check whether the built-in	resistors with equal resistance between P +
resistance	braking resistor suffers from	and C.
	short-circuit.	■Contact the manufacturer's technician to
		replace the internal braking resistor.
	•The resistance value of the external	
	braking resistor is too large: Check the	
	resistance value of the external braking	
	resistor actually selected and compare	■Select the appropriate external braking
	it with the recommended braking	resistor.
	resistor to confirm whether the	
	resistance value of the actual resistor is	
	too large.	
	•Monitor the servo drive monitoring	
The motor is in a state of	quantity 201E-1F (bus voltage) to	Ensure that the input voltage is within the
rapid acceleration and	confirm whether the voltage exceeds	specification range and increase the
deceleration motion	the fault value when the motor is in the	acceleration and deceleration time.
	deceleration section.	
	•The servo drive is still faulty after	■Servo drive may be damaged, contact the
Internal servo drive fault	, power on again	manufacturer's technician for repair.
	_	

Er.23 Braking resistor is not connected

(1) Fault phenomenon

Servo drive panel display	Fault name
Er.2]	Braking resistor is not connected

	Reason		Troubleshooting methods	Handling
Internal	braking	resistor	•Check whether C, D are connected to	■When internal braking resistors are
wiring err	or		the shorting cap and the connection is	used, ensure the shorting caps or short

		normal	wires are reliably connected between C
			and D.
External brakin wiring error	g resistor	•Check whether the external resistor is connected reliably between P+ and C.	■When external braking resistors are used, ensure the external resistors are reliably strung between P + and C.
Internal brakin damaged	g resistor	•The servo drive is powered off. Detect whether the resistance between P+ and D is 50Ω	 Contact the manufacturer's technician to replace the internal braking resistor. Use the external braking resistor and change the relevant parameters in servo
			drive 2000 group "basic settings".

Er.24 Braking resistor turns on abnormally

(1) Fault phenomenon

Servo drive panel display	Fault name
	The braking resistor is turned on abnormally

(2) Troubleshooting methods

Reason	Troubleshooting methods	Handling
Internal hardware of servo	•The servo drive is still faulty after	■Contact the manufacturer's technician
drive damaged	power on again	for maintenance.

Er.25 Braking resistor resistance is too large

(1) Fault phenomenon

Servo drive panel display	Fault name
Er.25	Braking resitor resistance is too large

Reason	Troubleshooting methods	Handling
The resistance value of the external braking resistor is large	•Check the resistance value of the external braking resistor actually selected and compare it with the recommended braking resistor to confirm whether the resistance value of the actual resistor is too large.	■Use an appropriate external braking resistor.
Improper parameter setting	•Check whether the value of servo drive 2000-0A (external brake resistance) is set too high	■Reasonably set the parameter value of 2000-0A (external braking resistance value).

Er.26 Wrong motor model

(1) Fault phenomenon

Servo drive panel display	Fault name
Er.26	Wrong motor model

(2) Troubleshooting methods

Reason	Troubleshooting methods	Handling
The motor is not supported by the servo drive	•Check whether the servo drive model supports the motor	Contact the manufacturer's technician to obtain the appropriate servo drive model and motor model.
Wrong motor model	•Check whether the Motor Code is consistent with the motor nameplate	Contact technician to record the motor Motor Code

Er.27 Encoder disconnection

(1) Fault phenomenon

Servo drive panel display	Fault name
Er.27	Encoder is disconnected

Reason	Troubleshooting methods	Handling
	•Check whether the cable port (CN2) of the encoder is properly connected	■Tighten the fixing screws for CN2 port.
Poor contact on CN2 port	•Check whether the servo drive CN2 port jack is deformed	Replace the cable or cable port if deformed.
Poor contact on adapter port (Rectangular connection cable)	•Check whether both ends of the rectangular connector are reliably connected	 Ensure reliable connection at both ends of rectangular connection port; Replace with an encoder cable with higher connection reliability.
Wrong encoder cable wiring	•Check whether the both ends of the encoder cable are correctly connected	 Adjust the wiring according to the corresponding relationship of pins; Preferably use the standard encoder cable of the manufacturer.

Er.28 Encoder Z pulse lost

(1) Fault phenomenon

Servo drive panel display		Fault name
		Encoder Z pulse is lost

(2) Troubleshooting methods

Reason	Troubleshooting methods	Handling
	•Check whether the servo drive model	■Contact the manufacturer's technician
Wrong motor model		to obtain the appropriate servo drive
		model and motor model.
	•Check whether there are strong	■Eliminate the interference of strong
	magnetic fields nearby	magnetic field nearby.
		■Try to separate the strong and weak
External interference	ullet Check whether there are sources of	currents in the wiring, ensure that the
	interference such as power supply	motor and the servo drive are well
	inverter equipment nearby	grounded, and keep away from the power
		cables.
Encoder fault	•Manually rotate the motor shaft	■If the value of U0-30 (electric angle)
	counterclockwise or clockwise to	changes abruptly or does not change,
	observe whether the monitoring	there may be a problem with the encoder
	quantity U0-30 (electrical angle)	itself. Please replace the motor or
	changes regularly	encoder.

Er.30 Encoder UVW signal error

(1) Fault phenomenon

Servo drive panel display	Fault name
Er.JQ	Encoder UVW signal error

Reason	Troubleshooting methods	Handling
External interference	•Check that the motor and servo drive are well grounded	Ensure the motor and servo drive are well grounded.
Encoder cable fault	•Cross-verification. Use the normal motor, encoder cable to connect to the servo drive.	Replace with an encoder cable with higher connection reliability.
Servo drive fault	•The servo drive is still faulty after	■Contact the manufacturer's technician for

power on again	maintenance.

Er.31 Power line disconnection

(1) Fault phenomenon

Servo drive panel display	Fault name
	Power line disconnection

(2) Troubleshooting methods

Reason	Troubleshooting methods	Handling
Poor contact of motor	•Check whether the motor power wiring	■Tighten the fixing screws at the wiring nort of the motor power wire
Power line disconnection	•Check whether both ends of the power cable are disconnected	Replace the power cable and repower
Poor contact on adapter port (rectangular connection cable)	•Check whether both ends of the rectangular connector are reliably connected	 Ensure reliable connection at both ends of rectangular connection port; Replace with a power cable with higher connection reliability.

Er.32 Exceeding motor maximum speed

(1) Fault phenomenon

Servo drive panel display	Fault name
Er.JJ	Exceeding motor maximum speed

Reason	Troubleshooting methods	Handling
Motor power cable UVW phase sequence error	•Check whether the phase sequence of the motor power cable on the servo drive side and motor side corresponds to each other.	■According to the drive side UVW, the motor side UVW is connected correctly.
2001-0A parameter setting is not proper	 Check that the parameter value of 2001-0A (maximum speed threshold) is less than the maximum speed required for the actual operation of the motor Check whether the motor rotating speed corresponding to the input command exceeds 2001-0A (maximum speed threshold) 	Reset 2001-0A (maximum speed threshold) according to mechanical requirements.

Motor speed overshoot	•Check whether the gain parameters are set properly, resulting in overshoot	■Reasonably adjust the gain parameters.
Servo drive fault	•The servo drive is still faulty after	■Servo drive may be damaged, replace
	power on again	servo drive.

Er.33 Power module over temperature

(1) Fault phenomenon

Servo drive panel display	Fault name
	Power module is over temperature

(2) Troubleshooting methods

Reason	Troubleshooting methods	Handling
Ambient temperature is too high	•Measure the ambient temperature.	Reduce the ambient temperature of the servo drive.
Servo drive fan failure	•Check whether the servo drive fan is blocked or damaged	■Contact the manufacturer's technician to repair or replace the fan.
The servo drive is mounted in an unreasonable orientation or the spacing between the servo drives is unreasonable	•Check whether the servo drive installation is reasonable	■Contact the manufacturer's technician to obtain the servo drive installation standard.
Servo drive fault	•Fault is still reported when restarting after ten minutes of power cutoff	Servo drive may be damaged, contact the manufacturer's technician for repair.

Er.34 Motor overload protection

(1) Fault phenomenon

Servo drive panel display	Fault name
	Motor overload protection

Reason	Troubleshooting methods	Handling
Motor power cable, encoder cable wiring error	•Check whether the motor power cable and encoder cable wiring are correct.	 Connect according to the correct connection method; Preferably use the motor power lines and encoder cables standard by manufacturers.
The load is too large	•Check overload characteristics of motor or servo drive	Reduce the load;Contact the manufacturer's technician

		to obtain the drive and motor model with
		appropriate capacity.
	•Check whether frequent acceleration	
Frequent acceleration and	and deceleration are performed and	■Appropriately extend the acceleration
deceleration	whether the acceleration and	and deceleration time.
	deceleration time is too short.	
Motor model and servo drive	•Check the monitoring quantity 201E-35	■Contact the manufacturer's technician
do not match	(motor model code).	to obtain the matching motor model.
	•Use Wecon SCTools to obtain the	Set the appropriate loop gain
	actual torque waveform and observe	Set the appropriate loop gain
	whether overshoot is obvious	parameters.
Unrosconable parameters	•Observe whether the motor vibrates	• Set the appropriate rigidity level
officasoffable parameters	during operation	= set the appropriate rightly level.
	•Check whether 200A-04 (motor	■Increase 200A-04 (motor overload
	overload protection time coefficient)	protection time coefficient) under the
	parameter is reasonable	premise that the motor will not burn out.
	•Check whether the brake output	
The motor is locked	function is enabled by mistake, resulting	■Disable the brake output function.
	in the motor locking.	
Servo drive fault	•The servo drive is still faulty after	■Servo drive may be damaged, contact
	power on again	the manufacturer's technician for repair.

Er.35 Electronic gear ratio exceeds limit

(1) Fault phenomenon

Servo drive panel display	Fault name
Er.35	Electronic gear ratio exceeds limit

Reason	Troubleshooting methods	Handling
The electronic gear ratio setting is greater than the settable range	Check whether the ratio of object dictionaries 6091: 01 to 6091: 02 is within the following range: •The upper limit of 17bit absolute value encoder can be set to 52428; •The upper limit of 23bit absolute value encoder can be set to 3355443.	■After modifying the corresponding function code according to the settable range, set 200A-03 (fault clearing) to 1
The electronic gear ratio setting is less than the settable range	Check whether the ratio of object dictionaries 6091: 01 to 6091: 02 is within the following range:	

•The lower limit of 17bit absolute value	
encoder can be set to 0.01;	
•The lower limit of 23bit absolute value	
encoder can be set to 0.83.	

Er.36 Position deviation is too large

(1) Fault phenomenon

Servo drive panel display	Fault name
Er. JE	Position deviation is too large

Reason	Troubleshooting methods	Handling
Cable problem	•Check whether the phase sequence of the motor power cable on the servo drive side and motor side corresponds to each other.	■According to the drive side UVW, connect the motor side UVW correctly.
	•Check whether both ends of power cable are disconnected	Replace the power cable and repower
	•Check whether 2003-02 (load rigidity level) is set properly	■Appropriately increase the setting value of 2003-02 (load rigidity level).
Improper parameter setting	•Check whether the gain parameters are set properly; if not, it may result in overshoot	■Reasonably adjust the gain parameters.
	•Check whether 6065 (position deviation threshold) is set properly	■Appropriately increase the setting value of 6065 (excessive position deviation threshold)
	•Use Wecon SCTools to obtain the equivalent speed of the position command and check whether the speed is greater than the motor rotating speed limit	■Increase the setting values of 2001-0C (forward speed threshold) and 2001-0D (reverse speed threshold) according to mechanical requirements.
Motor is locked	•Check whether motor is locked due to mechanical jamming	■Solve the problem of mechanicam jamming.
Brake is not opened	•Check whether the brake device is opened normally, and check whether the output voltage of the brake is 24V	■Check the logic of brake power supply or brake output signal.
Position command equivalent speed changes too quickly	•Check whether the position command equivalent speed changes too quickly	Properly increase the acceleration and deceleration time and reduce the change rate of the rotating speed.

Er.37 Abnormal torque saturation

(1) Fault phenomenon

Servo drive panel display	Fault name
	Abnormal torque saturation

(2) Troubleshooting methods

Reason	Troubleshooting methods	Handling
	•Check whether the phase sequence of	
Motor power cable UVW	the motor power cable on the servo	■According to the drive side UVW,
phase sequence error	drive side and motor side corresponds	connect the motor side UVW correctly.
	to each other.	
	Chack whather 2001 12 (torque	■Appropriately increase the setting value
	saturation timeout) is set properly	of 2001-13 (torque saturation timeout
	saturation timeout) is set property	time).
	Check whether 2001-0F (forward torque	Appropriately increase the setting values
Improper parameter setting	limit) and 2001-10 (reverse torque limit)	of 2001-0F (positive torque limit) and
improper parameter setting	are set reasonably	2001-10 (reverse torque limit).
	•Check whether the gain parameters	Reasonably adjust the gain parameters
	are set properly	
	ullet Check whether the acceleration and	■Appropriately increase the acceleration
	deceleration time are set properly	and deceleration time.
The load is too large	 Check whether the load is too large 	■Reduce the load.
Matar is lasked	 Check whether the motor is locked due 	■Solve the problem of mechanical
	to mechanical jamming of the load.	jamming.
Limit switches are mounted	ullet Check whether the limit switch is	■Adjust the installation position of the
beyond the travel	installed beyond the travel	limit switch.
	•Check whether the brake device is	Check the legic of brake newer supply or
The brake is not opened	opened normally, and check whether	brake output signal
	the output voltage of the brake is 24V	biake output signal.

Er.38 Main circuit electrical phase loss

(1) Fault phenomenon

Servo drive panel display	Fault name
	Main circuit electrical phase loss

(2) Troubleshooting methods

Reason	Troubleshooting methods	Handling
	•Check whether the motor power wiring port is connected reliably	Tighten the fixing screws at the wiring port of the motor power wire.
Cable problem	•Check whether both ends of the power cable are disconnected	Replace the power cable and repower
Three-phase specification drives run on single-phase power supplies	•Check whether the three-phase drive has a single-phase power supply	■Re-connect the three-phase power supply according to the power supply specifications.
The power supply is unstable or off	•Check that the drive input power specifications meet the specifications: 220V drive: valid value : 198V ~ 242V;; 380V drive: valid values : 342V ~ 418V.	Run servo after the power supply is stable.
Servo drive fault	•The servo drive is still faulty after power on again	Servo drive may be damaged, contact the manufacturer's technician for repair.

Er.39 Emergency stop

(1) Fault phenomenon

Servo drive panel display	Fault name	
Er.]]	Emergency stop	

Reason	Troubleshooting methods	Handling
	•Check whether emergency stop protection is triggered manually	■Repower the servo drive.
Servo drive receives emergency stop instructions	•Check whether the servo drive has mistakenly triggered the emergency stop signal. Check whether function 08 (E-STOP) is configured in "DI "port function selection"	Reasonably wire the DI port.
	of the 2006 group "DIDO configuration" function code group and whether the DI port wiring is normal.	

Er.40 Encoder battery failure

(1) Fault phenomenon

Servo drive panel display	Fault name
Er.HD	Encoder battery failure

(2) Troubleshooting methods

Reason	Troubleshooting methods	Handling
Multi-turn absolute encoder is not connected to the battery when the servo drive is power off	•Check if the encoder is connected to the battery during the power off of the servo	■Set 200A-03 (fault clearing) to 1.
The voltage of multi-turn absolute encoder battery is low	 Measure battery voltage 	■Contact the manufacturer's technician to replace the new encoder battery.

Er.41 Motor (encoder) over temperature

(1) Fault phenomenon

Servo drive panel display	Fault name
	Motor (encoder) over temperature

(2) Troubleshooting methods

Reason	Troubleshooting methods	Handling
The motor is overloaded	 Check whether the motor is overloaded 	■Reduce the load.

Er.42 Encoder write fault

(1) Fault phenomenon

Servo drive panel display	Fault name
Er.42	Encoder write fault

Reason	Troubleshooting methods	Handling
Poor contact on CN1 port	•Check whether the cable port (CN1)	Tighton the fixing screws for CN2 port
Poor contact on CN1 port	of the encoder is properly connected	- righten the fixing screws for CN2 port.

	•Check whether the servo drive CN1	■Replace the cable or cable port if
	port jack is deformed	deformed.
Poor contact on adapter port (rectangular connection cable)•Check whether both ends of the rectangular connector are reliably connected	 Ensure reliable connection at both ends of rectangular connection port; Replace with an encoder cable with higher 	
		connection reliability.
	•Check whether there are strong	■Eliminate the interference of strong
	magnetic fields nearby	magnetic field nearby.
		■Try to separate the strong and weak
External interference	•Check whether there are sources of	currents in the wiring, ensure that the
	interference such as power supply	motor and the servo drive are well
	inverter equipment nearby	grounded, and keep away from the power
		cables.
Servo drive fault	•The servo drive is still faulty after	■Servo drive may be damaged, contact the
	power on again	manufacturer's technician for repair.

Er.43 Drive overload fault

Fault

Servo drive panel	Fault name
Er.4]	Drive overload fault

Troubleshooting

Reason	Troubleshooting	Handling
The average output power of U0-34 exceeds the limit power (110% overload) for more than 20 minutes.	Whether the average output power of U0-34 often exceeds the limit (110% overload) Check whether the drive meets the requirements.	■ It can be observed whether the U0-34 is often greater than the servo limit power (110% overload) when servo is running. When ER.43 alarm is found in the process of machine adjustment, please check whether the servo power is suitable. It is recommended to replace the drive model
		with higher power.
Servo drive fault	The servo drive is still fault after power on again	Servo drive may be damaged. Please contact the manufacturer's technician for repair.

Servo drive model	Rated power /W	Limited power/W (110%
-------------------	----------------	-----------------------
		overload)
-------------------	------	-----------
VD3E-003SA1G	100	110
VD3E-010SA1G	400	440
VD3E-014SA1G	750	825
VD3E-016SA1G	1500	1650
VD3E-019/021 SA1G	2300	2530
VD3E-025/030 SA1G	2600	2860
VD3E-016TA1G	1500	1650
VD3E-019TA1G	2000	2200
VD3E-021TA1G	3000	3300

Er.44 Homing timeout fault

(1) Fault phenomenon

Servo drive panel display	Fault name
Er.44	Homing timeout fault

Reason	Troubleshooting methods	Handling
		■First confirm whether the DI function 26
		is set in group 2006, and then check the
		connection of the DI terminal. When
	Check whether homing is always in a	manually changing the logic of the DI
Fault of homing switch	high-speed search instead of a	terminal, check whether the servo drive
	low-speed search.	receives the corresponding DI level signal
	Check whether homing high-speed	through 201E-11. If not, it means that the
	search has been in the reverse	DI wiring is wrong, please wire correctly.
	low-speed search process.	Manually make DI terminal logic change,
		if received level signal, indicating the
		homing operation is wrong, please
		operate correctly.
The speed of searching the	•Check whether the 6099: 01h setting	Increase the COOL Of h setting value
home switch signal at high	value is too small.	

speed is too small		
	ullet Confirm whether the limit switch	
	signals on both sides are valid at the	
Hardware switch setting is	same time.	■Set the hardware switch position
unreasonable	•Confirm whether a limit switch signal	reasonably.
	and the deceleration point signal or	
	origin signal are valid at the same time	

Er.60 ADC conversion is not completed

(1) Fault phenomenon

Servo drive panel display	Fault name
Er.ED	ADC conversion is not completed

(2) Troubleshooting methods

Reason	Troubleshooting methods	Handling
	•Check whether there are strong	■Eliminate the interference of strong
	magnetic fields nearby	magnetic field nearby.
External interference		■Try to separate the strong and weak
	•Check whether there are sources of	currents in the wiring, ensure that the
	interference such as power supply	motor and the servo drive are well
	inverter equipment nearby	grounded, and keep away from the power
		cables.
Servo drive fault	•Restore factory setting [200A-02=1]	■If servo still give alarm after powering
	and power on again. If the servo drive	on several times, contact the
	still alarms after multiple operations, it	manufacturer's technicians for
	is faulty.	maintenance.

Er.61 Internal software fault

(1) Fault phenomenon

Servo drive panel display	Fault name
Er.E I	Internal software fault

Reason	Troubleshooting methods	Handling
	•Restore factory setting [200A-02=1]	■If servo still give alarm after powering
Servo drive fault	and power on again. If the servo drive	on several times, contact the
	still alarms after multiple operations, it	manufacturer's technicians for

is faulty. maintenance.

Er.62 Internal software fault

(1) Fault phenomenon

Servo drive panel display	Fault name
Er.62	Internal software fault

(2) Troubleshooting methods

Reason	Troubleshooting methods	Handling
Servo drive fault	•Restore factory setting [200A-02=1]	■If servo still give alarm after powering
	and power on again. If the servo drive	on several times, contact the
	still alarms after multiple operations, it	manufacturer's technicians for
	is faulty.	maintenance.

Er.63 Internal software fault

(1) Fault phenomenon

Servo drive panel display	Fault name
Er.6]	Internal software fault

(2) Troubleshooting methods

Reason	Troubleshooting methods	Handling
Servo drive fault	•Restore factory setting [200A-02=1]	■If servo still give alarm after powering
	and power on again. If the servo drive	on several times, contact the
	still alarms after multiple operations, it	manufacturer's technicians for
	is faulty.	maintenance.

Er.64 Internal software fault

(1) Fault phenomenon

Servo drive panel display	Fault name
Er.E4	Internal software fault

Reason	Troubleshooting methods	Handling
	•Restore factory setting [200A-02=1]	■If servo still give alarm after powering
Servo drive fault	and power on again. If the servo drive	on several times, contact the
	still alarms after multiple operations, it	manufacturer's technicians for

is f	faulty.	maintenance.
------	---------	--------------

Er.65 Internal software fault

(1) Fault phenomenon

Servo drive panel display	Fault name
Er.65	Internal software fault

(2) Troubleshooting methods

Reason	Troubleshooting methods	Handling
Servo drive fault	•Restore factory setting [200A-02=1]	■If servo still give alarm after powering
	and power on again. If the servo drive	on several times, contact the
	still alarms after multiple operations, it	manufacturer's technicians for
	is faulty.	maintenance.

A-80 power limit alarm

(1) Fault

Servo drive panel	Alarm name
	Drive overpower alarming

(2) Troubleshooting

Reason	Troubleshooting	Handling
When the average		
output power of U0-34		Check whether the power of U0-34
exceeds the limit power	Check whether the average output	exceeds 110% of the rated power of the
of the drive (110%	power of U0-34 exceeds the limit (110%	drive. When A80 alarm is reported in the
overload) for more than	overload) for more than 5 seconds.	adjustment process, please check
5 seconds, there is drive		whether the servo power is suitable.
overpower alarming.		

A-81 Overspeed alarm

(1) Fault phenomenon

Servo drive panel display	Warning name
	Overspeed alarm

Reason	Troubleshooting methods	Handling
	•Check whether the phase sequence	
Motor power cable UVW	of the motor power cable on the servo	■According to the drive side UVW, connect
phase sequence error	drive side and motor side corresponds	the motor side UVW correctly.
	to each other.	
	•Check whether the value of 2001-0B	
2001-0B parameter setting is	(warning speed threshold) is less than	■Reset 2001-0B (warning speed threshold)
not proper	the max speed required for the	according to mechanical requirements.
	operation of motor	
	•Check whether the motor speed	■Reduce the input speed command while
Input speed instruction is	corresponding to the input command	ensuring mechanical requirements;
too high	exceeds 2001-0B (warning speed	■Reasonably increase 2001-0B (warning
	threshold)	speed threshold).

A-82 Overload

(1) Fault phenomenon

Servo drive panel display	Warning name
	Overload

(2) Troubleshooting methods

Reason	Troubleshooting methods	Handling
Motor power cable, encoder cable wiring error	•Check whether the motor power cable and encoder cable wiring are correct.	 Complete wiring according to the correct wiring method; Preferably use the standard motor power lines and encoder cables provided by manufacturers.
The load is too large	•Perform inertia identification and check the inertia ratio.	 Reduce the load; Contact the manufacturer's technician to obtain the drive and motor model with appropriate capacity.
Frequent acceleration and deceleration	•Check whether frequent acceleration and deceleration are performed and whether the acceleration and deceleration time is too short.	■Appropriately extend the acceleration and deceleration time.
Motor model and servo drive do not match	•Check the monitoring quantity 201E-35 (motor model code).	Contact the manufacturer's technician to obtain the matching motor model.
Unreasonable parameters	•Use Wecon SCTools to obtain the actual torque waveform and observe whether overshoot is obvious	Set the appropriate loop gain parameters.
	•Observe whether the motor vibrates during operation	Set the appropriate rigidity level.

A-83 Braking resistor is over temperature or overloaded

(1) Fault phenomenon

Servo drive panel display	Warning name
	Braking resistor is over temperature or overloaded

Reason	Troubleshooting methods	Handling

Improper wiring of internal braking resistor	•Check whether C, D are connected to the shorting cap and the contact is normal	■When internal braking resistors are used, ensure the shorting caps or short wires are reliably connected between C and D.
Improper wiring of external braking resistor	●Remove the external braking resistor and measure whether the resistance value is "∞"(Infinity).	■Replace with a new external braking resistor, after ensuring that the resistance value of the resistor is consistent with the nominal value, connect it in series between P+ and C.
The resistance value of the external braking resistor is too large	•Test the actual external braking resistor resistance and compare it with the recommended braking resistor to make sure the actual resistance is not too large.	■Use an appropriate external braking resistor.
Improper parameter setting	When using an external braking resistor, check the following parameters. Whether the value of 2000-09 (brake setting) is reasonable Whether the value of 2000-10 (resistance value of external braking resistor) is reasonable.	 Reasonably set the parameter value of 2000-09 (brake setting setting): 2000-09=1 (external braking resistor is used, natural cooling) 2000-09=3 (no braking resistor is used, and all are absorbed by capacitance) The parameter value of 2000-0A (external braking resistor) should be the same as the actual external braking resistance.

Chapter 1 Fault Alarm

A-84 Parameter modification that needs device to be powered on again

(1) Fault phenomenon

Servo drive panel display	Warning name
	Parameter modification that needs device to be powered on again

(2) Troubleshooting methods

Reason	Troubleshooting methods	Handling
Modified the valid timing	•Check whether the servo drive has	
parameter to "power on	modified the valid timing parameter to	■Power it on again.
again".	"power on again".	

A-88 Main circuit instantaneous power failure

(1) Fault phenomenon

|--|

Reason	Troubleshooting methods	Handling
Power failure	•Check that the drive input power specifications meet the specifications: 220V drive: valid value : 198V ~ 242V;; 380V drive: valid values : 342V ~ 418V.	■If the mains input has no voltage or is unstable, wait for the power supply to stabilize before use.
Servo drive fault	When the mains power is confirmed to be normal, the servo drive is still faulty after power on again	Servo drive may be damaged, please contact the manufacturer's technician.

A-89 Duplicate DI port configuration

(1) Fault phenomenon

Servo drive panel display	Fault name
	Duplicate DI port configuration

(2) Troubleshooting methods

Reason	Troubleshooting methods	Handling
The same non-zero DI function is assigned to multiple DI ports	Check whether the "DI port function selection" of the "DIDO Configuration" function code group of the 2006 group is configured with the same DI function	 Set different DI functions for different DI port, and repower the servo; Configure the function of unnecessary DI port to 0 (off), and repower servo; Restore parameters to factory settings through setting 200A-02 as 1, and power
		it on again.

A-90 Duplicate DO port configuration

(1) Fault phenomenon

Servo drive panel display	Fault name
	Duplicate DO port configuration

Reason	Troubleshooting methods	Handling
		■Set different DO functions for different DO
	Check whether the "DO port function	port;
The same non-zero DO	selection" of the "DIDO Configuration"	■Configure the function of unnecessary DO
function is assigned to	function code group of the 2006 group	port to 128 (off);
multiple DO ports	is configured with the same DO	■Restore parameters to factory settings
	function.	through setting 200A-02 as 1, and power it
		on again.

A-91 parameter modification is too frequent.

(1) Fault

Servo drive panel	Fault name
	Parameter modification is too frequent (Allowable modification frequency of the function code): 150 times/ 4 hours Note: 32-bit function code is recorded as 2 times)

(2) Troubleshooting

Reason	Troubleshooting	Handling				
		(1) During the adjustment, A91 alarming				
		(150 times/4 hours) caused by				
	•Check whether the host computer	frequently manual modification of				
	modifies the writing parameters frequently;	function codes can be cleared through				
Parameter modification	(Allowable modification frequency of the	P10-03. In other cases, please check the				
is too frequent	function code): 150 times/ 4 hours)	PLC program;				
	Note: 32-bit function code is recorded as	(2) If A91 alarming appears in the normal				
	2 times	working mode of the machine, please				
		check whether the PLC program				
		frequently modifies the function code.				

A-92 Low encoder battery voltage warning

(1) Fault

Servo drive panel display	Fault name
	Low encoder battery voltage warning

(2) Troubleshooting

Reason	Troubleshooting methods	Handling			
Encoder battery voltage is less than 3.1V	 Measure encoder battery voltage 	■Contact the manufacturer's technician to replace the new encoder battery.			

A-93 encoder read-write verification exception is too frequent.

(1) Fault

Servo drive panel	Fault name
	Encoder read-write verification exception is too frequent.

(2) Troubleshooting

Reason	Troubleshooting	Handling			
	Check for strong magnetic fields nearby	Eliminate the interference of strong magnetic field nearby.			
External interference	Check whether there are sources of interference such as power supply inverter equipment nearby	Try to separate the strong and weak currents in the wiring. Make sure the motor and driver are well grounded and keep away from the power cables.			
	Increase PO-31: Encoder read-write verification exception thre shold setting	Eliminate the A93 alarming by increasing the exception threshold is regarded as a temporary solution. The disadvantage is that the motor may run in an unstable state.			
Encoder fault	Manually rotate the motor axis counterclockwise or clockwise to observe whether the monitoring value 201E-1E (electrical angle) changes regularly	If the value of 201E-1E (electric angle) changes abruptly or does not change, there may be a problem with the encoder itself. Please replace the motor or encoder.			
Servo drive fault	■ Cross-verification: Use the normal motor and encoder cables to connect to the servo drive. If the servo drive still alarms, it is a servo drive fault.	Servo drive may be damaged, please contact the manufacturer's technician.			

If P6-14 and P6-17 are set to other functions, such as instruction reversal or other DI functions, the use of touch probe function will not be affected. That is, when DI5 or DI6 is enabled, the touch probe function and the corresponding function code function will take effect together and do not affect each other.

11.1 Object Dictionary List

Object dictionary (Hex)	Name	Accessibility	Data mapping	Default	Data range	Unit	Data Type	Page number
1000	Device type	RO	No	0x00020192	-	-	UDINT	112
1001	Error record	RO	No	0x00	-	-	USINT	112
1008	Device name	RO	No	-	-	-	STRING	112
1009	Manufacturer's hardware equipment	RO	No	-	-	-	STRING	112
100A	Manufacturer software version	RO	No	-	-	-	STRING	112
1018: 01	Vendor ID	RO	No	0x00000EFF	-	-	UDINT	112
1018: 02	Product code	RO	No	0x10003101	-	-	UDINT	112
1018: 03	Revision number	RO	No	0x00000001	-	-	UDINT	112
1018: 04	Serial number	RO	No	0x00001419	-	-	UDINT	112
1600: 01	First mapping object	RW	RPDO	0x60400010	-	-	UDINT	113
1600: 02	Second mapping object	RW	RPDO	0x607A0020	-	-	UDINT	113
1600: 03	Third mapping object	RW	RPDO	0x60B80010	-	-	UDINT	113
1600: 04	Fourth mapping object	RW	RPDO	0X6060 0008			UDINT	113
1701: 01	First mapping object	RW	RPDO	0x60400010	-	-	UDINT	113
1701: 02	Second mapping object	RW	RPDO	0x607A0020	-	-	UDINT	113
1701: 03	Third mapping object	RW	RPDO	0x60B80010	-	-	UDINT	113
1701: 04	Fourth mapping object	RW	RPDO	0x60600008	-	-	UDINT	113
1702: 01	First mapping object	RW	RPDO	0x60400010	-	-	UDINT	114
1702: 02	Second mapping object	RW	RPDO	0x607A0020	-	-	UDINT	114
1702: 03	Third mapping object	RW	RPDO	0x60FF0020	-	-	UDINT	114
1702: 04	Fourth mapping object	RW	RPDO	0x60710010	-	-	UDINT	114
1702: 05	Fifth mapping object	RW	RPDO	0x60600008	-	-	UDINT	114
1702: 06	Sixth mapping object	RW	RPDO	0x60B80010	-	-	UDINT	114

Chapter	11	Appendix
---------	----	----------

1702: 07	Seventh mapping object	RW	RPDO	0x607F0020	-	-	UDINT	114
1A00: 01	First mapping object	RW	TPDO	0x60410010	-	-	UDINT	114
1A00: 02	Second mapping object	RW	TPDO	0x60640020	-	-	UDINT	114
1A00: 03	Third mapping object	RW	TPDO	0x60B90010	-	-	UDINT	114
1A00: 04	Fourth mapping object	RW	TPDO	0x60BA0020	-	-	UDINT	114
1A00: 05	Fifth mapping object	RW	TPDO	0x60BC0020	-	-	UDINT	114
1A00: 06	Sixth mapping object	RW	TPDO	0x603F0010	-	-	UDINT	114
1A00: 07	Seventh mapping object	RW	TPDO	0x60610008	-	-	UDINT	114
1B01: 01	First mapping object	RO	TPDO	0x603F0010	-	-	UDINT	115
1B01: 02	Second mapping object	RO	TPDO	0x60410010	-	-	UDINT	115
1B01: 03	Third mapping object	RO	TPDO	0x60640020	-	-	UDINT	115
1B01: 04	Fourth mapping object	RO	TPDO	0x60770010	-	-	UDINT	115
1B01: 05	Fifth mapping object	RO	TPDO	0x60F40020	-	-	UDINT	115
1B01:06	Sixth mapping object	RO	TPDO	0x60610008	-	-	UDINT	115
1C12: 01	Index of objects allocated by RPDO	RW	RPDO	0x1701	-	-	ARR	115
1C13: 01	Index of objects assigned by TPDO	RW	No	0x0001	-	-	ARR	115
1C32: 01	Synchronization type	RW	No	0x0002	-	-	UINT	116
1C32: 04	Synchronization types supported	RO	No	0x0005	-	-	UDINT	116
1C32: 05	Minimum cycle time	RO	No	0x0001E848	-	-	UINT	116
1C33: 01	Synchronization type	RW	No	0x0002	-	-	UINT	116
1C33: 04	Synchronization types supported	RO	No	0x0005	-	-	UDINT	116
1C33: 05	Minimum cycle time	RO	No	0x0001E848	-	-	UINT	116

Object dictionary (Hex)		Function code	Name	Setting	Valid time	Default	Range	Unit	Data	Page
Index	Sub-index	(Dec)		method					type	number
2000	04	P00-04	Rotation direction	Shutdown setting	Valid immediately	0	0 to 1	-	16 Bit	117
2000	09	P00-09	Braking resistance setting	Operation setting	Valid immediately	0	0 to 3	-	16 Bit	117
2000	0A	P00-10	External braking resistor resistance	Operation setting	Valid immediately	50	0~65535	Ω	16 Bit	117
2000	ОВ	P00-11	External braking resistor power	Operation setting	Valid immediately	100	0~65535	w	16 Bit	117
2000	1E	P00-30	Shield multi-turn absolute encoder battery fault	Operation setting	Power-on again	0	0 to 1	-	16 Bit	117

Object dictionary (Hex)		Functio	Nome	Setting		Defaul	Dence	110:4	Dat a	Page
Inde x	Sub-inde x	(Dec)) Name method		vanu time	t	Kange	Onit	typ e	r
2001	0A	P01-10	MaxSpeedLimi t	Operatio n setting	Valid immediatel Y	3600	0~5000	rpm	16 Bit	118
2001	ОВ	P01-11	WarmSpeedT h	Operatio n setting	Valid immediatel Y	3300	0~5000	rpm	16 Bit	118
2001	0C	P01-12	PosSpeedTh	Operatio n setting	Valid immediatel Y	3000	0~5000	rpm	16 Bit	118
2001	0D	P01-13	NegSpeedTh	Operatio n setting	Valid immediatel Y	3000	0~5000	rpm	16 Bit	118

2001	OE	P01-14	ToqLimitSrc	Shutdow n setting	Valid immediatel y	0	0 to 1	-	16 Bit	118
2001	OF	P01-15	PToqLim	Operatio n setting	Valid immediatel y	3000	0~3000	0.1 %	16 Bit	118
2001	10	P01-16	NToqLim	Operatio n setting	Valid immediatel y	3000	0~3000	0.1 %	16 Bit	119
2001	13	P01-19	ToqLimTime	Operatio n setting	Valid immediatel y	1000	0~6553 5	ms	16 Bit	119
2001	1E	P01-30	Delay from brake output ON to instruction reception	Operatio n setting	Valid immediatel Y	250	0~500	ms	16 Bit	119
2001	1F	P01-31	In the static state, delay from the "brake output is OFF to the motor is not energized".	Operatio n setting	Valid immediatel y	150	1~1000	ms	16 Bit	119
2001	20	P01-32	Rotation status, when the brake output is OFF, the speed threshold.	Operatio n setting	Valid immediatel y	30	0~3000	rpm	16 Bit	119
2001	21	P01-33	Rotation status, delay from servo enable OFF to brake output OFF	Operatio n setting	Valid immediatel Y	500	1~1000	ms	16 Bit	119

Object	Functio	Name	Setting	Valid	Defaul	Range	Unit	Dat	Page

dictio	nary (Hex)	n code		method	time	t			а	numbe
Inde	Sub-inde	(Dec)							typ e	r
x	x									
2002	01	P02-01	PosLoop1stGain	Operatio n setting	Valid immediate ly	400	0~6200	0.1Hz	16 Bit	120
2002	02	P02-02	SpdLoop1stGain	Operatio n setting	Valid immediate ly	65	0~35000	0.1Hz	16 Bit	120
2002	03	P02-03	SpdLoop1stIntgTim e	Operatio n setting	Valid immediate ly	1000	100~6553 5	0.1ms	16 Bit	120
2002	09	P02-09	SpdFeedForwardGa in	Operatio n setting	Valid immediate ly	0	0~1000	0.1%	16 Bit	120
2002	0A	P02-10	SpdFeedForwardFil ter	Operatio n setting	Valid immediate ly	50	0~10000	0.01m s	16 Bit	120
2002	OB	P02-11	ToqFeedForwardGa in	Operatio n setting	Valid immediate ly	0	0~2000	0.1%	16 Bit	120
2002	0C	P02-12	ToqFeedForwardFilt er	Operatio n setting	Valid immediate ly	50	0~10000	0.01m s	16 Bit	120

O dictio)bject nary (Hex)	Functio	Namo	Setting	Valid time	Defaul	Pango	Unit	Dat a	Page
Inde x	Sub-inde x	(Dec)	Naille	method	vanu time	t	Kalige	onit	typ e	r
2003	01	P03-01	Load InerRatio	Operatio n setting	Valid immediatel Y	300	100~1000 0	0.01	16 Bit	
2003	02	P03-02	RigiditySel	Operatio n setting	Valid immediatel Y	14	0~31	-	16 Bit	
2003	03	P03-03	SelfAdjustMo de	Operatio n setting	Valid immediatel Y	0	0 to 2	-	16 Bit	
2003	04	P03-04	InerIdOnline	Operatio n setting	Valid immediatel	0	0 to 2	-	16 Bit	

					У					
2003	05	P03-05	InerldCircle	Shutdow n setting	Valid immediatel y	2	1 to 20	Circl e	16 Bit	
2003	06	P03-06	InerldMaxSpd	Shutdow n setting	Valid immediatel y	1000	300 to 2000	rpm	16 Bit	
2003	07	P03-07	InerIdRollMod e	Shutdow n setting	Valid immediatel y	0	0 to 2	-	16 Bit	
2003	08	P03-08	InerldWaitTim e	Shutdow n setting	Valid immediatel y	1000	300 to 10000	ms	16 Bit	

C dictio	Dbject nary (Hex)	Functio	News	Setting		Defaul	Dense	11	Dat a	Page
Inde x	Sub-inde x	(Dec)	Name	method	vand time	t	Kange	Unit	typ e	r
2004	01	P04-01	PulseFilterType	Shutdow n setting	Valid immediatel Y	0	0 to 1	-	16 Bit	
2004	02	P04-02	LowpassFilterTime	Shutdow n setting	Valid immediatel Y	0	0~1000	ms	16 Bit	
2004	03	P04-03	AveragingFilterTim e	Shutdow n setting	Valid immediatel Y	0	0 to 128	ms	16 Bit	
2004	04	P04-04	TogFilterTime	Operatio n setting	Valid immediatel Y	50	10~250 0	0.01m s	16 Bit	
2004	05	P04-05	NotchFilter1_Freq	Operatio n setting	Valid immediatel Y	300	250 to 5000	Hz	16 Bit	
2004	06	P04-06	NotchFilter1_Dee p	Operatio n setting	valid immediatel Y	100	0 to 100	-	16 Bit	
2004	07	P04-07	NotchFilter1_Band	Operatio n setting	Valid immediatel Y	4	0 to 12	-	16 Bit	
2004	08	P04-08	NotchFilter2_Freq	Operatio	Valid	500	250 to	Hz	16	

				n setting	immediatel		5000		Bit	
					у					
			NotchFilter2 Dee	Operatio	Valid				16	
2004	09	P04-09	notern interz_bee	n setting	immediatel	100	0 to 100	-	Bit	
			۲		У				5.0	
				Oporatio	Valid				16	
2004	0A	P04-10	NorthFilter2_Band	n cotting	immediatel	4	0 to 12	-	10 Dit	
				ii setting	у				DIL	

Group 2005

Object	t dictionary (Hex)	Function code	Name	Setting	Valid time	Default	Range	Unit	Data	Page
Index	Sub-index	(Dec)		method					cype	maniber
2005	10	P05-16	RotateSpdDtTh	Operation	Valid	20	0~1000	rnm	16	
2005	10	F05-10	RotateSpubtin	setting	immediately	20	0 1000	ipin	Bit	
2005	12	P05-19	SpdZeroOutTh	Operation	Valid	10	0~6000	rom	16	
2005	15	F03-19	Spuzerooutin	setting	immediately	10	0 0000	ipin	Bit	

Object	t dictionary (Hex)	Function code	Name	Setting	Valid time	Default	Range	Unit	Data	Page
Index	Sub-index	(Dec)		methou					type	number
2006	02	P06-02	Di1FunSel	Operation	Power-on	0	0~32	-	16	
	_			setting	again	_			Bit	
2006	03	P06-03	Di1LogSel	Operation	Valid	0	0 to 1	_	16	
2000	05	100 05	Diregsei	setting	immediately	Ŭ	0101		Bit	
2006	04	P06.04	Di1SrcSol	Operation	Valid	0	0 to 1		16	
2000	04	F00-04	DISICSEL	setting	immediately	0	0101	-	Bit	
2006	05		Di2EupSol	Operation	Power-on	2	0~22		16	
2000	05	P00-05	Dizrunsei	setting	again	2	0 52	-	Bit	
2006	06			Operation	Valid	0	0 to 1		16	
2006	06	P00-00	Diztogsei	setting	immediately	0	0 10 1	-	Bit	
2006	07	P06.07	Di2SrcSol	Operation	Valid	0	0 to 1		16	
2000	07	F00-07	Dizsicsei	setting	immediately	0	0101	-	Bit	
2006	0.9	DOC 08	Di2EunSol	Operation	Power-on	2	0~22		16	
2006	08	P00-08	Disfunsei	setting	again	5	0 32	-	Bit	
2006	00			Operation	Valid	0	0 to 1		16	
2000	09	P00-09	DISLOgSei	setting	immediately	0	0 10 1	-	Bit	
2006	0.0	P06 10	Di2SrcSol	Operation	Valid	0	0 to 1		16	
2006	UA	P00-10	DISSICSEI	setting	immediately	U	0 10 1	-	Bit	
2006	OB	P06-11	Di4FunSel	Operation	Power-on	4	0~32	-	16	

_										
				setting	again				Bit	
2006	00	DOC 12	Di4LogCol	Operation	Valid	0	0 to 1		16	
2006	UC	P00-12	DI4L0gSei	setting	immediately	U	0101	-	Bit	
2006	00	DOC 12	Di46ra6al	Operation	Valid	0	0 to 1		16	
2006	UD	P00-13	DI4SICSEI	setting	immediately	U	0 10 1	-	Bit	
2006	05	DOC 14	Diffuncal	Operation	Power-on	0	0~22		16	
2006	UE	P00-14	Disfunsei	setting	again	U	0 32	-	Bit	
2006	05	DOC 15		Operation	Valid	0	0 to 1		16	
2006	UF	P00-15	DISLOgSei	setting	immediately	U	0 10 1	-	Bit	
2000	10	DOC 10	Differencel	Operation	Valid	0	0 + 1		16	
2006	10	P06-16	DISSICSEI	setting	immediately	U	0 to 1	-	Bit	
2006	11	DOC 17	Diffuncal	Operation	Power-on	0	0~22		16	
2006	11	P00-17	Dibruitsei	setting	again	U	0 32	-	Bit	
2000	12	DOC 10		Operation	Valid	0	0 + 1		16	
2006	12	P06-18	Diblogsei	setting	immediately	U	0 to 1	-	Bit	
2000	12	DOC 10	Diccuscal	Operation	Valid	0	0 + 1		16	
2006	13	P06-19	DIBSTCSEI	setting	immediately	U	0 to 1	-	Bit	
2000	1.0	DOC 3C		Operation	Valid	122	128 ~		16	
2006	IA	200-20	Dotrunsel	setting	immediately	132	148	-	Bit	

	Chapter 11 Appendix										
2006	10	DOC 27	Delleged	Operation	Valid	0	0 to 1		16		
2006	IB	PU0-27	DOILOgSei	setting	immediately	0	0101	-	Bit		
2006	10	DOC 20	DolEunSol	Operation	Valid	120	128~		16		
2000	ю	PU0-20	Dozrunsei	setting	immediately	150	148	-	Bit		
2006	10	DOG 20	Do2LogSol	Operation	Valid	0	0 to 1		16		
2000	ID	F00-29	DOZLOBJEI	setting	immediately	0	0101	-	Bit		
2006	15	DOC 20	Do2EunSol	Operation	Valid	120	128~		16		
2006	TC	P00-30	DosFunsei	setting	immediately	129	148	-	Bit		
2006	15	DOC 21		Operation	Valid	0	0 to 1		16		
2006	ΤL	PU0-31	DOSLOgSei	setting	immediately	0	0.01	-	Bit		

Group 200A

Object	t dictionary (Hex)	Functio	Name	Setting	Valid time	Defaul	Panga	Uni	Dat	Page
Inde x	Sub-inde x	(Dec)	Name	method	vanu time	t	Nalige	t	a type	r
200A	01	P10-01	SpdRefJOG	Operatio n setting	Valid immediatel y	100	0~300 0	rpm	16 Bit	
200A	02	P10-02	RstFuncFac	Shutdow n setting	Valid immediatel y	0	0 to 1	-	16 Bit	
200A	03	P10-03	ServoErrClear	Operatio n setting	Valid immediatel y	0	0 to 1	-	16 Bit	
200A	04	P10-04	MotOLProtect_Coe f	Operatio n setting	Valid immediatel y	100	0 to 800	%	16 Bit	
200A	06	P10-06	AbsEncRst	Shutdow n setting	Valid immediatel y	0	0 to 1	-	16 Bit	

Group 200D

Object Index	: dictionary (Hex) Sub-index	Function code (Dec)	Name	Setting method	Valid time	Default	Range	Unit	Data type	Page number
200D	01	P13-01	CommVdi_1	Operation	Valid	0	0 to 1	-	16	
				setting	immediately				Bit	L
2000	02	D12 02	Comm\/di 2	Operation	Valid	0	0 to 1		16	
2000	02	F13-02	commu_z	setting	immediately	0	0101	-	Bit	l
200D	03	P13-03	CommVdi_3	Operation	Valid	0	0 to 1	-	16	

				setting	immediately				Bit	
2005	04	D12 04	CommVdi 4	Operation	Valid	0	0 to 1		16	
2000	04 115-04	P13-04	Commval_4	setting	immediately	0	0 10 1	-	Bit	
2005	200D 05 P13-05	D12.05	Comm\/di E	Operation	Valid	0	0 to 1		16	
2000		P13-05	Commval_5	setting	immediately	0	0 10 1	-	Bit	
2005	200D 06	P13-06		Operation	Valid	0	0 to 1		16	
2000		P13-06	commun_0	setting	immediately				Bit	
2000	OP	D12 11	CommVdo_1	Operation	Valid	0	0 to 1		16	
2000	UB	P15-11		setting	immediately			-	Bit	
2000	00	D12 12	Comm\/do_2	Operation	Valid	0	0 to 1		16	
2000	UC	P15-12	Commvdo_2	setting	immediately	0	0 10 1	-	Bit	
2000	00	P13-13	CommVdo_3	Operation	Valid	0	0 to 1		16	
2000	2000 00			setting	immediately			-	Bit	

DI/DO channel function definition

		DI channel function	definition	
Channel function code	Name	Function name	Description	Remark
0	-	OFF (not used)	-	-
1	S-ON	Servo enabled	Invalid: Servo motor enabled function prohibited; Valid: Servo motor power-on enabled.	-
2	A-CLR	Fault and warning cleared	Invalid: Do not reset faults or warnings Valid: Reset fault or warning.	-
3	РОТ	Forward drive prohibited	Invalid: Forward drive allowed; Valid: Forward drive prohibited.	-
4	NOT	Reverse drive prohibited	Invalid: Reverse drive allowed; Valid: Reverse drive prohibited.	-
6	CL	Clear deviation counter	Invalid: The position deviation is not cleared; Valid: Position deviation is cleared.	-
8	E-STOP	Emergency stop	Invalid: Position lock after zero speed stop; Valid: Do not affect the current running state.	-
26	HOMEORG	Origin signal	Invalid: Do not affect the current operation of servo motor Valid:Servo motor implements origin regression mode.	-

		DO chan	nel function definition	
Channel	Namo	Eurotion name	Description	Bomark
function code	Name	Function name	Description	Remark
128	-	OFF (not used)	-	-
129	RDY	Servo ready	Servo is ready, and could receive S-ON signal. Invalid: Servo is not ready Valid: Servo is ready	-
130	ALM	Fault signal	Valid when the fault is detected	-
131	WARN	Warning signal	Valid when warning signals are output	-
132	TGON	Rotation detection	When the absolute value of servo motor speed is higher than 2005-10 set value: Invalid: The motor rotation detection signal is invalid Valid: The motor rotation detection signal is valid	-
133 ZSP Zero speed signal Invalia Valid:		The signal output by the servo motor when it stops: Invalid: Motor zero speed signal is invalid Valid: Motor zero speed signal is valid	-	

In the position control mode, the absolute value of the position deviation meets the Positioning 134 P-COIN setting conditions of the object dictionary completed 6067h and 6068h, indicating that the servo positioning is completed. 137 V-NEAR Speed approach _ Invalid: The absolute value of torque command is less than the set value Torque arrival 138 T-COIN Valid: The absolute value of torque command reaches the set value The confirmation signal of torque limit. 139 T-LIMIT Torque limit Invalid: Motor torque is not limited Valid: Motor torque is limited The confirmation signal of speed limit in torque mode. 140 **V-LIMIT** Speed limited Invalid: Motor speed is not limited Valid: Motor speed is limited To use this DO Outputting this signal indicates that the function, you 141 **BRK-OFF** Brake output brake of the servo motor is released. need to power it on again Servo start state Invalid: servo drive is in non-running mode 142 SRV-ST _ Output Valid: servo drive in running mode Communication COM_VDO1 145 Use communication VDO VDO1 output Communication 146 COM_VDO2 Use communication VDO VDO2 output Communication 147 COM_VDO3 Use communication VDO VDO3 output

Group 201E

Object (dictionary Hex)	Monitoring Quantity	Monitoring name	Category	Unit	Data type	Page
Index	Sub-index	(Dec)					number
201E	01	U0-01	SrvStatus	Universal	-	16 Bit	
201E	02	U0-02	SpeedDis	Universal	rpm	16 Bit	
201E	03	U0-03	SpdCmd	Universal	rpm	16 Bit	
201E	04	U0-04	PosCmdToSpd	Universal	rpm	16 Bit	
201E	05	U0-05	PulsErr	Universal	Equivalent pulse unit	32 Bit	
201E	09	U0-09	PulsTotal	Universal	Instruction unit	32 Bit	
201E	0D	U0-13	EncTotal_LowWord (Low 32 bits)	EncTotal_LowWord (Low 32 bits) Universal Encoder		32 Bit	
201E	OF	U0-15	EncTotal_HighWord (High 32 bits)	Universal	Encoder unit	32 Bit	
201E	11	U0-17	DiData1	Universal	-	16 Bit	
201E	13	U0-19	DoData1	Universal	-	16 Bit	
201E	14	U0-20	InerRatioReal	Universal	%	16 Bit	
201E	17	U0-23	DisVibFreq	Universal	Hz	16 Bit	
201E	18	U0-24	DisVibMag	Universal	rpm	16 Bit	
201E	19	U0-25	PToqLimitDis	Universal	%	16 Bit	
201E	1A	U0-26	NToqLimitDis	Universal	%	16 Bit	
201E	1B	U0-27	PSpdLimitDis	Universal	rpm	16 Bit	
201E	1C	U0-28	NSpdLimitDis	Universal	rpm	16 Bit	
201E	1D	U0-29	MachineAngle	Universal	٥	16 Bit	
201E	1E	U0-30	ElecAngle	Universal	٥	16 Bit	
201E	1F	U0-31	DcBusVoltDisp	Universal	V	16 Bit	
201E	20	U0-32	Temperature_IPM	Universal	°C	16 Bit	
201E	21	U0-33	OutputPowerInst	Universal	W	16 Bit	
201E	22	U0-34	OutputPowerAverage	Universal	W	16 Bit	
201E	23	U0-35	HourTotalRun	Universal	h	16 Bit	

201E	25	U0-37	MinTotalRun	Universal	min	16 Bit	
201E	26	U0-38	SecTotalRun	Universal	S	16 Bit	
201E	27	U0-39	ToqOutRate	Universal	%	16 Bit	
201E	28	U0-40	HourCurrentRun	Universal	h	16 Bit	
201E	2A	U0-42	MinCurrentRun	Universal	min	16 Bit	
201E	2B	U0-43	SecCurrentRun	Universal	S	16 Bit	
201E	2C	U0-44	DisPwrInst	Universal	w	16 Bit	
201E	2E	U0-46	DisPwrAvg	Universal	w	16 Bit	
201E	30	U0-48	PwrUpCount	Universal	Times	16 Bit	
201E	32	U0-50	MotoTotal_LowWord (lower 32 bits)	Universal	Circle	32 Bit	
201E	33	U0-51	MotoTotal_HighWord (high 32 bits)	Universal	Circle	32 Bit	
201E	35	U0-53	MotoModel	Universal	-	16 Bit	
201E	36	U0-54	AbsEncIn1Cycle	Universal	Encoder unit	32 Bit	
201E	37	U0-55	AbsEncMultiTurn	Universal	Circle	32 Bit	
201E	38	U0-56	EncTotal_CmdUnit	Universal	Instruction unit	32 Bit	

Group 201F

Object (I	dictionary Hex)	Monitoring Quantity	Monitoring name	Category	Unit	Data type	Page
Index	Sub-index	(Dec)					number
201F	01	U1-01	NowErrorCode	Warning	-	16 Bit	
201F	02	U1-02	NowWarmCode	Warning	-	16 Bit	
201F	03	U1-03	luWarmOccur	Warning	А	16 Bit	
201F	04	U1-04	lvWarmOccur	Warning	А	16 Bit	
201F	05	U1-05	UdcWarmOccur	Warning	V	16 Bit	
201F	06	U1-06	T_IPMWarmOccur	T_IPMWarmOccur Warning °C		16 Bit	
201F	07	U1-07	lqWarmOccur	IqWarmOccur Warning		16 Bit	
201F	08	U1-08	IdWarmOccur	Warning	%	16 Bit	
201F	09	U1-09	PosErrWarmOccur	Warning	Encoder Units	32 Bit	
201F	0A	U1-10	SpdWarmOccur	Warning	rpm	16 Bit	
201F	OB	U1-11	Time1WarmOccur	Warning	S	16 Bit	
201F	0C	U1-12	ErrCntCurRun	Warning	-	16 Bit	
201F	0D	U1-13	WarmCntCurRun	Warning	-	16 Bit	
201F	OE	U1-14	ErrorTotalCnt	Warning	-	16 Bit	
201F	OF	U1-15	WarmTotalCnt	Warning	-	16 Bit	
201F	10	U1-16	ErrCodeLast1st	Warning	-	16 Bit	
201F	11	U1-17	ErrCodeLast2nd	Warning	-	16 Bit	
201F	12	U1-18	ErrCodeLast3rd	Warning	-	16 Bit	
201F	13	U1-19	ErrCodeLast4th	Warning	-	16 Bit	
201F	14	U1-20	ErrCodeLast5th	Warning	-	16 Bit	

201F	15	U1-21	WarmCodeLast1st	Warning	-	16 Bit	
201F	16	U1-22	WarmCodeLast2nd	Warning	-	16 Bit	
201F	17	U1-23	WarmCodeLast3rd	Warning	-	16 Bit	
201F	18	U1-24	WarmCodeLast4th	Warning	-	16 Bit	
201F	19	U1-25	WarmCodeLast5th	Warning	-	16 Bit	

Object (I	dictionary Hex)	Monitoring Quantity	Monitoring name	Category	Unit	Data type	Page
Index	Sub-index	(Dec)					number
2020	01	U2-01	ProductSer	Device	-	16 Bit	
2020	02	U2-02	Model1	Device	-	16 Bit	
2020	03	U2-03	Model2	Device	-	16 Bit	
2020	04	U2-04	FirewareVer	Device	-	16 Bit	
2020	05	U2-05	HardwareVer	Device	-	16 Bit	
2020	06	U2-06	ExFactoryYear	Device	Year	16 Bit	
2020	07	U2-07	ExFactoryMonth	Device	Month	16 Bit	
2020	08	U2-08	ExFactoryDay	Device	Day	16 Bit	
2020	09	U2-09	DeviceSerNum1	Device	-	16 Bit	
2020	0A	U2-10	DeviceSerNum2	Device	-	16 Bit	
2020	OB	U2-11	DeviceSerNum3	Device	-	16 Bit	
2020	0C	U2-12	DeviceSerNum4	Device	-	16 Bit	
2020	0D	U2-13	DeviceSerNum5	Device	-	16 Bit	
2020	0E	U2-14	DeviceSerNum6	Device	-	16 Bit	
2020	OF	U2-15	DeviceSerNum7	Device	-	16 Bit	

2020	10	U2-16	DeviceSerNum8	Device	-	16 Bit	

Object dictionary (Hex)	Name	Accessibility	Data mapping	Default	Data range	Unit	Data type	Page number
603F	Error code	RO	TPDO	0	0~65535	-	16 Bit	142
6040	Control word	RW	TPDO	0	0~65535	-	16 Bit	142
6041	Status word	RO	TPDO	0	0~65535	-	16 Bit	143
605A	Quick-stop option code	RW	No	2	0 to 7	-	16 Bit	143
605D	Halt option code	RW	No	1	1 to 3	-	16 Bit	143
6060	Modes of servo operation	RW	RPDO	0	0~10	-	8 bit	144
6061	Modes operation	RO	TPDO	0	0~10	-	8 bit	144
6062	Position demand value	RO	TPDO	0	-	Instruction unit	32 Bit	144
6063	Position actual value	RO	TPDO	0	-	Encoder Units	32 Bit	144
6064	Position actual value	RO	TPDO	0	-	Instruction unit	32 Bit	144
6065	Following error window	RW	RPDO	524288	1 to (2 ³² -1)	Instruction unit	32 Bit	145
6067	Position window	RW	RPDO	0	0 to 2 ³²	Encoder Units	32 Bit	145
6068	Position window time	RW	RPDO	0	0~65535	1ms	16 Bit	145
606C	Velocity actual value	RW	TPDO	0	-	Instruction unit/s	32 Bit	145
606D	Velocity window	RW	RPDO	10	0~65535	rpm	16 Bit	145
606E	Velocity window time	RW	RPDO	0	0~65535	ms	16 Bit	145
6071	Target torque	RW	RPDO	0	-5000~5000	0.1%	16 Bit	145
6072	Max torque	RW	RPDO	5000	0~5000	0.1%	16 Bit	145
6074	Torque demand	RO	TPDO	0	-5000~5000	0.1%	16 Bit	146

6077	Torque actual value	RO	TPDO	0	-5000~5000	0.1%	16 Bit	146
607A	Target position	RW	RPDO	0	-2 ³¹ to (2 ³¹ -1)	Instruction unit	32 Bit	146
607C	Home offset	RW	RPDO	0	-2 ³¹ to (2 ³¹ -1)	Instruction unit	32 Bit	146
607D: 01	Min position limit	RW	RPDO	-2 ³¹	-2 ³¹ to (2 ³¹ -1)	User position unit	32 Bit	146

607D: 02	Max position limit	RW	RPDO	-2 ³¹ -1	-2 ³¹ to (2 ³¹ -1)	User position unit	32 Bit	146
607E	Command polarity	RW	RPDO	0	0~255	-	8 bit	147
607F	Max profile velocity	RW	RPDO		0 to (2 ³² -1)	Instruction unit/s	32 Bit	147
6081	Profile velocity	RW	RPDO	0	0 to (2 ³² -1)	User position speed unit	32 Bit	147
6083	Profile acceleration	RW	RPDO	100	0 to (2 ³² -1)	Instruction unit/s ²	32 Bit	147
6084	Profile deceleration	RW	RPDO	100	100 0 to (2 ³² -1)		32 Bit	147
6085	Quick stop deceleration	RW	RPDO	RPDO 100 0 to (2 ³² -1)		User acceleration unit	32 Bit	148
6086	Motion profile type	RW	RPDO	0	-2 ¹⁵ to (2 ¹⁵ -1)	-	16 Bit	148
6087	Torque slope	RW	RPDO	2 ³² -1	0 to (2 ³² -1)	0.1%/s	32 Bit	148
6091:01	Gear ratio	RW	RPDO	1	1 to (2 ³² -1)	-	32 Bit	148
6091:02	Motor revolutions	RW	RPDO	1	1 to (2 ³² -1)	-	32 Bit	148
6098	Homing method	RW	RPDO	1	1 to 35	-	8 bit	149
6099: 01	Speed during search for switch	RW	RPDO	100	0 to (2 ³² -1)	Instruction unit/s	32 Bit	149
6099: 02	Speed during search for zero	RW	RPDO	100	0 to (2 ³² -1)	Instruction unit/s	32 Bit	149
609A	Home acceleration	RW	RPDO	100	0 to (2 ³² -1)	Instruction unit/s ²	32 Bit	149
60B0	Position offset	RW	RPDO	0	-2 ³¹ to (2 ³¹ -1)	Instruction unit	32 Bit	149
60B1	Velocity offset	RW	RPDO	0	-2 ³¹ to (2 ³¹ -1)	Instruction unit/s	32 Bit	150
60B2	Torque offset	RW	RPDO	0	-5000~5000	0.1%	16 Bit	150
60B8	Touch probe function	RW	RPDO	0	0~65535	-	16 Bit	150
60B9	Touch probe status	RO	TPDO	0	0~65535	-	16 Bit	150
60BA	Touch probe Pos1 Pos Value	RO	TPDO	0	-2 ³¹ to (2 ³¹ -1)	Instruction unit	32 Bit	150
60BB	B Touch Probe Pos1 Neg Value		TPDO	0	-2 ³¹ to (2 ³¹ -1)	Instruction unit	32 Bit	150

Chapter	11	Appendix
---------	----	----------

60BC	Touch Probe Pos2 Pos Value	RO	TPDO	0	-2 ³¹ to (2 ³¹ -1)	Instruction unit	32 Bit	150
60BD	60BD Touch Probe Pos2 Neg Value		TPDO	0	-2 ³¹ to (2 ³¹ -1)	Instruction unit	32 Bit	150
60E0	Forward Direction Torque Limit Value		RPDO	5000	0~5000	0.1%	16 Bit	150
60E1	Reverse Direction Torque Limit Value	RW	RPDO	5000	0~5000	0.1%	16 Bit	151
60F4	Following error actual value	RO	RPDO	-	-	Instruction unit	32 Bit	151
60FC	Position demand value	RO	TPDO	-	-	Encoder Units	32 Bit	151
60FD	Digital Input	RO	PDO	-	0 to 2 ³²	-	32 Bit	151
60FF	Profile velocity	RW	RPDO	0	-	Instruction unit/s	32 Bit	151

11.2 List of Fault and Warning Codes

Clearable: the panel can stop the fault display state by giving a "clear signal".

Stop immediately: The control action state stops immediately.

Code	Content	Cleanable	Immediately Stop	Code	Content	Cleanable	Immediately Stop
Er.01	Parameter damage		0	Er.34	Motor overload protection	~	0
Er.02	Parameter storage error		0	Er.35	Electronic gear ratio exceeds limit	~	0
Er.03	ADC reference source error		0	Er.36	Position deviation is too large	~	0
Er.04	AD current sampling conversion error		0	Er.37	Abnormal torque saturation	~	0
Er.05	Abnormal FPGA communication		0	Er.38	Main circuit electrical phase loss	~	0
Er.06	Wrong FPGA program version		0	Er.39	Emergency stop	~	0
Er.07	Clock exception		0	Er.40	Encoder battery failure	~	0
Er.09	Abnormal network status switching	~	0	Er.41	Motor (encoder) over temperature	~	0
Er.10	Loss of synchronization	~	0	Er.42	Encoder write failure	~	0
Er.11	Unburned XML configuration file	~	0	Er.44	Back to original timeout fault	~	0
Er.12	Network initialization failed	~	0	Er.60	ADC conversion is not completed		0
Er.13	Synchronization period setting error	~	0	Er.61	Internal software fault		0
Er.14	Synchronization period error is too large	~		Er.62	Internal software fault		0
Er.20	Overcurrent		0	Er.63	Internal software fault		0
Er.21	Main power supply is undervoltage	~	0	Er.64	Internal software fault		0

Er.22	Main power supply is overvoltage	~	0	Er.65	Internal software fault		0
Er.23	Braking resistor is not connected	v	0	A-81	Over speed alarm	7	
Er.24	The braking resistor is turned on abnormally		0	A-82	Overload	7	
Er.25	Wrong motor model	~	0	A-83	Braking resistor is over temperature or overload	5	
Er.26	Wrong motor model		0	A-84	Parameter modification that needs to be powered on again	~	
Er.27	Encoder is disconnected	~	0	A-88	Main circuit instantaneous power failure	7	
Er.28	Encoder Z pulse is lost		0	A-89	Duplicate DI port configuration	~	
Er.30	Encoder UVW signal error		0	A-90	Duplicate DO port configuration	>	
Er.31	Power line disconnection	v	0	A-91	Parameter modification is too frequent	5	
Er.32	Exceeding motor maximum speed		0	A-92	Encoder battery voltage low warning	>	
Er.33	Power module is over temperature	v	0	A-93	Encoder read and write check is abnormal and frequency is too high	V	

11.3 Wire

Wire type	Cable length L	Appearance drawing of cable
P-Z3O1-R4M-3MX4	3 meters	
P-Z3O1-R4M-5MX4	5 meters	
P-Z3O1-R4M-10MX4	10 meters	Suitable for [VD3E type A drive], which can connect [60/80 flange conductor motor]
P-U3O1-R4M-3MX4	3 meters	
P-U3O1-R4M-5MX4	5 meters	
P-U3O1-R4M-10MX4	10 meters	Suitable for [VD3E type B drive], which can connect [80 flange conductor motor]
P-Z3O1-H28J4M-3MX4	3 meters	L 4
P-Z3O1-H28J4M-5MX4	5 meters	
P-Z3O1-H28J4M-10MX 4	10 meters	Suitable for [VD3E type A drive], which can connect [110/130 flange conductor motor]
P-U3O1-H28J4M-3MX4	3 meters	
P-U3O1-H28J4M-5MX4	5 meters	
P-U3O1-H28J4M-10MX 4	10 meters	Suitable for [VD3E type B drive], which can connect [110/130 flange conductor motor]
	3	
---------------------	-------	---
P-Z3O1-MC4S-3MX4	meter	
	S	
	5	
P-Z3O1-MC4S-5MX4	meter	
	S	
	10	
P-Z3O1-MC4S-10MX4	meter	Suitable for [VD3E type A drive], which can connect [60/80 flange conductor
	S	motor]
	3	
E-J1394-R9M-3MX5-A	meter	L
	S	
	5	
E-J1394-R9M-5MX5-A	meter	
	S	
E-J1394-R9M-10MX5-A	10	Suitable for [VD3E series drive], which can connect [60/80 flange conductor motor
	meter	(single-turn encoder)]
	S	

Wire type	Cable length L	Appearance drawing of cable	
E-J1394-R9M-3MX7-A1	3 meters		
E-J1394-R9M-5MX7-A1	5 meters		
E-J1394-R9M-10MX7-A 1	10 meters	Suitable for [VD3E series drive], which can connect [60/80 flange conductor motor (multi-turn encoder)]	
E-J1394-MC7S-3M X5-A	3 meters		
E-J1394-MC7S-5M X5-A	5 meters		
E-J1394-MC7S-10 MX5-A	10 meters	Suitable for [VD3E series drive], which can connect [60/80 flange connector motor (single-turn encoder)]	
E-J1394-MC7S-3M X7-A1	3 meters		
E-J1394-MC7S-5M X7-A1 E-J1394-MC7S-10 MX7-A1	5 meters		
	10 meters		

		Suitable for [VD3E series drive], which can connect [60/80 flange connector	
		motor (multi-turn encoder)]	
E-J1394-H28K7M-3	2 motors	۱ <u>ــــــــــــــــــــــــــــــــــــ</u>	
MX5-A	3 meters		
E-J1394-H28K7M-5	E recetore		
MX5-A	5 meters		
E-J1394-H28K7M-1			
0MX5-A	10 meters	Suitable for [VD3E series drive], which can connect [110/130 flange motor	
		(single-turn encoder)]	
E-J1394-H28K7M-3	2		
MX7-A1	3 meters		
E-J1394-H28K7M-5	E recetore		
MX7-A1	5 meters		
E-J1394-H28K7W-1	10 meters		
UMX7-A1		Suitable for [VD3E series drive], which can connect [110/130 flange motor (multi-turn encoder)]	

11.4 Correspondence of International Standards

The products meet the requirements of EMC standards:

Certification information

Certification name	Certification symbol	Instruction Name		Standards	
CE certification		EMC Directive	2014/30/EU	Servo drive Servo motor	EN 61800-3 C2

The VD3E series drives comply with European EMC Directive 2014/30/EU and meet the requirements of EN 61800-3 C2 under the following conditions.

The recommended external EMC filter should be installed at the input terminal of the drive, and the shielded wire should be selected at the output terminal. Ensure the reliable grounding of the filter and 360° overlapping grounding of output line shielding. For the selection of EMC filters, check "11.4.1 Hardware Requirements (1) EMC Filter Recommendations" below Table 11-3 Recommended Manufacturers and Models of EMC Input Filters"";

The input terminal needs to be equipped with AC inductors that meet the requirements;

Shielded cable shall be used for driving cable between drive and motor. Please refer to below for cable selection and installation: "11.4.1 Hardware Requirements" (3) Cable requirements and wiring ";

Install the drive and wiring according to the recommended cable wiring method as below: "11.4.1 Hardware Requirements" 【 (3) Cable requirements and wiring】";

Install a common mode filter if necessary.

11.4.1 Hardware requirements

(1) EMC filter recommendation

Recommended model: SCHAFFNER models are recommended as shown in the following table:

Series	Drive model	Rated input current	Filter model
Series	Brive model	IN	SCHAFFNER
VD3E-0xxSA1G			
Single-phase 220V	VD3E-003SA1G	0.9	FN 2090-1-06
	VD3E-010SA1G	3.6	FN 2090-4-06
	VD3E-014SA1G	6.7	FN 2090-8-06
	VD3E-016SA1G	13.4	FN 2090-16-06
	VD3E-021SA1G	20	FN 2090-20-06
Three-phase	VD3E-016SA1G	7.7	FN 3258-16-44
	VD3E-021SA1G	11.9	FN 3258-16-44
2201	VD3E-030SA1G	13.4	FN 3258-16-44
VD3E-0xxTA1G			
Three-phase 380V	VD3E-021TA1G	8.6	FN 3258-16-44

Table 11-1 Recommended manufacturers and models of EMC input filters

Applicable to European EMC directives.

Servo drivers and motors cannot be used in ordinary families or connected to low-voltage public communication circuits. The drive may send radio frequency if the similar loops above is connected.

For its application to EMC directives, please use noise filters and surge absorbers and ferrite magnetic rings. As for the EMC Directive's applies on machinery and equipment, and the final mechanical equipment for assembling drives and motors must be confirmed.

(2) Requirements for AC input inductors

The AC input inductor is mainly used to reduce the filtering in the input current. As an optional accessory, it should be external connect when the application environment has high harmonic requirements.

(3) Cable requirements and wiring

① Cable requirements

In order to meet the EMC requirements of CE marking, shielding lines with shielding layer must be used. Shielding line has three phase conductors and four phase conductors. If the conductivity of the shielding line layer cannot meet the requirements, a separate PE wire needs to be added. Or shielding line with four phase conductors, one of which is PE wire. In order to effectively suppress the emission and conduction of radio frequency interference, the shielding layer of shielding wire is composed of coaxial copper braided tape. In order to increase shielding effectiveness and electrical conductivity, the braiding density of shielding layer should be greater than 90%.

② Wiring requirements

Motor cables and their PE shielded wire (twister shield) should be as short as possible to reduce electromagnetic radiation and stray current and capacitive current outside the cable. If the length of motor cable exceeds 100m, it is required to install output filter or dv/dt inductor. It is recommended that all control cables should be shielding lines. Motor cable wiring must be far away from other cable wiring. Motor cables of several drives can be wired side by side. It is recommended to put the motor cable, input power cables and control cables respectively distributed in different troughs. In order to avoid electromagnetic interference caused by rapid changes in the output voltage of the drive, long-distance side-by-side routing of motor cables and other cables should be avoided.

When the control cable must pass through the power cable, ensure that the included angle between the two cables is kept at 90 degrees as much as possible. Do not put other cables through the drive. The power input and output lines of the driver and weak current signal lines (such as control lines) should not be arranged in parallel as far as possible, but vertically when conditions permit. Cable troughs must be well connected and well grounded. Aluminum trough can be used to improve equipotential. Filters, drives and motors should be well overlapped with the system (machinery or device), and spraying protection should be done in the installation part, and conductive metals should be fully contacted.

(4) Leakage current suppression

Because the output of the driver is a high-speed pulse voltage, high-frequency leakage current will be generated. Drive equipment will generate DC leakage current in protective conductor, and B-type (delay type) leakage protection circuit breaker must be used. If it's necessary to install multiple drives, each driver shall be provided with a leakage protection circuit breaker.

11.4.2 Recommendations for common EMC issues

Driver products belong to strong interference equipment. When there are problems in wiring and grounding during use, interference may still occur. When interference with other equipment occurs, the following methods can be adopted for rectification.

Interference states	Rectification method	
	Reduce the carrier frequency without affecting the performance;	
	Reduce the length of driving line;	
	Add a magnet ring to the input drive;	
	◆ If the power-on trips instantly, it is necessary to disconnect the large	
Switch trip of leakage	ground current at the input terminal; (Disconnect the ground of the	
protection circuit breaker	external or internal filter and the ground terminal of the input port to the	
	ground y capacitor)	
	In case of running or enabling trip, leakage current suppression	
	measures should be installed at the input terminal. (Leakage current filter,	
	safety capacitor and magnet ring, magnet ring)	
	The motor shell is connected to the PE end of the driver;	
Interference coursed by driver	The PE terminal of the drive is connected to the power grid PE;	
	Add a magnet ring to input power;	
running	Power supply or magnet ring is added to the interfered signal port;	
	Add additional common ground connection between devices.	
	◆Connect the motor shell to the PE end of the driver;	
	Connect the PE terminal of the drive to the power grid PE;	
	Add a magnet ring to input power line;	
	Add matching resistors to the communication line source and load	
	terminal;	
Communication interference	Differential line of communication line adds external communication	
	common ground line;	
	Shielded wires for communication lines, and the shielding layer is	
	connected to the communication common place;	
	Multi-node communication wiring needs daisy chain, and the length of	
	branch line is less than 30cm.	
	◆Low-speed DI increases capacitance filtering, and the maximum value is	
I/O interforence	recommended to 0.1 uF;	
i/O interference	◆Al increases capacitance filtering, and the recommended maximum	
	value is 0.22 uF.	

Table 11-2 Common EMC interference problems and rectification methods

Notice		
This series of products should strictly comply with EMC-related electrical installation requirements in the		
manual to meet EMC certification standards;		
♦ When the CE marking is attached to the equipment or device with this series of products, please confirm		
whether the final equipment or device meets the European unified standard, and the relevant		

responsibility shall be borne by the customer of the final assembled product;

◆ For more product certification information, please consult our agent or sales person in charge.