

Wecon VD2 Series Servo Drive Manual (Full V2.4)

Website: <u>http://www.we-con.com.cn/en</u> Phone: +86-0591-8786886 Date: June 25, 2023

Preface

This manual is applicable to Wecon VD2 Series absolute value servo drives (VD2 SA series). In order to use this series of servo drives correctly, please read this manual carefully in advance and save it for later use.

During use, if you have any doubts about the function and performance of this equipment, please contact our technicians for relevant assistance to use this equipment smoothly.

The company's products are constantly being improved and upgraded, and the contents of this manual are subject to change without notice.

This manual is suitable for introductory and use reference books for elementary and intermediate readers. At the same time, all interpretation rights of this manual belong to our company.

The danger caused by failure to operate as required may result in serious injuries or even death.

The danger caused by failure to operate as required may result in moderate or minor injuries, and equipment damage.

User manual version history

Date	Version	Changes	Applicable models and firmware versions
2021.12	A1.0	First release version	VD2-0 SA1G model: V1.10, V1.12 VD2F-0 SA1P model: V1.00
2022.3	A1.1	Chapter 2 Updating the servo driver naming, updating motor model table. Chapter 3 Updating motor dimension drawing and dimension table Chapter 6 Add new section 6.6.4 "Speed Limit in Speed Mode", updating relevant parameter content for firmware upgrade Chapter 11 Add the description of the scope of application of the cable	VD2-0 SA1G model: Add V1.13 VD2F-0 SA1P model: Add V1.01 and V1.02
2022.4	A1.2	Chapter 2 Updating section 2.1 "Servo Drive Specifications" Chapter 4 Updating section 4.1 "Main Circuit Wiring", updating section 4.5 "Communication signal wiring" Chapter 5 Updating section 5.3.3 "Restore Factory Settings" process and instructions Chapter 6 Updating section 6.6 "Absolute value system" Chapter 7 Updating section 7.3 "Gain adjustment" renderings Chapter 8 Updating section 8.2.5 "Communication Example" Chapter 10 Updating section 10.2.2 "Fault and Warning Code Table", 10.2.3 add section 10.3 "Troubleshooting" Chapters 9 and 11 adjust relevant parameters for firmware upgrades	VD2-0 SA1G model: Add V1.14 VD2F-0 SA1P model: V1.01, V1.02 Add VD2-021TA1G model: V1.01
2022.11	V2.0	Chapter 4 Modify section 4.4.1 "VD2A, VD2F pin wiring diagram" Add section 4.4.1 "VD2-0xxSA1H driver DIDO pin distribution". Add section 4.4.2 "VD2-0xxSA1H mode wiring diagram" Add section 4.4.5 "VD2-0xxSA1H DIDO signal" Chapter 7 Updating section 7.3.4 "Model Tracking Control Function" Updating section 7.3.5 "Gain Switching Function" Updating section 7.4.3 "Low Frequency Vibration Suppression Function" Updating section 7.4.4 "Type A Vibration Suppression Function"	VD2-0□□SA1H model: Add V1.17 firmware
2023.06	V2.1	Chapter 6 Updating section 6.17 "Shutdown deceleration time" setting feature. Updating section 6.63 "P10-6 Multi-turn Absolute Encoder Reset" and "P10-8: Multi-turn Absolute Encoder Origin Offset Compensation" Updating section 6.64 "P00-31 Encoder Read and Write Verification Abnormal Threshold Setting" Chapter 10 add "Er.43 Drive Overload Fail" and parameter content. Add "A80 Drive Overload Alarm" Modify "A91 Parameter Modification too Frequent Warning" trigger condition. Add temporary solution for "A93 encoder read and write verification abnormal frequency is too high" Chapters 9 and 11 adjust relevant parameters for new functions such as "Estop shutdown deceleration time"	Add V1.18 firmware
2024.01	V2.2	Update 2.1.1 "Servo Drive Model Naming Rules" Add 2.1.1 "VD2L Drive Appearance and Nameplate" and "VD2C Drive Appearance and Nameplate" Add 2.1.2 "Composition of VD2L Drive" and "Composition of	Update V1.20 firmware Add VD2L series model Add VD2-050TA1G model

	VD2C Drive Appearance"
	Add 2.1.3 "Electrical Specifications for VD2L Drives" and
	"Electrical Specifications for VD2C Drives"
	Add 2.2.2 "Motor (Wire Type) Composition Diagram"
	Chapter 3
	Add 3.1.1 "VD2L Drive Installation Dimension Diagram" and
	"VD2C Drive Installation Dimension Diagram"
	Add 2.1.4 "VD2L Drive Minimum Installation Dimension
	Diagram" and "VD2C Drive Minimum Installation Dimension
	Diagram"
	Didgidiii Add 2.4.4 W/D2L Drive Develled to stallation Diversities Discovery
	Add 3.1.4 "VD2L Drive Parallel Installation Dimension Diagram"
	and "VD2C Drive Parallel Installation Dimension Diagram"
	Chapter 4
	Add 4.1.1 "VD2L Servo Drive Main Circuit Terminal Arrangement
	and VD2C Servo Drive Main Circuit Terminal Arrangement"
	Add 4.1.2 "VD2L drive single-phase 220V main circuit wiring"
	and "VD2C drive single-phase 220V main circuit wiring"
	Add 4.3 "Absolute Encoder Cable Connector (Connector Type)
	Pin-out and Encoder Cable Pin Connection"
	Add 4.4.1 "Pin-out of VD2L servo drive control input and output
	(CN2 interface)"
	Add 4.4.1 "VD2L drive single phase 220V main circuit wiring"
	Add 4.4.2 "VD2L drive position pulse mode wiring"
	Add 4.4.3 "VD2L drive differential method"
	Add 4.4.3 "VD2L drive collector open circuit method"
	Add 4.4.5 "VD2L drive digital input circuit"
	Add 4.4.5 "VD2L drive digital output circuit"
	Add 4.5.1 "VD2L drive VD2L type and PC connection method"
	Chapter 6
	Revise 6.2 "P0-01 Parameter Table 6-11 Control Mode
	Parameter Details"
	Revise 6.2 "Table 6-15 Position Pulse Type Selection Parameter
	Details"
	Bevise 6.2 "Add VD2L P0-14 parameters"
	Add 6.2.6 "VD2L-OxySA1P pulse signal DO output function"
	Revise 6.2.6 "Comments on P6-28, P6-30 and P6-32"
	Revise 6.2.0 Comments on supported models of P5 02 P5 04
	Revise 0.5.1 Comments on supported models of P5-05, P5-04,
	r J-UI dille r J-UZ Revise 6 4 1 "Lineur ported models for D1 07"
	Revise 6.4.1 Unsupported models for P1-07"
	Revise 6.4.1 "Table 6-45 AI_1 related parameter detail "
	Revise 6.4.3 "Comments on P1-14"
	Revise 6.4.3 "Comments on Table 6-52 Mixed Control Mode
	Parameters"
	Revise 6.6.4 "Functions of P0-30"
	Chapter 7
	Revise 7.4.3 "Applicable Models for Related Parameters of Low
	Frequency Vibration Suppression Function"
	Revise 7.4.4 "Applicable models for Related Parameters of Type
	A Vibration Suppression Function"
	Chapter 9
	Revise the function introduction for P0-30, and add the function
	of shielding encoder over temperature function, etc.
	Revise the value range of P10-4 and cancel the shielding
	overload protection function
	Add P10-11 function, enabling function of motor stall over
	temperature protection
	Add a note about the VD2L model not supporting some
	parameters.
1	

		Add U0-49 motor overload internal count	
		Chapter 10	
		Add the function introduction of ER.45 drive stall over	
		temperature protection.	
		Revise ER.27 Not clearable properties;	
		Chapter 6, added section 6.8 "Home Return Mode (HM)";	
		Chapter 9: Revised the content of "P00-04 Function Code";	
	V2.4	Added "Group P01: P01-39; P01-40; P01-41; P01-42; P01-43;	Added VD2 series V1 22 firmware
2024.11		P01-44 ";	Added VD2 series V1.22 Infliware
		Added "U0 Group: U0-59 bus voltage historical maximum and	Added VD2L V1.02 IIIIIware
		U0-60 average power historical maximum;	
		Chapter 10, Section 10.3, added ER.19 Software Overcurrent;	

The following table lists the servo driver models and supported firmware.

	Supported models	Corresponding model	Voltage	Supported firmware
	VD2-010SA1G	VD2 A type		V1.10
	VD2-014SA1G	VD2 A type		V1.12 V1 13
	VD2-016SA1G			V1.13 V1.14
	VD2-019SA1G			V1.15 V1.16
	VD2-021SA1G	VD2 B type		V1.10 V1.17
	VD2-025SA1GF			V1.18 V1 19
	VD2-030SA1G		220V	V1.20
	VD2F-003SA1P			V1.00
	VD2F-010SA1P			V1.01 V1.02
Wecon VD2SA series servo drives manual	VD2F-014SA1P	VD2F		V1.16 V1.17 V1.18 V1.19 V1.20
	VD2L-010SA1P			N/4 00
	VD2L-014SA1P	- VD2L		V1.00
	VD2-021TA1G	VD2 B type	380V	V1.01 V1.17 V1.18 V1.19 V1.20
	VD2-030TA1G			
	VD2-040TA1G VD2-0250TA1G	VD2 C type		V1.20

Contents

1.	Safety	1
	1.1 Safety precautions	1
	1.2 Precautions for storage and transportation	2
	1.3 Precautions during installation	2
	1.4 Precautions during wiring	
	1.5 Precautions during operation	
	1.6 Precautions during maintenance and inspection	4
2.	Product Information	5
	2.1 Servo drives	5
	2.2 Servo motors	15
3.	Installation of servo drive and motor	
	3.1 Installation of servo drive	
	3.2 Installation of servo motor	
4	Wiring	31
	4.1 Main circuit wiring	
	4.2 Power cable connection of servo drive and servo motor	
	4.3 Encoder cable connection of servo drive and servo motor	
	4.4 Servo drive control input and output wiring	
	4.5 Communication signal wiring	67
5	Panel	71
Ј.	5 1 Panel composition	
	5.2 Panel display	
	5.3 Panel operation	
6	Operation	70
0.	6 1 Basic settings	
	6.2 Position control mode	90
	6.3 Speed control mode	
	6.4 Torque control mode	
	6.5 Mixed control mode	
	6.6 Absolute system	127
	6.7 Other functions	133
	6.8 Homing Mode (HM)	137
7.	Adjustments	
	7.1 Overview	179
	7.2 Inertia recognition	
	7.3 Gain adjustment	
	7.4 Mechanical resonance suppression	197
8.	Communication	
	8.1 Modbus communication	
	8.2 Modbus communication protocol analysis	
	8.3 Servo communication parameter setting	206
	8.4 Modbus communication variable address and value	208

9.	Parameters	.210
	Group P00 Basic settings	210
	Group P01 Control parameters	215
	Group P02 Gain adjustment	221
	Group P03 Self-adjusting parameters	227
	Group P04 Vibration suppression	229
	Group P05 Signal input and output	233
	Group P06 DI/DO configuration	237
	Group P07 multi-segment position	240
	Group P10 Accessibility	248
	Group P12 Communication parameters	251
	Group P13 Communication input and output terminal	252
	Group U0 Universal monitoring	255
	Group U1 Warning monitoring	262
	Group U2 Device monitoring	265
10	. Malfunctions	.267
	10.1 Faults and warnings handling at startup	267
	10.2 Faults and warnings handling during operation	271
	10.3 Troubleshooting	275
11	Appendix	299
	11.1 Lists of parameters	299
	11.2 List of fault and warning codes	320
	11.3 Wire	321

1.Safety

1.1 Safety precautions

This section describes the important items that users must observe, such as product confirmation, storage, transportation, installation, wiring, operation, inspection, and disposal. Please follow the steps required by this manual for trial operation.

After the power is turned off for more than 5 minutes and the power indicator is off, use a multimeter to confirm that the voltage across the high-voltage capacitor has dropped to a safe voltage, and then proceed with the disassembly and assembly of the drive, otherwise the residual voltage may cause electric shock.

Selease never touch the inside of the servo drive, otherwise it may cause electric shock.

• Please insulate the connection part of the power terminal, otherwise it may cause electric shock.

The grounding terminal of the servo drive must be grounded, otherwise it may cause electric shock.

• Please install the servo drive, servo motor, and external braking resistor on non-combustible materials, otherwise it may cause a fire.

Se sure to connect an electromagnetic contactor and a non-fuse circuit breaker between the power supply and the main circuit power supply of the servo drive. Otherwise, when the equipment fails, it may cause fire because it cannot cut off the large current.

In the servo drive and servo motor, please do not mix with oil, grease and other flammable foreign objects and screws, metal pieces and other conductive foreign objects, otherwise it may cause a fire.

Note the servo motor is connected to the machine, if an operation error occurs, it will not only cause damage to the machine, but also sometimes cause personal safety accidents.

• Do not damage or pull the cable forcefully, do not subject the cable to excessive force, or place heavy objects underneath, otherwise electric shock may occur, causing the product to stop operating or burn out.

SDo not use the brake of the brake motor for normal braking, otherwise it may cause a malfunction.

Sexcept for the designated operator, please do not set up, disassemble and repair the equipment, otherwise it may cause electric shock or injury.

• Do not remove the cover, cables, connectors and optional accessories while the power is on, otherwise it may cause electric shock.

SPlease install a stop device on the machine side to ensure safety.

• Please take measures to ensure that your personal safety will not be endangered when restarting, otherwise it may cause injury.

• Do not modify this product, otherwise it may cause personal injury or mechanical damage.

1.2 Precautions for storage and transportation

CAUTION • Please keep and install in the following environment: Places without direct sunlight; Places where the ambient temperature does not exceed product specifications; Places where the relative humidity does not exceed product specifications; Selaces where condensation will not occur due to rapid changes in temperature; Places free of corrosive gas and flammable gas; Places without combustible materials nearby; Places with less dust, salt and metal powder; Places where there is no splash of water, oil, medicine, etc.; Selaces where vibration or shock will not affect the product (places that exceed product) specifications); Places that will not be exposed to radiation; Storage or installation in environments other than the above may cause product failure or damage: Please use the correct method for handling according to the weight of the product; Do not hold the motor cable or motor shaft for transportation; When operating the servo unit and servo motor, please pay attention to sharp parts such as the corners of the device.

1.3 Precautions during installation

CAUTION

• Do not install this product in a place where water will be splashed or in an environment prone to corrosion;

• Please be sure to comply with the devices of the installation direction, otherwise it may cause device failure;

Note that the inner surface of the electric cabinet and other machines, otherwise it may cause fire or device failure;

So not apply excessive impact, otherwise it may cause equipment failure;

• Do not sit on the product or place heavy objects on it, otherwise it may cause personal injury;

◆ Do not use this product near flammable gases and combustibles, otherwise there may be a risk of electric shock or fire;

• Do not block the suction and exhaust ports, and do not allow foreign objects to enter the product, otherwise it may cause device failure or fire due to the aging of internal components.

1.4 Precautions during wiring

• Do not connect the three-phase power supply to the output terminals U, V, W of the servo drive, otherwise it may damage the device or cause a fire;

▲ Please connect the output U, V, W of the servo drive and the U, V, W of the servo motor directly. Do not use the electromagnetic contactor during the connection, otherwise it may cause abnormal operation or malfunction of the device;

Note that When the DO output terminals are connected to the relay, please pay attention to the polarity of the freewheeling diode, otherwise the drive may be damaged and the signal cannot be output normally;

• Please fix the power terminal and the motor terminal firmly, otherwise it may cause a fire hazard;

So not connect the 220V servo unit directly to the 380V power supply;

• Do not pass the power cable and signal cable through the same pipe or bundle them together. When wiring, the power cable and signal cable should be separated by more than 30cm;

♦ Use twisted-pair shielded cables for signal cables and encoder cables, and the shielding layer should be grounded at both ends;

The wiring length of the signal input cable is recommended to be within 3M, and the wiring length of the encoder is recommended to be within 15M;

Number using in the following places, please take adequate shielding measures.

Number of the static electricity.

Places where strong electric or magnetic fields are generated;

• Places where there may be radiation;

Number when the status, please make sure that the CHARGE indicator is off.

1.5 Precautions during operation

• During trial operation, in order to prevent accidents, please run the servo motor without load (not connected to the drive shaft), otherwise it may cause injury.

When the servo motor is running, do not touch its rotating part, otherwise it may cause injury.

Se sure to set the correct moment of inertia ratio, otherwise it may cause vibration.

Note: When it is installed on the supporting machine and starts to run, please set the user parameters in accordance with the machine in advance. If you start running without setting parameters, it may cause the machine to lose control or malfunction.

Note that the supporting machinery and starting to run, please put the servo motor in a state where it can be stopped in an emergency at any time, otherwise you may get injured.

Notice that the serve of the se

Since extreme user parameter adjustments and setting changes will cause the servo system to become unstable, please never make settings, otherwise it may cause injury.

Note: When an alarm occurs, reset the alarm after removing the cause and ensuring safety, and restart the operation, otherwise it may cause injury.

Sexcept for special purposes, do not change the maximum speed value (P1-10). If you change it carelessly, it may damage the machine or cause injury.

Note: When the power is turned on and within a period of time after the power is cut off, the heat sink of the servo drive, the external braking resistor, the servo motor, etc. may experience high temperature. Please do not touch it, otherwise it may cause burns.

★If the power supply is restored after an instantaneous power failure occurs during operation, the machine may restart suddenly, so please do not approach the machine, and press the stop button when the power is off, and operate after the power supply is stable.

1.6 Precautions during maintenance and inspection

****The power on and off operation should be carried out by professional operators.

Note that the insulation resistance of the drive, please cut off all the connections with the drive first, otherwise it may cause the drive to malfunction.

◆ Do not use gasocable, alcohol, acid and alkacable detergents to avoid discoloration or damage to the casing.

Number when replacing the servo drive, please transfer the user parameters of the servo drive to the new servo drive before restarting operation, otherwise the machine may be damaged.

Do not change the wiring when the power is on, otherwise it may cause electric shock or injury.
Do not disassemble the servo motor, otherwise it may cause electric shock or injury.

2. Product Information

2.1 Servo drives

2.1.1 Servo drive model naming

Figure 2-1 Servo drive model

Figure 2-2 (VD2A) and Figure 2-3 (VD2B) show the exterior and nameplate of the VD2 series absolute value servo drive.

Figure 2- shows the exterior and nameplate of the VD2F series absolute value servo drive.

Figure 2-2 Exterior and nameplate of VD2A servo drive

Figure 2-3 Exterior and nameplate of VD2B servo drive

Figure 2-4 Exterior and nameplate of VD2C servo drive

Figure 2-5 Exterior and nameplate of VD2F servo drive

Figure 2-6 Exterior and nameplate of VD2L servo drive

2.1.2 The composition of servo drive

The 220V power supply specifications and 380V power supply specifications of the VD2B drive have the same appearance and composition.

Figure 2-9 Composition of VD2C servo drive

Figure 2-10 Composition of VD2F servo drive

Note: When using external braking resistor or internal braking resistor, special short-circuit processing is required, as shown in the figure below:

To use an external braking resistor, first disconnect the C-D intermittent wiring, and connect the external resistor between P+ and C

If you use internal braking resistor, you need to short-circuit C-D

2.1.3 Spacifications of servo drive

Electrical specifications

```
Table 2-1 Electrical specifications of single phase 220V Servo drive
```

ltem	VD2A		V	D2B
Model	VD2-010SA1G VD2-014SA1G		VD2-016SA1G	VD2-019SA1G
Maximum output	104	146	104	19A
current	IUA	14A	IDA	
Control power		Single-phase AC 198 to 242V		
supply	-		50/60Hz	
Power supply	Single-phase AC 198 to 242V, 50/60Hz		Single-phase/Three phase AC 198	
Power suppry			to 242V, 50/60Hz	
Braking resistor	External Built-in and external		Built-in and external	

Table 2-2 Electrical specification of single-phase 220V servo drive

Item		VD2F		
Model	VD2F-003SA1P	VD2F-010SA1P	VD2F-014SA1P	
Maximum output	2 ^	104	144	
current	3A	IUA	14A	
Control power				
supply	-			
Power supply	Single-phase AC 198 to 242V, 50/60Hz			
Braking resistor	or External Built-in and		Built-in and external	

Table 2-3 Electrical specification of three-phase 220V servo drive

Item	VD2-0xxSA1H			
Model	VD2-010SA1G	VD2-014SA1G	VD2-016SA1G	VD2-019SA1G
Maximum output	104	144	164	19A
current	IUA	14A	IOA	
Control power			Single-phase AC	198 to 242V,
supply	-		50/60Hz	
Dowor supply	Single-phase AC 198 to 242V,		Single-phase/Three phase AC 198 to	
Power supply	50/60Hz		242V 50/60Hz	
Braking register	Extornal	Built-in and	Extornal and built i	in and ovtornal
DIAKING PESISION	External	external	External and built-in and external	

Table 2-4 Electrical specification of three-phase 380V servo drive

ltem	VD2L	-0xxSA1P/D		
Model	VD2L-010SA1P	VD2L-014SA1P/ VD2L-014SA1D		
Maximum output current	10A	14A		
Control power supply		-		
Power supply	Single-phase AC	C 198 to 242V, 50/60Hz		
Braking resistor	External External and built-in and external			

Table 2-5 Electrical specification of three-phase 220V servo drive

ltem	VD2 B			
Model	VD2-021SA1G	VD2F-025SA1G	VD2F-030SA1G	
Maximum output	21A	25A	30A	

`` WECON technology Co., Ltd

Control power supply	Single-phase AC 198 to 242V, 50/60Hz		
Power supply	Three-phase AC 198 to 242V, 50/60Hz		
Braking resistor	Built-in and external		
Tab	le 2-6 Electrical specification of three-phase 220V servo drive		
Item	VD2-0xxSA1H		
Model	VD2-021SA1H		
Maximum output	21 A		
current	ZIA		
Control power	Single-phase AC 342 to $4401/50/60H_7$		
supply	Single-phase AC 342 to 440V, 50/60Hz		
Power supply	Three-phase AC 342 to 440V, 50/60Hz		
Braking resistor	External and built-in and external		
Tab	le 2-7 Electrical specification of three-phase 380V servo drive		
ltem	Item VD2 C		

item	VD2 C						
Model	VD2-030TA1G	VD2-040TA1G	VD2-050TA1G				
Maximum output current	30A	40A	50A				
Control power supply	Single-phase AC 342V to 440V, 50/60Hz						
Power supply	Three-phase AC 342V to 440V, 50/60Hz						
Braking resistor	Built-in and external						

Table 2-8 Electrical specification of three-phase 380V servo drive

Item	VD2 B						
Model	VD2-016TA1G	VD2-019TA1G	VD2-021TA1G				
Maximum output current	16A	19A	21A				
Control power supply	Single-phase AC 342V to 440V, 50/60Hz						
Power supply	Three-phase AC 342V to 440V, 50/60Hz						
Braking resistor	Built-in and external						

Basic specifications

	ltem		Specification
		Temperature	0°C to 40°C
	licago	Humidity	5% to 95% (no condensation)
	Usage	Shock	3M4, 3mm (2 to 9Hz), Class 1 area
		Vibration	3M4, 1G (9 to 200Hz), Class 1 area
	Environment Storage	Temperature	-25°C to 70°C
Environment		Humidity	5% to 95% (no condensation)
		Vibration	2M2, 3.5mm (2 to 9Hz)
		Protection	IP10
			Places with no corrosive gas, flammable gas,
	Ci	rcumstance	combustible materials nearby; splash of
			water, oil, medicine and less dust, salt and

			metal powder.
I/O signal	Digital	input (DI) signal	Up to 8 DI channels supported (only 4 DI channels for VD2F model). The supported DI functions are servo enable, fault clear and alarm, forward drive prohibition, reverse drive prohibition, zero speed bit, deviation counter clear, instruction reversal, emergency stop, electronic gear ratio switch, gain switch, instruction pulse input prohibition, internal speed instruction selection, mixed mode selection, internal multi-segment position enable signal and internal multi-segment position segment selection.
	Digital o	output (DO) signal	Up to 4 DO channels supported. The supported DO functions are servo ready, fault signal, warning signal, rotation detection, zero speed signal, positioning completion, positioning approach, speed consistence, speed approach, torque arrival, torque limiting, speed limiting, brake output, servo on state output, Z pulse output and communication VDO output.
Debug Interface		RJ45	RS485 and RS422
Position	Input	Pulse instruction	Input pulse form: direction + pulse, CW/CCW, AB phase quadrature pulse Input form: differential input, open collector Input pulse frequency: differential input up to 500KHz: open collector up to 200KHz.
control mode	signal	Internal multi-segment position Instruction selection	Configure 4 DI ports for INPOS1, INPOS2, INPOS3, and INPOS4 to select positions in segments 1 to 16
	Position output	Output form	A phase, B phase, Z phase
Speed	External instruction	Analog voltage	DC±10V, resolution 12 bits
control mode	Internal instruction Internal instruction Internal Internal multi-segment speed instruction selection.		Configure 3 DI ports for INPOS1, INPOS2, INPOS3, and INPOS4 to select speed in segments 1 to 16
Torque	External instruction	External instruction	DC±10V, resolution 12 bits
mode	Internal instruction	Internal instruction	Support torque instruction values -300% to 300%

2.2 Servo motors

2.2.1 Servo motor model naming

Figure 2-14 Servo motor nameplate

2.2.2 Composition of Servo motor

Figure 2-15 Motor (Wire type) composition of 40/60/80 flange

Figure 2-16 Motor (Connector type) composition of 40/60/80 flange

2.2.3 Specifications of servo motor

Wecon motor model	Motor code	Flange size	Rated power (KW)	Rated torque (N.m)	Voltage (V)	Rated speed (rpm)	Encoder type	Brake
WE130M-10025S-A1F	A091	130	1.0	4.0	220	2500	17-bit single turn absolute magnetic	No
WE130M-15025S-A1G	A111	130	1.5	6.0	220	2500	17-bit single turn absolute magnetic	Yes
WE130M-26025S-C1F	C191	130	2.6	10	220	2500	17-bit multi turn absolute magnetic	No
WE80M-12030S-C1G	C231	80	1.2	4.0	220	3000	17-bit multi turn absolute magnetic	Yes
WE110M-18030S-D2G	D131	110	1.8	6.0	220	3000	23-bit multi turn absolute optical	Yes
WE130M-23015S-D2F	D161	130	2.3	15.0	220	1500	23-bit multi turn absolute optical	No

Table 2-9 Wecon Motor Specifications

Note: Only part of motor models is displayed. Please refer to the "Model Selection Manual" for details.

3. Installation of servo drive and motor

3.1 Installation of servo drive

3.1.1 Dimensions (Unit: mm)

Figure 3-2 Installation dimensions of VD2B servo drive

Figure 3-3 Installation dimensions of VD2C servo drive

Figure 3-4 Installation dimensions of VD2F servo drive

Figure 3-5 Installation dimensions of VD2L servo drive

3.1.2 Installation site

- ① Please install it in an installation cabinet free from sunlight and rain;
- 2 In a place without vibration;
- ③ Please do not install in the environment of high temperature, humidity, dust and metal dust;

④ Do not use this product near corrosive and flammable gases such as hydrogen sulfide, chlorine, ammonia, sulfur, chlorinated gas, acid, alkali, salt, etc., or combustible materials.

3.1.3 Installation environment

The installation environment of the servo drive has a direct impact on the normal function of it and its service life. Therefore, the installation environment of servo drive must meet the following conditions:

ltem	Specification
Ambient temperature	-10°C to 40°C (no freezing)
Ambient humidity	-20% to 90%RH (no condensation)
Storage temperature	-20°C to 60°C
Storage humidity	-20% to 90%RH (no condensation)
Protection grade	IP65
Vibration	Less than 0.5G (4.9m/s2), 10 to 60Hz (non-continuous operation)
Power Systems	TN system*

Note:

The neutral point of the power system is directly connected to the ground, and the exposed metal components are connected to the ground through a protective grounding conductor.

3.1.4 Installation matters

(1) Installation specifications

In order to achieve a good cooling cycle effect, ensure that there is enough ventilation space around it when installing the servo drive, and be sure to comply with the installation standards in the control cabinet shown in the figure below, otherwise it may cause the drive to malfunction. For typical minimum installation dimensions, please refer to Figure 3-.

(2) Parallel installation

When multiple units are installed in parallel, the minimum distance between each other should be 20mm, and the distance between each other should be at least 100mm. Please refer to Figure 3- and Figure 3- for details. To prevent temperature rise, a cooling fan can be placed on the upper part. If you need a smaller spacing installation, please consult us.

Figure 3-7 Parallel installation dimensions of multiple VD2A drive

Figure 3-8 Parallel installation dimensions of multiple VD2B drive

Figure 3-9 Parallel installation dimensions of multiple VD2C drive

Figure 3-10 Parallel installation dimensions of multiple VD2F drive

Figure 3-11 Parallel installation dimensions of multiple VD2L drive

(3) Installation direction

When installing the servo drive, please face the front of the servo drive (panel control interface) to the operator so that the servo drive is perpendicular to the wall.

3.2 Installation of servo motor

3.2.1 Installation dimensions (Unit: mm)

(1) Installation dimensions of WD series 40 flange servo motor

Specification	WD series 40 flange motor
Rated torque (N.m)	0.318
LA without brake (mm)	74.8
LA with brake (mm)	108

Figure 3-12 Installation dimension of WD series 40 flange servo motor

(2) Installation dimensions of WD series 60 flange servo motor

Figure 3-13 Installation dimension of WD series 60 flange servo motor

(3) Installation dimensions of 80 flange servo motor

1) WD series motor

Figure 3-14 Installation dimension of WD series 80 flange motor

2) WE series motor

Specification	WE series 80 flange motor		
Rated torque (N.m)	3.5	4.0	
LA without brake (mm)	179	191	
LA with brake (mm)	221	233	

Figure 3-15 Installation dimension of WE series 80 flange motor

(4) Installation dimensions of WE series 110 flange servo motor

Specification	WE series 110 flange motor				
Rated torque (N.m)	4	5	6		
LA without brake (mm)	189	204	219		
LA with brake (mm)	254	269	284		

Figure 3-16 Installation dimension of WE series 110 flange servo motor

(5) Installation dimensions of the 130-flange servo motor

Specification	WE series 130 flange motor							
Dated targue (N m)	4	г	c		10)	15	5
Rated torque (N.M)	4	5	Ø	1.1	1500rpm	2000rpm	1500rpm	2500rpm
LA without brake (mm)	166	171	179	192	213	209	241	231
LA with brake (mm)	226	231	239	252	276	272	304	294

Figure 3-17 Installation dimension of WE series 130 flange servo motor

(6) Installation dimensions of the 180-flange servo motor

Specification	WE series 130 flange motor					
Rated torque (N.m)	17	19	21.5	27	35	48
LA without brake (mm)	226	232	179	192	292	346
LA with brake (mm)	298	304	315	334	364	418
65.0		LA				

Figure 3-18 Installation dimension of WE series 180 flange servo motor

3.2.2 Installation site

① Do not use the motor near corrosive, flammable gas environment, combustible materials such as hydrogen sulfide, chlorine, ammonia, sulfur, chlorinated gas, acid, alkali, salt, etc.

② Do not remove the oil seal in places where there is grinding fluid, oil mist, iron powder, cutting, etc.

③ Do not use the motor in a closed environment. Closed environment will cause high temperature of the motor and shorten the service life.

④ A place far away from heat sources such as stoves.

3.2.3 Installation environment

The installation environment of the servo motor has a direct impact on the normal function of it and its service life. Therefore, the installation environment of the servo motor must meet the following conditions:

ltem	Specification
Ambient temperature	-10°C to 40°C (no freezing)
Ambient humidity	-20% to 90%RH (no condensation)
Storage temperature	-20°C to 60°C
Storage humidity	-20% to 90%RH (no condensation)
Protection grade	IP65
Vibration	Less than 0.5G (4.9m/s2), 10 to 60Hz (non-continuous operation)

3.2.4 Installation precautions

ltem	Specification
Rust inhibitor	Before installation, please wipe clean the "rust inhibitor" on the shaft extension end of the servo motor, and then do the relevant anti-rust treatment.
	Number of the shaft end. In order to install the pulley, first insert the double-headed nail into the screw hole of the shaft, use a washer on the surface of the coupling end, and gradually lock the pulley into the pulley with a nut:
Encoder notice	• For the servo motor shaft with keyway, use the screw hole on the shaft end to install;
	 For shafts without keyway, friction coupling or similar methods are used; When removing the pulley, use a pulley remover to prevent the bearing from being strongly impacted by the load;
	To ensure safety, install a protective cover or similar device in the rotating area, such as a pulley installed on the shaft.
Centering	When linking with the machine, please use the coupling, and keep the axis of the servo motor and the axis of the machine in a straight cable.
Installation direction	The servo motor can be installed horizontally or vertically.
Oil and water	When using in a place with dripping water, please use it after confirming the protection level of the servo motor. When using it in a place where oil drips on the shaft penetration part, do not remove the oil seal of the servo motor.
Oli and water	When using please make sure the oil level is lower than the lin of the oil seal:
measures	The oil seal can be used in a state with a good degree of splashing of oil foam;
	When the servo motor is installed vertically upwards, please be careful not to accumulate oil on the oil seal lip.
Stress condition of	Do not "bend" the wire or apply "tension" to it, especially the signal wire whose core diameter is 0.2mm or 0.3mm. During the wiring process, please do not
the cable	make it too tight.
	Regarding the connector part, please note the following:
	Number with the connector, please make sure that there is no foreign matter such as garbage or metal pieces in the connector;
	SWhen connecting the connector to the servo motor, be sure to connect it from the side of the main circuit cable of the servo motor first, and the grounding of the main cable cable must be reliably connected. If you connect
Processing of the connector	one side of the encoder cable first, the encoder may malfunction due to the potential difference between PEs;
part	Number with the sure that the pin arrangement is correct;
	The connector is made of resin, please do not apply impact to avoid damage to the connector;
	• Do not apply stress to the connector part while carrying the cable while the cable is connected. If stress is applied to the connector part, the connector may be damaged.

4. Wiring

4.1 Main circuit wiring

4.1.1 Main circuit terminals

(1) VD2A servo drive main circuit terminal distribution

Figure 4-1 VD2A servo drive main circuit terminal distribution

Terminal number	Terminal name	Terminal function		
L1	Doweripput			
L2	torminal	Single-phase 220V AC input is connected to L1 and L3.		
L3	termina			
P+		Use internal braking resistor: short-circuit C and D.		
С	Braking resistor terminal	Use external braking resistor: Please disconnect the short wire between C and D, and then connect the external braking resistor		
D		between P+ and C;		
U	Motor power			
V	wotor power	Connect with the U, V and W of motor to power the motor.		
W				
Ground terminal	Ground terminal	Grounding treatment of servo drive.		

Table 4-1 The name and function of VD2A servo drive main circuit terminal

(2) VD2B servo drive (220V) main circuit terminal distribution

Figure 4-2 VD2B servo drive (220V) main circuit terminal distribution

Terminal number	Terminal name	Terminal function		
L1	Power input	Three phase 220V/AC input is connected to 11, 12, 12;		
L2	terminal	Single-phase 220V AC input is connected to L1, L2, L3,		
L3	terminar	Single-phase 220V AC input is connected to L1 and L3.		
L1C	Control power	Single phase 220V/AC input is connected to 110 and 120		
L2C	input terminal	Single-phase 220V AC input is connected to L1C and L2C.		
P+	Broking	Use internal braking resistor: short-circuit C and D.		
С	rosistor	Use external braking resistor: Please disconnect the short wire		
D	terminal	between C and D, and then connect the external braking resistor between P+ and C.		
U				
V	Notor power	Connect with the U, V and W of motor to power the motor.		
W				
Ground terminal	Ground terminal	Grounding treatment of servo drive.		

Table 4-2 The name and function of VD2B servo drive (220V) main circuit terminal

(3) VD2B servo drive (380V) main circuit terminal distribution

Figure 4-3 VD2B servo drive (380V) main circuit terminal distribution

Terminal number	Terminal name	Terminal function		
L1	Dowor input			
L2	terminal	Three-phase 380V AC input is connected to L1, L2, L3;		
L3	terrindi			
L1C	Control power	Single phase 280V/AC input is connected to 110 and 120		
L2C	input terminal	Single-phase 380V AC input is connected to LTC and L2C.		
P+	Braking	Use internal braking resistor: short-circuit C and D.		
С	resistor	Use external braking resistor: Please disconnect the short wire		
D	terminal	between C and D, and then connect the external braking resistor between P+ and C.		
U	Motor power			
V	cable terminal	Connect with the U, V and W of motor to power the motor.		
W				
Ground	Ground	Grounding treatment of serve drive		
terminal	terminal			

Table 4-3 The name and function of VD2B servo drive (380V) main circuit terminal

(4) VD2C servo drive (380V) main circuit terminal distribution

Figure 4-4 VD2C servo drive (380V) main circuit terminal distribution

Terminal number	Terminal name	Terminal function			
L1	Doweripput				
L2	torminal	Three-phase 380V AC input is connected to L1, L2, L3;			
L3	terminar				
L1C	Control power	Single phase 280V/AC input is connected to 110 and 120			
L2C	input terminal	Single-phase 580V AC input is connected to LTC and LZC.			
P+	Braking	Use internal braking resistor: short-circuit C and D.			
С	resistor	Use external braking resistor: Please disconnect the short wire			
D	terminal	between P+ and C.			
U	Motor power	Connect with the U.V. and W. of motor to new or the motor			
V	cable terminal	connect with the 0, v and w of motor to power the motor.			

W		
Ground	Ground	Grounding treatment of convoldrive
terminal	terminal	

Table 4-4 The name and function of VD2C servo drive (380V) main circuit terminal

(5) VD2F servo drive main circuit terminal distribution

Figure 4-5 VD2F servo drive main circuit terminal distribution

Terminal number	Terminal name	Terminal function
L1	Power input	Connect single-phase 220V input newer
L2	terminal	
P+		Use internal braking resistor: short-circuit C and D.
С	Braking resistor terminal	Use external braking resistor: Please disconnect the short wire between C and D, and then connect the external braking
D		resistor between P+ and C.
P+	Common DC	DC hus terminal of serve drive
N	bus terminal	
U	Motor powor	
V	cable terminal	Connect with the U, V and W of the motor to power the motor.
W		
PE	Ground terminal	Grounding treatment of the servo drive.

Table 4-5 The name and function of VD2F servo drive main circuit terminal

Figure 4-6 VD2L servo drive main circuit terminal distribution

Terminal number	Terminal name	Terminal function			
L1	Power input	Connect single phase 220V input power			
L2	terminal	connect single-phase 220V input power			
P+		Use internal braking resistor: short-circuit C and D.			
С	Braking resistor	Use external braking resistor: Please disconnect the short wire			
	terminal	between C and D, and then connect the external braking			
D		resistor between P+ and C.			
P+	Common DC	DC hus terminal of serve drive			
N	bus terminal	De bus terminar of servo unve			
U	Motor power				
V	cable terminal	Connect with the U, V and W of the motor to power the motor.			
W					
PE	Ground terminal	Grounding treatment of the servo drive.			

Table 4-6 The name and function of VD2L servo drive (380V) main circuit terminal

4.1.2 Power wiring

External brake resistor (Internal temperature control switch) MC ON j. ऩ OFF ALM Inductive surge absorber ~ L MCCB Power -› **L1** Main power input (Single-phase) AC220V,50Hz • L3 Incoming line -(j)reactor Noise filter мс **External brake resistor** C D Short wire Red <u>U</u> V Yellow Blue Motor output ľ Yellow green Motor ⊕ Μ (<u>T</u>) ⊕ Ē \oplus ∘ALM∔ Insulated **%ALM** is output from DO2 by default power can be configured by funtion code DC12V~24V (±5%) ALM Θ ALM

(1) Use single-phase 220V power supply model: VD2-010SA1G and VD2-014SA1G

Figure 4-7 VD2A drive single-phase 220V main circuit wiring

(2) Use single-phase 220V power supply model: VD2-016SA1G, VD2-019SA1G, VD2-016SA1H, VD2-019SA1H

Figure 4-8 VD2B drive single-phase 220V main circuit wiring

(3) Use three-phase 220V power supply model: VD2-021SA1G, VD2-025SA1G, VD2-030SA1G, VD2-021SA1H

Figure 4-9 VD2B drive three-phase 220V main circuit wiring

(4) Use single-phase 220V power supply model: VD2F-003SA1P、VD2F-010SA1P、VD2F-014SA1P External brake resistor MC (Internal temperature control switch) ON Ш ⊕ OFF Inductive surge absorber ALM 1 L Noise МССВ Power • **L1** Power input (Single-phase) ?Iter⊣⊧ AC220V 50Hz -• **L2** Incoming line Ð reactor MC **External brake resistor** с -<u>—</u> P+CDUVWP Short wire Red **Motor output** Yellow Blue Yellow-green Motor ۲ Μ • ⊕ ∘ Insulated D02 € power **X** ALM is output from Do2 by fault DC12V~24V Can be con?gured by function code (±5%) ALM DOCOM

Figure 4-10 VD2F/VD2L drive single-phase 220V main circuit wiring

4.1.3 Precautions for main circuit wiring

① Do not connect the input power cord to the output terminals U, V, W, otherwise the servo drive will be damaged. When using the built-in braking resistor, C and D must be connected (factory default connection).

② When the cables are bundled and used in pipes, etc., due to the deterioration of heat dissipation conditions, please consider the allowable current reduction rate.

③ When the temperature in the cabinet is higher than the cable temperature limit, please choose a cable with a larger cable temperature limit, and it is recommended that the cable wire use Teflon wire. Please pay attention to the warmth of the cable in the low temperature environment. Generally, the surface of the cable is easy to harden and break under the low temperature environment.

④ The bending radius of the cable should be more than 10 times the outer diameter of the cable itself to prevent the core of the cable from breaking due to long-term bending.

4.2 Power cable connection of servo drive and servo motor

4.2.1 Power cable

We con VD2 series servo drive has 3 kinds of interface power cables: rectangular plug, aviation plug and in-cable type.

Connector exterior	Terminal pin distribution		Pin description		Motor flange
	4		Rectangular plu	g	
		Pin number	Signal name	Color	40
		1	U	Red	40 60
		2	V	White	80
	3	3	W	Black	00
		4	PE	Yellow-green	
	1		Aviation plug		
		Pin number	Signal name	Color	
		2	U	Black	110
		4	V	Yellow-green	130
		3	W	Black	
	4	1	PE	Black	
		I	n-cable type plu	Jg	
		Pin number	Signal name	Color	
		3	U	Red	60
		1	V	White	80
	4	2	W	Black	
╶╌╢╚⋐┫┍╼┵		4	PE	Yellow-green	

Table 4-7 Power cable servo motor side connector

Note: The color of the cables is subject to the actual product. The cables described in this manual are all cables of Wecon.

4.2.2 Brake device cable

Connector exterior		terminal pir	Motor flange	
WD series		Pin number 1 2	Signal name BR+ BR-	40 60 80
WE series		Pin number 1 2 3	Signal name DC 24V GND	80 110 130
	2 3			

4.3 Encoder cable connection of servo drive and servo

motor

Figure 4-12 Encoder connection cable wiring

Connector exterior	Terminal pin distribution	Pin description		
		Pin number Signal name		
		1 5V		
		2 GND		
	3 4	3 -		
		4 -		
		5 SD+		
		6 SD-		

Table 4-8 Encoder cable servo drive side connector

Connector exterior and terminal pin distribution				Motor flange	
		Encoder	r pinout		
Connector of	endoder pinout				
Connect servo drive CN1	- 3				
View from here	060 060 060	View from he	ere		40 60 80
	Pin number	Signal name			
	7	5V			
	8	GND	1		
	4	SD+			
	5	SD-]		
	3	Shield			
	1	Battery+			
	2	Battery-]		

Table 4-9 Absolute value encoder cable connector (Rectangular plug)

Drive sid	de J1394		Motor side		
Pin number	Signal name	Description	Rectangular plug pin number	Cable color	
1	5V	Encoder +5v power	7	Blue	
2	GND	Encoder power ground	8	Orange	
5	SD+	Serial communication signal +	4	Green	
6	SD-	Serial communication signal -	5	Brown	
Shell	Shield	Shield	3	-	
-	-	Battery+	1*	Pink	
-	-	Battery-	2*	Pink-Black	

Table 4-10 Connection of encoder cable pin

The pin with "*" indicates the signal cable of encoder battery. If the multi-turn battery memory function is not used, you don't need to connect the signal cables. It is only used as single turn encoder cable at this time.

Note: The color of cable is subject to the actual product. The cables described in this manual are all from Wecon!

Connec	Motor flange				
Connect servo drive CN1	Connector of encode	r pinout	Enco	der connected to a socket	
#2 0 #5	#1 #3 #4 #4		<u>#4</u> <u>#4</u>		110 130
	Pin number	Signa	l name		
	7		5V		
	5 G		IND		
	6 S		D+		
	4 9		5D-		
	1	Sh	neld		
	3 2	Bat	tery+		
	Ζ	Bgi	liery-		

Table 4-11 Absolute value encoder cable connector (Aviation connector)

Drive sid	de J1394		Motor side		
Pin number	Signal name	Description	Aviation plug pin number	Cable color	
1	5V	Encoder +5v power	7	Blue	
2	GND	Encoder power ground	5	Orange	
5	SD+	Serial communication signal +	6	Green	
6	SD-	Serial communication signal -	4	Brown	
Shell	Shield	Shield	1	-	
_	-	Battery+	3*	Pink	
-	-	Battery-	2*	Pink-Black	

Table 4-12 Absolute encoder cable connector (Aviation socket)

The pin with "*" indicates the signal cable of encoder battery. If the multi-turn battery memory function is not used, you don't need to connect the signal cables. It is only used as single turn encoder cable at this time.

Note: The color of the cable is subject to the actual product. The cables described in this manual are all cables of Wecon!

Connector shape and terminal pin distribution						
Conne Connect servo drive CN1	ctor of encoder pine	but	Enc	oder socket)	
#1	#4	#4			#1	
#5	#7	#7			#5	60 80
	Pin number	Signal na	ame			
	7	5V				
	5	GND				
	6	SD+				
	4	SD-				
	1	Shield	k			
	3	Battery	/+			
	2	Batter	y-			

Table 4-13 Absolute encoder cable connector (in-cable type)

Drive sid	de J1394		Motor side		
Pin number	Signal name	Description	In-cable plug pin number	Cable color	
1	5V	Encoder +5v power	7	Blue	
2	GND	Encoder power ground	5	Orange	
5	SD+	Serial communication signal +	6	Green	
6	SD-	Serial communication signal -	4	Brown	
Shell	Shield	Shield	1	-	
-	-	Battery+	3*	Brown	
-	-	Battery-	2*	Black	

Table 4-14 Connection of encoder cable pin

The pin with "*" indicates the signal cable of encoder battery. If the multi-turn battery memory function is not used, you don't need to connect the signal cables. It is only used as single turn encoder cable at this time.

Note:

The color of the cable is subject to the actual product. The cables described in this manual are all cables of Wecon!

Connecto	Motor flange			
Connect to Serve Drive	Encoder line connector	Enco	eder connection socket	
#1	#4	#4	#1	60 80
	Pin number	Signal name		
	1	5V		
	2	GND		
	3	SD+		
	4	SD-		
	5	Shield		
	6	Battery+		
	7	Battery-		

Table 4-15 Absolute encoder cable connector (in-cable type)

Drive sid	de J1396		Motor side		
Pin number	Signal name	Description	In-cable plug pin number	Cable color	
1	5V	Encoder +5V power	1	White	
2	GND	Encoder power ground	2	Brown	
5	SD+	Serial communication signal +	3	Green	
6	SD-	Serial communication signal -	4	Yellow	
Shell	Shield	Shield	5	-	
-	-	Battery+	6*	Pink	
-	-	Battery-	7*	Black	

Table 4-16 Connection of encoder cable pin

The pin with "*" indicates the signal cable of encoder battery. If the multi-turn battery memory function is not used, you don't need to connect the signal cables. It is only used as single turn encoder cable at this time.

Note:

The color of the cable is subject to the actual product. The cables described in this manual are all cables of Wecon!

4.4 Servo drive control input and output wiring

4.4.1 CN2 pin distribution

(1) VD2A, VD2B and VD2C servo drive control input and output pin distribution (CN2 interface)

Figure 4-13 VD2A, VD2B and VD2C servo drive control input and output pin distribution

Pin number	Signal name	Pin number	Signal name	Pin number	Signal name
1	-	16	GND	31	-
2	AI_2+	17	GND	32	AI_1+
3	AI_2-	18	-	33	AI_1-
4	DO1-	19	DO3-	34	GND
5	DO1+	20	DO3+	35	-
6	DO2-	21	DO4-	36	-
7	DO2+	22	DO4+	37	-
8	SS	23	DI5	38	-
9	DI1	24	DI6	39	-
10	DI2	25	DI7	40	SIGN-
11	DI3	26	DI8	41	SIGN+
12	DI4	27	GND	42	PULS-
13	PAO-	28	PAO+	43	PULS+
14	PBO-	29	PBO+	44	PL
15	PZO-	30	PZO+		

Table 4-17 CN2 interface definition of VD2A, VD2B and VD2C servo drive

(2) VD2-0xxSA1H drive control input and output pin distribution (CN2 interface)

Figure 4-14 VD2-0xxSA1H servo drive control input and output pin distribution

Pin number	Signal name	Pin number	Signal name	Pin number	Signal name
1		16		31	
2		17		32	
3		18		33	
4	DOCOM	19	DOCOM	34	
5	DO1+	20	DO3+	35	DOCOM
6	DOCOM	21	DOCOM	36	
7	DO2+	22	DO4+	37	24V
8	SS	23	DI5	38	
9	DI1	24	DI6	39	
10	DI2	25	DI7	40	SIGN-
11	DI3	26	DI8	41	SIGN+
12	DI4	27		42	PULS-
13		28		43	PULS+
14		29		44	PL
15		30			

Table 4-18 CN2 interface definition of VD2-0xxSA1H servo drive

(3) VD2F and VD2L servo drive control input and output pin distribution (CN2 interface)

Figure 4-15 VD2F and VD2L servo drive control input and output pin distribution

Pin number	Signal name	Pin number	Signal name	Pin number	Signal name
1	DO3	6	DO4	11	PL
2	DO1	7	DO2	12	PULS+
3	SS	8	DOCOM	13	PULS-
4	DI3	9	DI4	14	SIGN+
5	DI1	10	DI2	15	SIGN-

Table 4-19 CN2 interface definition of VD2F and VD2L servo drive

4.4.2 Wiring diagram of each mode

(1) VD2A, VD2B and VD2C servo drive

Figure 4-16 Wiring diagram of each mode

Note: Please refer to "<u>4.4.1</u> Table 4-17 CN2 interface definition of VD2A, VD2B and VD2C servo drive" for the pin numbers in the figure.

(2) VD2-0xxSA1H servo drive

Figure 4-17 Wiring diagram of each mode

Note: Please refer to "<u>4.4.1</u> Table 4-17 CN2 interface definition of VD2A, VD2B and VD2C servo drive" for the pin numbers in the figure.

(3) VD2F servo drive

Figure 4-18 Position pulse mode wiring

Note: Please refer to "<u>4.4.1</u> Table 4-19 CN2 interface definition of VD2F and VD2L servo drive" for the pin numbers in the figure.

Position Pulse mode connection diagram

Figure 4-19 Position pulse mode wiring

Note: Please refer to "4.4.1 Table 4-19 CN2 interface definition of VD2F and VD2L servo drive" for the pin numbers in the figure.

4.4.3 Position instruction input signal

Signal		Pir	n numbe	er		Functions
name	VD2A	VD2B	VD2C	VD2F	VD2L	Functions
PULS+		43		12		Low-speed pulse input modes: differential input, open collector.
PULS-		42		13		There are three types of input pulse:
SIGN+	41		41		4	2 CW/CCW (VD2F and VD2L not support yet)
SIGN-	40		1	5	3 A and B phase orthogonal pulses (4 times frequency).	
PL	44		1	1	External power input interface for instruction pulse.	

Table 4-20 Position instruction signal description

The instruction pulse and sign output circuit on the host device side can be selected from differential output or open collector output. The maximum input frequency is shown in the table.

Pulse method	Maximum frequency
Differential	500KHz
Open collector	200KHz

(1) Differential input

Figure 4-4 VD2A, VD2B and VD2C servo drive differential input connection

Figure 4-21 VD2F and VD2L servo drive differential input connection

(2) Open collector input

1) Open collector input connection

Figure 4-5 VD2F and VD2L servo drive open collector input connection

2)	NPN and PNP	wiring		
	External +24V	Servo drive	External +24V	Servo drive
	PL PULS+ PULS-	2.2k 100R 100R	PULS+ PULS- PL	100R 100R 2.4K
		NPN		PNP

Figure 4-24 Triode wiring

4.4.4 Analog input signal

The analog input signal is only supported by VD2A, VD2B and VD2C servo drives.

Pin number	Signal name	Function	
32	AI_1+	AI_1 analog input signal, resolution 12-bit.	
33	AI_1-	Input voltage range: -10V to +10V.	
2	AI_2+	AI_2 analog input signal, resolution 12-bit.	
3	AI_2-	Input voltage range: -10V to +10V.	
17	GND	Analog input signal ground	
34	GND	Analog input signal ground.	

Table 4-21 Analog input signal description

Figure 4-25 Analog input wiring

4.4.5 Digital input and output signals

(1) VD2A, VD2B and VD2C servo drives

Pin number	Signal name	Default function	
9	DI1	Servo enable	
10	DI2	Faults and alarms clearance	
11	DI3	Forward drive prohibited	
12	DI4	Reverse drive prohibited	
23	DI5	Inverted instruction	
24	DI6	Instruction pulse prohibited input	
25	DI7	Not used	
26	DI8	Not used	
8	SS	Power input (24V)	
4	D01-	Detetion datasticn	
5	DO1+	Rotation detection	
6	DO2-	Fault signal	
7	DO2+	Fault Signal	
19	DO3-	Servo rdy	
20	DO3+		
21	DO4-	Desitioning completed	
22	DO4+		

Table 4-22 DI/DO signal description

1) Digital input circuit

① When the control device (HMI/PLC) is relay output

② When the control device (HMI/PLC) is open collector output

2) Digital output circuit

① When the control device (HMI/PLC) is relay input

2 2 When the control device (HMI/PLC) is optocoupler input

Note 1: Maximum current should less than 50mA

Figure 4-29 Optocoupler input

(2) VD2-0xxSA1H servo drives

Pin number	Signal name	Default function
9	DI1	Servo enable
10	DI2	Fault and alarm clearance
11	DI3	Forward drive prohibited
12	DI4	Reverse drive prohibited
23	DI5	Inverted command
24	DI6	command pulse prohibited input
25	DI7	Not used
26	DI8	Not used
8	SS	Power input (24V)
5	DO1+	Fault signal
7	DO2+	Pulse frequency division output (Z phase)
20	DO3+	Pulse frequency division output (A phase)
22	DO4+	Pulse frequency division output (B phase)
4/6/19/21/35	DOCOM	DO Power Common (0V)
37	24V+	DO power input (24V)

Table 4-23 DI/DO signal description

1) Digital output circuit

① When the control device (HMI/PLC) is relay input

Servo Drive

DO power input External +24V 37

Relay

5 DO1+

4/6/19/21/35 DOCOM

GND

Figure 4-30 Relay input

② When the control device (HMI/PLC) is optocoupler input

Servo Drive External +24V DO Power input 37 VCC 2.2K (Note 1) COptocoupler 5 DO1+ 4/6/19/21/35 DOCOM

(Note: Maximum current should less than 750mA)

Figure 4-31 Optocoupler input

2) The digital output circuit wiring of VD2-0xxSA1H Servo Drive is different from that of VD2A and VD2F servo drives. VD2-0xxSA1H needs to be connected to external 24V DC power supply. (CN2_35 pin and CN2_37 pin is connected to COM0 and 24V+ of external 24V power supply respectively). If the access current is too large and the DOCOM cable is relatively thin, servo drives need to access multiple DOCOM to achieve the shunt effect.

(3) VD2F and VD2L servo drives

Pin number	Pin name	Default function
5	DI1	Servo enable
10	DI2	Faults and alarms clearance
4	DI3	Forward drive prohibited
9	DI4	Reverse drive prohibited
3	SS	Power input (24V)
2	D01	Rotation detection
7	DO2	Fault signal
1	DO3	Servo rdy
6	DO4	Positioning completed
8	DOCOM	DO common terminal

Table 4-24 DI/DO signal description

1) Digital input circuit

① When the control device (HMI/PLC) is relay output

Figure 4-32 Relay output

② When the control device (HMI/PLC) is open collector output

2) Digital output circuit

① When the control device (HMI/PLC) is relay input

② When the control device (HMI/PLC) is optocoupler input

Figure 4-35 Optocoupler input

4.4.6 Brake wiring

The brake is a mechanism that prevents the servo motor shaft from moving when the servo drive is in a non-running state, so that the motor remains in position lock, so that the moving part of the machinery will not move due to self-weight or external force.

Brake input signal is no polar. You need to use 24V power. The standard wiring between brake signal BK and brake power is as below.

Figure 4-36 Brake wiring of VD2A, VD2B and VD2C

4.5 Communication signal wiring

We con VD2 series servo drive supports two communication modes: RS-422 and RS-485. The communication port is RJ45 socket. The exterior of communication terminal is shown in Figure 4-.

Figure 4-39 Pin number of an RJ45 socket

The communication modes supported by the driver communication ports are in the following table.

۷	D2 A, VD2 B and VD2 C	VD2F		
Port	Communication mode	Port	Communication mode	
CN3	Only RS422	CN3	RS422, RS485 communication mode	
CN5		CNA	choose one of two. Set by function code	
CNJ	Only RS485	CN4	P12-05	
CN6		Note: T	he CN3 and CN4 interfaces are physically	
& Noto, 7	the CNE and CNE interfaces are	connected	and are actually the same communication	
	he cive and cive interfaces are	interface.	When P12-05 is set to 1, CN3 and CN4 use	
	connected and are actually the	RS485 cor	nmunication mode. If the value is set to 0,	
same con		both use F	RS422 communication mode.	

Table 4-25 Communication port communication modes

VD2L				
Port Communication mode				
USB Only control device (PLC and HMI)				
CN3				
CN4 Only R5485				
Note : The CN5 and CN6 interfaces are physically connected and are actually the same				

Note: The CN5 and CN6 interfaces are physically connected and are actually the same communication interface.

4.5.1 Communication connection with servo host computer (RS422)

Servo drives communicate with the host computer via RS422 communication. A USB to RS422 (RJ45 connector) cable is required for communication, and you need to equip it by yourselves.

(1) VD2A&VD2B

VD2A and VD2B servo drives communicate with the host computer via the CN3 interface by RS422 communication. <u>Figure 4-36</u> and <u>Figure 4-37</u> show the communication connections.

Figure 4-40 The Connection between VD2A drive and PC

Figure 4-41 The connection between	VD2B and VD2C drive and PC
------------------------------------	----------------------------

CN3	Pin	Name	Function description
	1	RX-	Computer sends negative terminal (drive receives negative)
	2	RX+	Computer sends positive terminal (drive receives positive)
$\rightarrow 3$	3	TX-	Computer receives negative terminal (drive sends negative)
4	4	GND	Ground terminal
5	5	NC	Not used
	6	TX+	Computer receives positive terminal (drive sends positive)
	7	NC	Not used
	8	NC	Not used

Table 4-4 VD2A and VD2B pin definitions for CN3

(2) VD2F

VD2F servo drive communicates with the host computer via the CN3 or CN4 interface byRS422 communication. The communication diagrams of VD2F servo drive and host computer are shown in Figure 4-38.

Figure 4-42 The connection between VD2F drive and PC

CN3&CN4	Pin	Name	Function description
	1	RX-	Computer sends negative terminal (drive receives negative)
	2	RX+	Computer sends positive terminal (drive receives positive)
	3	TX-	Computer receives negative terminal (drive sends negative)
→4	4	GND	Ground terminal
5	5	NC	Not used
	6	TX+	Computer receives positive terminal (drive sends positive)
	7	NC	Not used
	8	NC	Not used

Table 4-27 VD2F pin definitions for CN3/CN4 interfaces

(3) VD2L

VD2F servo drive communicates with the host computer via the CN3 or CN4 interface byRS422 communication. The communication diagrams of VD2F servo drive and host computer are shown in Figure 4.43.

Please prepare the cable by yourself.

USB TYPE-C

Master computer

Figure 4-43 The connection between VD2F drive and PC

4.5.2 Communication connection with PLC and other device (RS485)

VD2A, VD2B and VD2C servo drives communicate with PLC and other devices for Modbus via CN5 or CN6 interface (located on the top of servo drive) by RS485 communication.

CN5&CN6	Pin	Name	Function description
	1	485+	Computer sends negative terminal (drive receives negative)
	2	485-	Computer sends positive terminal (drive receives positive)
	3	NC	Not used
4	4	GND	Ground terminal
5	5	GND	Ground terminal
	6	NC	Not used
→8	7	Reserved	Reserved
	8	GND	Ground terminal

Table 4-28 VD2A, VD2B and VD2C pin definitions for CN5/CN6 interfaces

VD2F and VD2L servo drives communicate with PLC and other devices for Modbus via CN3 or CN4 interface (located on the top of servo drive) by RS485 communication.

CN3&CN4	Pin	Name	Function description
	1	485+	Computer sends negative terminal (drive receives negative)
	2	485-	Computer sends positive terminal (drive receives positive)
	3	-	Computer receives negative terminal
4	4	GND	Ground terminal
5	5	-	Not used
	6	-	Computer receives positive terminal
→8	7	-	Not used
	8	-	Not used

Table 4-29 VD2F and VD2L pin definitions for CN3/CN4 interfaces

5. Panel

5.1 Panel composition

The panel composition of the VD2 series servo drive is shown in Figure 5-1.(take VD2A servo drive as an example).

Figure 5-1 The exterior of VD2 A servo drive panel

The panel of the VD2 series servo drive consists of a display (5-digit LED nixie tube) and keys, which can be used for the execution of various displays, parameter settings and other functions of the servo drive. Taking parameter setting as an example, the general functions of the keys are shown in <u>Table 5-1</u>.

lcon	Name	Function		
M	Mode	 Mode switching Return to the previous menu 		
	Increase	Increase the value of the LED flashing bit		
	Decrease	Decrease the value of the LED flashing bit		
	SHIFT key	 Change the LED flashing bit View the high-bit value of data with a length greater than 4-bit 		
	Enter (OK)	 Enter the next menu Execute commands such as storing parameter setting values 		

Table 5-1 Key functions

5.2 Panel display

When servo drive is in operation, the panel could be used for status display, parameter display, fault display and monitoring display of the servo.

Status display: Display the current operating status of servo drive.

Parameter display: Display the function codes corresponding to different functions and the set values of the function codes.

Fault display: Display the fault code of servo drive.

Monitor display: Display the current operating parameter values of servo drive.

5.2.1 Display switching

Figure 5-2 Switch between display types on the panel

Illustrate:

1 The power is turned on, and the panel display of the servo drive enters "Status Display Mode".

2 After an operation failure occurs, the panel immediately switches to the bit failure display mode. At this time, all the nixie tubes flash synchronously. Press the "mode" key to switch to the parameter display mode.

③ Press the "Mode" key to switch between different display modes, and the switching conditions are shown in Figure 5-2.

5.2.2 Status display

Display	Display occasion	Meaning
	Servo drive is powered on within 1 second	Servo drive is in initialization status
	Very short time after displaying "88888"	Initialization is complete
	1 second after servo drive is powered on, servo is ready	The servo is ready, waiting for the enable signal given by servo drive
	Servo enable signal is valid	The servo drive is in an operational status, waiting for the instructions from host computer
	Servo drive is in jog operation	Jog operation settings

Table 5-2 Status display example

5.2.3 Parameter display

VD2 series servo drive is divided into 13 groups of function codes according to different parameter functions, which could quickly locate the position of function codes according to the function code groups. For specific parameters refer to <u>"9 Parameters"</u>.

(1) Parameter group display

The parameter display is the display of different function codes. The format of the function code is "PXX.YY". "PXX" indicates the group number of function code, and "YY" indicates the number within the function code group.

Display	Name	Content			
PXX.YY	Function code group number	Number in function code group			

For example: The function code P00.01 is displayed as follows.

Display	Name	Content
	Function code P00.01	00: Function code group number 01: Number in the function code group

(2) Display of different length data

1) Display Data with four bits and below

Using single page display, if it is a signed number, the highest bit of the data is "-". For example: The monitoring volume U0-02 is displayed as follows.

Display	Name	Content
	Monitoring volume U0-02	Servo motor speed

2) Display Data more than five bits

Display in pages from low to high bits, and each 4 bits is a page. Display method: current page + current value. As shown in <u>Figure 5-3</u> and <u>Figure 5-4</u>, switch current page by pressing the "shift" key. For example: 2147483646 is displayed as follows:

Figure 5-3 2147483646 display operation

For example: -2147483647 is displayed as follows:

Figure 5-4 -2147483647 display operation

(3) Decimal point display

The "." of the one-digit indicates the decimal point, and it does not flash. The example is as follows.

Display	Name	Content
	Decimal point	302.4

(4) Parameter setting display

Display	Name	Display occasion	Meaning
	Done		The servo drive is in the
	Parameter setting	Parameter reset factory	process of parameter
	completed		factory reset
	P.Init		The servo drive is in the
	Parameter reset	Parameter reset factory	process of parameter
	factory		factory reset
	Error	Parameter setting exceeds	Prompt that the
	Parameter error	the limit (or not allowed	parameter setting
		to exceed the limit)	exceeds the limit

Table 5-3 Parameter setting display

5.2.4 Fault display

The panel can display current or historical fault and warning codes. For analysis and troubleshooting of faults and warnings, please refer to <u>"10 Faults"</u>.

When a single fault or warning occurs, the panel immediately displays the current fault or warning code; when multiple faults or warnings occur, the highest fault code is displayed. When a fault occurs, when switching from the auxiliary function to the parameter display function, the corresponding fault or warning code will be displayed. You can view the current fault and warning codes and the past five fault and warning codes through the monitor display on the panel.

Display	Name	Content
	Parameter modification that needs to be powered on again	Modified the parameters that need to be re-powered to take effect

Table 5-4 Warning display example

Display	Name	Content
	Motor overload protection	Motor overload protection

Table 5-5 Fault display example

5.2.5 Monitor display

After the servo drive is powered on or the servo enable is ON, you can press the "Mode" key to enter the monitor display mode.

Display	Monitoring volume	Name	Unit	Meaning
	U0-02	Servo motor speed	rpm	Indicates the actual operating speed of servo motor, expressed in decimal.
	U0-31	Bus voltage	v	Indicates the voltage value between P+ and - of the drive, DC bus voltage
DI8 DI6 DI4 DI2 DI7 DI5 DI3 DI1 Low High High High High High High 0 1 1 1 1 1 1 1	U0-17	Input signal status	-	Indicates the level status corresponding to the 8 DI terminals. The upper half of the LED light indicates high level, and the lower half light indicates low level. (The VD2F model has only 4 DI ports)
DO4 DO2 DO3 DO1 High High Low High 1 1 1 1	U0-19	Output signal status	-	Indicates the level status corresponding to the 4 DO terminals. The upper half of the LED light indicates high level, and the lower half light indicates low level.

Table 5-6 Monitoring volume display example

5.3 Panel operation

5.3.1 Parameter setting

Use the servo drive panel to set the parameters. For details about the parameters, please refer to <u>9 Parameters</u>. Take P00.01 as an example to set the parameters to change the control mode of the servo drive from position control mode to speed control mode. The setting steps are shown in <u>Figure 5-5</u>.

Illustrate:

- (1) The power supply is in Rdy state after power on.
- 2 Press "Mode" key to enter the function code parameter interface.

③ Press "Confirm" key to enter the function code value modification interface after completing the function code selection.

- ④ Press the "Up" and "Down" keys to modify the parameter value.
- ⑤ Press the "Confirm" key twice to complete the value modification.

Figure 5-5 Schematic diagram of parameter setting steps

5.3.2 Jog operation

In order to test run the servo motor and the servo drive, you can use the jog running function. The operation steps are shown in <u>Figure 5-6</u>.

Illustrate:

- (1) Adjust the function code to P10.01 after power on.
- 2 Press the "Enter" key to enter the next menu to set the JOG jog speed.
- ③ After the "JOG jog speed" setting is completed, press the "Enter" key, the panel displays "JOG" in a flashing state, press the "Enter" key again to enter the JOG mode.
- ④ Long press the "Up" key and "Down" key to realize the forward and reverse rotation of the motor.
- ⑤ Press the "Mode" key to exit the JOG mode.

6 Reason for displaying Error: Please refer to <u>"10 Faults"</u> according to the corresponding fault codes.

5.3.3 Factory reset

The factory settings can be restored through the servo drive panel. The specific operation steps are shown in <u>Figure 5-7</u>.

Illustrate:

- ① After power on, modify the function code to P10.02.
- ② Press the "Enter" key to enter the next menu to set the parameters.

③ Press the "Confirm" button after the parameter setting is finished, and the setting value will flash.

④ Press "Confirm" again, the panel digital tube will light up gradually from left to right until 8.8.8.8 is displayed.

⑤ Finally, it displays "Done", the servo drive will be re-powered and the operation of factory reset is finished.

6. Operation

6.1 Basic settings

6.1.1 Check before operation

No.	Content					
	Wiring					
1	The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.					
2	The main circuit output terminals (U, V and W) of servo drive and the main circuit cables					
Z	(U, V and W) of servo motor must have the same phase and be properly connected.					
2	The main circuit power input terminals (L1, L2 and L3) and the main circuit output					
5	terminals (U, V and W) of servo drive cannot be short-circuited.					
Л	The wiring of each control signal cable of servo drive is correct: The external signal wires					
4	⁴ such as brake and overtravel protection have been reliably connected.					
5	Servo drive and servo motor must be grounded reliably.					
6	When using an external braking resistor, the short wiring between drive C and D must be					
0	removed.					
7	The force of all cables is within the specified range.					
8	The wiring terminals have been insulated.					
	Environment and Machinery					
1	There are no iron filings, metal, etc. that can cause short circuits inside or outside the servo					
-	drive.					
2	The servo drive and external braking resistor are not placed on combustible objects.					
2	The installation, shaft and mechanical structure of the servo motor have been firmly					
5	connected.					

Table 6-1 Check contents before operation

6.1.2 Power-on

(1) Connect the main circuit power supply

After power on the main circuit, the bus voltage indicator shows no abnormality, and the panel display "rdy", indicating that the servo drive is in an operational state, waiting for the host computer to give the servo enable signal.

If the drive panel displays other fault codes, please refer to "10 Faults" to analyze and eliminate the cause of the fault.

(2) Set the servo drive enable (S-ON) to invalid (OFF)

6.1.3 Jog operation

Jog operation is used to judge whether the servo motor can rotate normally, and whether there is abnormal vibration and abnormal sound during rotation. Jog operation can be realized in two ways, one is panel jog operation, which can be realized by pressing the buttons on the servo panel. The other is jog operation through the host computer debugging platform.

(1) Panel jog operation

Enter "P10-01" by pressing the key on the panel. After pressing "OK", the panel will display the current jog speed. At this time, you can adjust the jog speed by pressing the "up" or "down" keys;

After adjusting the moving speed, press "OK", and the panel displays "JOG" and is in a flashing state. Press "OK" again to enter the jog operation mode (the motor is now powered on!). Long press the "up" and "down" keys to achieve the forward and reverse rotation of the motor. Press "Mode" key to exit the jog operation mode. For operation and display, please refer to <u>"5.3.2. Jog operation"</u>.

(2) Jog operation of servo debugging platform

Open the jog operation interface of the software "Wecon SCTool", set the jog speed value in the "set speed" in the "manual operation", click the "servo on" button on the interface, and then achieve the jog forward and reverse function through the "forward rotation" or "Reverse" button on the interface. After clicking the "Servo off" button, the jog operation mode is exited. The related function codes are shown below.

Function code	Name	Setting method	Effective time	Default value	Range	Definition	Unit
P10-01	JOG speed	Operation setting	Effective immediately	100	0 to 3000	JOG speed	rpm

Table 6-2 JOG speed parameter

6.1.4 Rotation direction selection

By setting the "P00-04" rotation direction, you could change the rotation direction of the motor without changing the polarity of the input instruction. The function code is shown in below.

Function code	Name	Setting method	Effective time	Default value	Range	Definition	Unit
P00-04	Rotation direction	Shutdown setting	Effective immediately	0	0 to 1	Forward rotation: Face the motor shaft to watch 0: standard setting (CW is forward rotation) 1: reverse mode (CCW is forward rotation)	_

Table 6-3 Rotation direction parameters

6.1.5 Braking resistor

The servo motor is in the generator state when decelerating or stopping, the motor will transfer energy back to the drive, which will increase the bus voltage. When the bus voltage exceeds the braking point, The drive can consume the feedback energy in the form of thermal energy through the braking resistor. The braking resistor can be built-in or externally connected, but it cannot be used at the same time. When selecting an external braking resistor, it is necessary to remove the short link on the servo drive.

The basis for judging whether the braking resistor is built-in or external.

(1) the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value \leq the built-in braking resistor power, use the built-in braking resistor.

② the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value > the built-in braking resistor power, use external braking resistor.

Function code	Name	Setting method	Effective time	Default	Range	Definition	Unit
P00-09	Braking resistor setting	Operation setting	Effective immediately	0	0 to 3	 0: use built-in braking resistor 1: use external braking resistor and natural cooling 2: use external braking resistor 	-

						and forced air cooling; (cannot be set) 3: No braking resistor is used; it is all absorbed by capacitor.	
Note: Note: N default, so capacitor).	/D2- <mark>010</mark> SA1 the default	G, VD2F-003 value of the	SA1P, VD2F- <mark>010</mark> function code "	SA1P and ' P00-09" is	VD2L- <mark>010</mark> 3 (No bra	SA1P drives have no built-in resisto king resistor is used, it is all absorb	or by ed by
P00-10	External braking resistor value	Operation setting	Effective immediately	50	0 to 65535	It is used to set the external braking resistor value of a certain type of drive.	Ω
P00-11	External braking resistor power	Operation setting	Effective immediately	100	0 to 65535	It is used to set the external braking resistor power of a certain type of drive.	W

Table 6-4 Braking resistor parameters

6.1.6 Servo operation

(1) Set the servo enable (S-ON) to valid (ON)

The servo drive is in a running state and displays "run", but because there is no instruction input at this time, the servo motor does not rotate and is locked.

S-ON can be configured and selected by the DI terminal function selection of the function code "DIDO configuration".

(2) Input the instruction and the motor rotates

Input appropriate instructions during operation, first run the motor at a low speed, and observe the rotation to see if it conforms to the set rotation direction. Observe the actual running speed, bus voltage and other parameters of the motor through the host computer debugging platform. According to <u>"7 Adjustment"</u>, the motor could work as expected.

(3) Timing diagram of power on

6.1.7 Servo shutdown

According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in <u>Table 6-5</u>. According to the shutdown status, it could be divided into free running state and position locked, as shown in <u>Table 6-6</u>.

Shutdown mode	Shutdown description	Shutdown characteristics
Free shutdown	Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.	Smooth deceleration, small mechanical shock, but slow deceleration process.
Zero-speed	The servo drive outputs reverse braking torque, and	Rapid deceleration with mechanical
shutdown	the motor quickly decelerates to zero-speed.	shock, but fast deceleration process.

Table 6-5 Comparison of two shutdown modes

Shutdown status	Free operation status	Position locked
Characteristics	After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.	After the motor stops rotating, the motor shaft is locked and could not rotate freely.

Table 6-6 Comparison of two shutdown status

(1) Servo enable (S-ON) OFF shutdown

The related parameters of the servo OFF shutdown mode are shown in the table below.

Function code	Name	Setting method	Effective time	Default value	Range	Definition	Unit
P00-05	Servo OFF shutdown	Shutdown setting	Effective immediately	0	0 to 1	 0: Free shutdown, and the motor shaft remains free status. 1: Zero-speed shutdown, and the motor shaft remains free status. 	-

Table 6-7 Servo OFF shutdown mode parameters details

(2) Emergency shutdown

It is free shutdown mode at present, and the motor shaft remains in a free state. The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The V1.18 firmware version adds the Estop stop time setting function. In some occasions where the servo needs to control the emergency stop of the motor, it is necessary to control the emergency stop time of the DI. Therefore, the P01-05 shutdown deceleration time function is added to deal with this situation.

Estop mode 1 (deceleration stop):

- 1. Configurate DI function code: 8 [ESTOP]
- 2. Set P1-5 shutdown deceleration time.
- 3. Trigger DI emergency shutdown.
- 4. Servo emergency shutdown and deceleration to zero speed.

Estop mode 2:

- 1. Configurate DI function code: 1 [Servo enable SON]
- 2. Set P1-05 shutdown deceleration time.
- 3. Set P0-05 Servo OFF shutdown mode: zero speed stop.
- 4. Trigger DI to turn off servo enable SON.

5. Servo enable turns off and stops and decelerates to zero speed.

Function code	Name	Setting method	Effective time	Default	Range	Definition	Unit
P01-05	Shutdown deceleration time	Shutdown setting	immediately Effective	50	0 to 65535	The time for the speed command to decelerate from 1000rpm to 0	ms

(3) Overtravel shutdown

Overtravel means that the movable part of the machine exceeds the set area. In some occasions where the servo moves horizontally or vertically, it is necessary to limit the movement range of the workpiece. The overtravel is generally detected by limit switches, photoelectric switches or the multi-turn position of the encoder, that is, hardware overtravel or software overtravel. Once the servo drive detects the action of the limit switch signal, it will immediately force the speed in the current direction of rotation to 0 to prevent it from continuing, and it will not be affected for reverse rotation. The overtravel shutdown is fixed at zero speed and the motor shaft remains locked.

The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The default function of DI3 is POT and DI4 is NOT, as shown in the table below.

Function code	Name	Setting method	Effective time	Default value	Range	Definition	Unit
P06-08	DI_3 channel function selection	Operation setting	Power-on again	3	0 to 32	0: OFF (not used) 01: S-ON servo enable 02: A-CLR fault and Warning Clear 03: POT forward drive prohibition 04: NOT Reverse drive prohibition 05: ZCLAMP Zero speed 06: CL Clear deviation counter 07: C-SIGN Inverted instruction 08: E-STOP Emergency stop 09: GEAR-SEL Electronic Gear Switch 1 10: GAIN-SEL gain switch 11: INH Instruction pulse prohibited input 12: VSSEL Vibration control switch input 13: INSPD1 Internal speed instruction selection 1 14: INSPD2 Internal speed instruction selection 2 15: INSPD3 Internal speed instruction selection 3 16: J-SEL inertia ratio switch (not implemented yet) 17: MixModesel mixed mode selection 20: Internal multi-segment position enable signal 21: Internal multi-segment position selection 3 24: Internal multi-segment position selection 4 Others: reserved	
P06-09	DI_3 channel logic selection	Operation setting	Effective immediately	0	0 to 1	DI port input logic validity function selection. 0: Normally open input. Active low level (switch on); 1: Normally closed input. Active high level (switch off);	-
P06-10	DI_3 input source selection	Operation setting	Effective immediately	0	0 to 1	Select the DI_3 port type to enable 0: Hardware DI_3 input terminal 1: virtual VDI_3 input terminal	-

P06-11	DI_4 channel function selection	Operation setting	again Power-on	4	0 to 32	0 off (not used) 01: SON Servo enable 02: A-CLR Fault and Warning Clear 03: POT Forward drive prohibition 04: NOT Reverse drive prohibition 05: ZCLAMP Zero speed 06: CL Clear deviation counter 07: C-SIGN Inverted instruction 08: E-STOP Emergency shutdown 09: GEAR-SEL Electronic Gear Switch 1 10: GAIN-SEL gain switch 11: INH Instruction pulse prohibited input 12: VSSEL Vibration control switch input 13: INSPD1 Internal speed instruction selection 1 14: INSPD2 Internal speed instruction selection 2 15: INSPD3 Internal speed instruction selection 3 16: J-SEL inertia ratio switch (not implemented yet) 17: MixModesel mixed mode selection 20: Internal multi-segment position enable signal 21: Internal multi-segment position selection 3 24: Internal multi-segment position selection 4 Others: reserved	
P06-12	DI_4 channel logic selection	Operation setting	Effective immediately	0	0 to 1	DI port input logic validity function selection. 0: Normally open input. Active low level (switch on); 1: Normally closed input. Active high level (switch off);	-
P06-13	DI_4 input source selection	Operation setting	Effective immediately	0	0 to 1	Select the DI_4 port type to enable 0: Hardware DI_4 input terminal 1: virtual VDI_4 input terminal	-

Table 6-8 DI3 and DI4 channel parameters

(4) Malfunction shutdown

When the machine fails, the servo will perform a fault shutdown operation. The current shutdown mode is fixed to the free shutdown mode, and the motor shaft remains in a free state.

6.1.8 Brake device

The brake is a mechanism that prevents the servo motor shaft from moving when the servo drive is in a non-operating state, and keeps the motor locked in position, so that the moving part of the machine will not move due to its own weight or external force.

• The brake device is built into the servo motor, which is only used as a non-energized fixed special mechanism. It cannot be used for braking purposes, and can only be used when the servo motor is kept stopped;

After the servo motor stops, turn off the servo enable (S-ON) in time;

The brake coil has no polarity;

Note: When the brake coil is energized (that is, the brake is open), magnetic flux leakage may occur at the shaft end and other parts. If users need to use magnetic sensors and other device near the motor, please pay attention!

Note: When the motor with built-in brake is in operation, the brake device may make a clicking sound, which does not affect the function.

(1) Wiring of brake device

The brake input signal has no polarity. You need to prepare a 24V power supply. The standard connection of brake signal BK and brake power supply is shown in the figure below. (take VD2B servo drive as example)

Figure 6-2 VD2B servo drive brake wiring

The length of the motor brake cable needs to fully consider the voltage drop caused by the cable resistance, and the brake operation needs to ensure that the voltage input is 24V.

It is recommended to use the power supply alone for the brake device. If the power supply is shared with other electrical device, the voltage or current may decrease due to the operation of other electrical device, which may cause the brake to malfunction.

♦ It is recommended to use cables above 0.5 mm².

(2) Brake software setting

For a servo motor with brake, one DO terminal of servo drive must be configured as function 141 (BRK-OFF, brake output), and the effective logic of the DO terminal must be determined. Related function code is as below.

Wecon VD2 Series Servo Drives Manual (Full V2.4)

DO function code	Function name	Function	Effective time
141	BRK-OFF Brake output	Output the signal indicates the servo motor brake release	Power-on again

Table 6-10 Relevant function codes for brake setting

Function code	Name	Setting method	Effective time	Default value	Range	Definition	Unit
P1-30	Delay from brake output to instruction reception	Operation setting	Effective immediately	250	0 to 500	Set delay that from the brake (BRK-OFF) output is ON to servo drive allows to receive input instruction. When brake output (BRK-OFF) is not allocated, the function code has no effect.	ms
P1-31	In static state, delay from brake output OFF to the motor is power off	Operation setting	Effective immediately	150	1 to 1000	When the motor is in a static state, set the delay time from brake (BRK-OFF) output OFF to servo drive enters the non-channel state. When the brake output (BRK-OFF) is not allocated, this function code has no effect.	ms
P1-32	Rotation status, when the brake output OFF, the speed threshold	Operation setting	Effective immediately	30	0 to 3000	When the motor rotates, the motor speed threshold when the brake (BRK-OFF) is allowed to output OFF. When the brake output (BRK-OFF) is not allocated, this function code has no effect.	rpm
P1-33	Rotation status, Delay from servo enable OFF to brake output OFF	Operation setting	Effective immediately	500	1 to 1000	When the motor rotates, the delay time from the servo enable (S-ON) OFF to the brake (BRK-OFF) output OFF is allowed. When brake output (BRK-OFF) is not allocated, this function code has no effect.	ms

According to the state of servo drive, the working sequence of the brake mechanism can be divided into the brake sequence in the normal state of the servo drive and the brake sequence in the fault state of the servo drive.

(3) Servo drive brake timing in normal state

The brake timing of the normal state could be divided into: servo motor static (the actual speed of motor is lower than 20 rpm) and servo motor rotation (the actual speed of the motor reaches 20 and above).

1) Brake timing when servo motor is stationary

When the servo enables changes from ON to OFF, if the actual motor speed is lower than 20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in <u>Figure 6-3</u>

CAUTION

After the brake output is from OFF to ON, within P01-30, do not input position/speed/torque instructions, otherwise the instructions will be lost or operation errors will be caused.

Note: When applied to a vertical axis, the external force or the weight of the mechanical moving part may cause the machine to move slightly. When the servo motor is stationary, and the servo enable is OFF, the brake output will be OFF immediately. However, the motor is still energized within the time of P01-31 to prevent mechanical movement from moving due to its own weight or external force.

Figure 6-3 Brake Timing of when the motor is stationary

Note: For the delay time of the contact part of the brake at ② in the figure, please refer to the relevant specifications of motor.

2) The brake timing when servo motor rotates

When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in Figure 6-4.

Solution When the servo enable is turned from OFF to ON, within P1-30, do not input position, speed or torque instructions, otherwise the instructions will be lost or operation errors will be caused.

Note: When the servo motor rotates, the servo enable is OFF and the servo motor is in the zero-speed shutdown state, but the brake output must meet any of the following conditions before it could be set OFF:

P01-33 time has not arrived, but the motor has decelerated to the speed set by P01-32; P01-33 time is up, but the motor speed is still higher than the set value of P01-32.

After the brake output changes from ON to OFF, the motor is still in communication within 50ms to prevent the mechanical movement from moving due to its own weight or external force.

(4) Brake timing when the servo drive fails

The brake timing (free shutdown) in the fault status is as follows.

Figure 6-5 The brake timing (free shutdown) in the fault state

Note: The "delay arrival" of the brake signal is about 20ms, and the actual parameter is subject to the motor manufacturer

6.2 Position control mode

Position control is the most important and commonly used control mode of the servo system. Position control refers to controlling the position of the motor through position instructions, and determining the target position of the motor by the total number of position instructions. The frequency of the position instruction determines the motor rotation speed. The servo drive can achieve fast and accurate control of the position and speed of the machine. Therefore, the position control mode is mainly used for occasions that require positioning control, such as manipulators, mounter, engraving machines, CNC machine tools, etc. The position control block diagram is shown in the figure below.

Figure 6-6 Position control diagram

Set "P00-01" to 1 by the software "Wecon SCTool", and the servo drive is in position control mode.

Function code	Name	Setting method	Effective time	Default value	Range	Definition	Unit
P00-01	Control mode	Shutdown setting	Immediately effective	1	1 to 6	1: Position control 2: Speed control 3: Torque control 4: Position/speed mix control 5: Position/torque mix control 6: Speed /torque mix control Note: VD2L drive P0-01 setting range: 1-3. Mixed mode is not supported for the time being!	_

Table 6-11 Control mode parameters

6.2.1 Position instruction input setting

When the VD2 series servo drive is in position control mode, firstly set the position instruction source through the function code "P01-06".

Function code	Name	Setting method	Effective time	Default value	Range	Definition	Unit
P01-06	Position instruction source	Operation setting	immediately Effective	0	0 to 1	0: Pulse instruction 1: Internal position instruction	-

Table 6-12 Position instruction source parameter

(1) The source of position instruction is pulse instruction (P01-06=0)

1) Low-speed pulse instruction input

VD2A, VD2B and VD2C servo drives

VD2F and VD2L servo drive

Figure 6-7 Position instruction input setting VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via

the CN2 terminal). The position pulse mode connection is shown in <u>Figure 6-7</u>. The instruction pulse and symbol output circuit on the control device (HMI/PLC) side could select differential input or open collector input. The maximum input frequency is shown as below.

Pulse method	Maximum frequency	Voltage
Open collector input	200K	24V
Differential input	500K	5V

Table 6-13 Pulse input specifications

① Differential input

Take VD2A, VD2B and VD2C drive as examples, the connection of differential input is shown as below.

Figure 6-8 Differential input connection

Note: The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to "<u>4.4.3 position instruction input signal</u>"

② Open collector input

Take VD2A, VD2B and VD2C drive as examples, the connection of differential input is shown as below.

Figure 6-9 Open collector input connection

Note:

The differential input connection of the VD2F and VD2L drive differs only from the signal pin number. Please refer to "<u>4.4.3 position instruction input signal</u>"

2) Position pulse frequency and anti-interference level

When low-speed pulses input pins, you need to set a certain pin filter time to filter the input pulse instructions to prevent external interference from entering the servo drive and affecting motor control. After the filter function is enabled, the input and output waveforms of the signal are shown as below.

Figure 6-10 Example of filtered signal waveform

The input pulse frequency refers to the frequency of the input signal, which can be modified through the function code "P00-13". If the actual input frequency is greater than the set value of "P00-13", it may cause pulse loss or alarm. The position pulse anti-interference level can be adjusted through the function code "P00-14", the larger the set value, the greater the filtering depth. The details of related function code parameters are as shown below.

Function code	Name	Setting method	Effective time	Default value	Range	Definition	Unit
------------------	------	-------------------	-------------------	------------------	-------	------------	------

P00-14	Position pulse anti-interf erence level	Operation setting	Power-on again	2	0 to 9	S€ of 0: 1: 2: 3: 4: 5: 6: 7: 8:	et the anti-interference level external pulse instruction. no filtering; Filtering time 128ns Filtering time 256ns Filtering time 512ns Filtering time 1.024us Filtering time 2.048us Filtering time 4.096us Filtering time 8.192us Filtering time 16.384us	-
							VD2: Filtering time	
						9	32.768us	
							VD2F: Filtering time 25.5us	

Table 6-14 Position pulse frequency and anti-interference level parameters

Function code	Name	Setting method	Effective time	Default value	Range	Definition	Unit
P00-14	Position pulse anti-interf erence level	Operation setting	Power-on again	2	0 to 8	VD2L drive set the anti-interference level of external pulse instruction. 0: no filtering; 1: Filtering time 111.1ns 2: Filtering time 222.2ns 3: Filtering time 444.4ns 4: Filtering time 888.8ns 5: Filtering time 1777.7ns 6: Filtering time 3555.5ns 7: Filtering time 7111.7ns 8: Filtering time 14222.2ns	_

Table 6-15 VD2L Position pulse frequency and anti-interference level parameters

3) Position pulse type selection

In VD2 series servo drives, there are three types of input pulse instructions, and the related function codes are shown in the table below.

Function code	Name	Setting method	Effective time	Default value	Range	Definition	Unit
P00-12	Position pulse type selection	Operation setting	Power-on again	0	0 to 5	0: Direction + pulse (positive logic) 1: CW/CCW 2: A, B phase quadrature pulse (4 times frequency) 3: Direction + pulse (negative logic) 4: CW/CCW (negative logic) 5: A, B phase quadrature pulse (4 times frequency negative logic) Note: VD2F and VD2L series drivers do not support the pulse form of CW/CCW! P0-12 parameter setting range of VD2L: 0, 2, 3, 5	_

Table 6-16 Position pulse type selection parameter

Pulse type selection	Pulse type	Signal	Schematic diagram of forward pulse		Schematic diagram of negative pulse	
0	Direction + pulse (Positive logic)	PULSE SIGN	PULSE SIGN	High	PULSE SIGN	Low
1	cw/ccw	PULSE (CW) SIGN (CCW)	CW CCW			
2	AB phase orthogonal pulse (4 times frequency)	PULSE (Phase A) SIGN (Phase B)	PULSE SIGN Phase A is 90° ahead of Phase B		PULSE SIGN Phase B is 90° ahead of Phase A	
3	Direction + pulse (Negative logic)	PULSE SIGN	PULSE SIGN	Low	PULSE SIGN	High
4	CW/CCW PULSE (CW) (Negative logic) SIGN (CCW)		CW CCW			
5	AB phase orthogonal pulse (4 times frequency negative logic)	PULSE (Phase A) SIGN (Phase B)	PULSE SIGN Phase B is ah by	ead of A phase 90°	PULSE SIGN Phase A is a	head of B phase by 90°

Table 6-17 Pulse description

(2) The source of position instruction is internal position instruction (P01-06=1)

The VD2 series servo drive has a multi-segment position operation function, which supports maximum 16-segment instructions. The displacement, maximum operating speed (steady-state operating speed) and acceleration/deceleration time of each segment could be set separately. The waiting time between positions could also be set according to actual needs. The setting process of multi-segment position is shown in Figure 6-11.

The servo drive completely runs the multi-segment position instruction set by P07-01 once, and the total number of positions is called completing one round of operation.

Figure 6-11 The setting process of multi-segment position

1) Set multi-segment position running mode

Function code	Name	Setting method	Effective time	Default value	Range	Definition	Unit
P07-01	Multi-segment position running mode	Shutdown Effective setting immediately		0	0 to 2	0: Single running 1: Cycle running 2: DI switching running	-
P07-02	Start segment number	tart segment Shutdown Effective 1 to 16 1st seg non-DI setting		1st segment NO. in non-DI switching mode	-		
P07-03	End segment number	Shutdown setting	Effective immediately	1	1 to 16	last segment NO. in non-DI switching mode	-
P07-04	207-04 Processing method Shutdown setting i		Effective immediately	0	0 to 1	0: Run the remaining segments 1: Run again from the start segment	-
P07-05	Displacement instruction type	Shutdown setting	Effective immediately	0	0 to 1	0: Relative position instruction 1: Absolute position instruction	-

Table 6-18 multi-segment position running mode parameters

VD2 series servo drive has three multi-segment position running modes, and you could select the best running mode according to the site requirements.

① Single run

In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single run curve is shown in Figure 6-12, and S₁ and S₂ are the displacements of the 1st segment and the 2nd segment respectively

Figure 6-12 Single run curve (P07-02=1, P07-03=2)

$\textcircled{2} \quad \text{Cycle running} \quad \\$

In this running mode, the position number is automatically incremented and switched, and the servo drive repeatedly runs the total number of multi-segment position instructions set by P07-02 and P07-03. The waiting time could be set between each segment. The cycle running curve is shown in Figure 6-13, and $S_{1,}S_{2,}S_{3}$ and S_{4} are the displacements of the 1st, 2nd, 3rd and 4th segment respectively.

Figure 6-13 Cycle running curve (P07-02=1, P07-03=4)

In single running and cycle running mode, the setting value of P07-03 needs to be greater than the setting value of P07-02.

③ DI switching running

In this running mode, the next running segment number could be set when operating the current segment number. The interval time is determined by the instruction delay of the host computer. The

running segment number is determined by DI terminal logic, and the related function codes are shown in the table below.

DI function code	Function name	Function		
21	INPOS1: Internal multi-segment	Form internal multi-segment position		
21	position segment selection 1	running segment number		
22	INPOS2: Internal multi-segment	Form internal multi-segment position		
22	position segment selection 2	running segment number		
22	INPOS3: Internal multi-segment	Form internal multi-segment position		
23	position segment selection 3	running segment number		
24	INPOS4: Internal multi-segment	Form internal multi-segment position		
24	position segment selection 4	running segment number		

Table 6-19 DI function code

The multi-segment segment number is a 4-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. Figure 6-17 shows the correspondence between the position bits 1 to 4 of the internal multi-segment position and the position number.

INPOS4	INPOS3	INPOS2	INPOS1	Running position number		
0	0	0	0	1		
0	0	0	1	2		
0	0	1	0	3		
··········						
1	1	1	1	16		

Table 6-20 INPOS corresponds to running segment number

The operating curve in this running mode is shown in Figure 6-14.

Note: INPOS is internal multi-segment position segment selection

Figure 6-14 DI switching running curve

VD2 series servo drives have two margin processing methods: run the remaining segments and run from the start segment again. The related function code is P07-04.

A. Run the remaining segments

In this processing way, the multi-segment position instruction enable is OFF during running, the servo drive will abandon the unfinished displacement part and shutdown, and the positioning completion signal will be valid after the shutdown is complete. When the multi-segment position enable is ON, and the servo drive will start to run from the next segment where the OFF occurs. The curves of single running and cycle running are shown in Figure 6-15 and Figure 6-16 respectively.

Figure 6-15 Single running-run the remaining segments (P07-02=1, P07-03=4)

B. Run again from the start segment

In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in <u>Figure 6-17</u> and <u>Figure 6-18</u> respectively.

Figure 6-18 Cyclic running-run from the start segment again (P07-02=1, P07-03=4) VD2 series servo drives have two types of displacement instructions: relative position instruction and absolute position instruction. The related function code is P07-05.

A. Relative position instruction

The relative position instruction takes the current stop position of the motor as the start point and specifies the amount of displacement.

Position

Speed

Displacement

2nd segment

1st segment

Figure 6-19 Relative position diagram

Time

2K Figure 6-20 Displacement diagram

3К

1K

B. Absolute position instruction

The absolute position instruction takes "reference origin" as the zero point of absolute positioning, and specifies the amount of displacement.

Time

Figure 6-22 Displacement

Position

Speed

1st	2nd						Time
		Time	Displacement 1K	2K	4K		

Figure 6-21 Absolute indication

2) Multi-segment position running curve setting

The multi-segment position running supports maximum 16 segments different position instructions. The displacement, maximum running speed (steady-state running speed), acceleration and deceleration time of each position and the waiting time between segment could all be set. <u>Table</u> <u>6-19</u> are the related function codes of the 1st segment running curve.

Function code	Name	Setting method	Effective time	Default value	Range	Definition	Unit
P07-09	1st segment displacement	Operation setting	Effective immediately	10000	-2147483 647 to 21474836 46	Position instruction, positive and negative values could be set	-
P07-10	Maximum speed of the 1st displacement	Operation setting	Effective immediately	100	1 to 5000	Steady-state running speed of the 1st segment	rpm
P07-11	Acceleration and deceleration of 1st segment displacement	Operation setting	Effective immediately	100	1 to 65535	The time required for the acceleration and deceleration of the 1st segment	ms
P07-12	Waiting time after completion of the 1st segment displacement	Operation setting	Effective immediately	100	1 to 65535	Delayed waiting time from the completion of the 1st segment to the start of the next segment	Set by P07-06

Table 6-21 The 1st position operation curve parameters table

After setting the above parameters, the actual operation curve of the motor is shown in Figure 6-23

Figure 6-23 The 1st segment running curve of motor

3) multi-segment position instruction enables

When selecting multi-segment position instruction as the instruction source, configure 1 DI port channel of the servo drive to function 20 (internal multi-segment position enable signal), and confirm the valid logic of the DI terminal.

DI function code	Function name	Function
20	ENINPOS: Internal multi-segment position enable signal	DI port logic invalid: Does not affect the current operation of the servo motor. DI port logic valid: Motor runs multi-segment position

AUTION

It should be noted that only when the internal multi-segment position enable signal is OFF, can the P07 group parameters be actually modified to write into the servo drive!

6.2.2 Electronic gear ratio

(1) Definition of electronic gear ratio

In the position control mode, the input position instruction (instruction unit) is to set the load displacement, and the motor position instruction (encoder unit) is to set the motor displacement, in order to establish the proportional relationship between the motor position instruction and the input position instruction, electronic gear ratio function is used. "Instruction unit" refers to the minimum resolvable value input from the control device (HMI/PLC) to the servo drive. "Encoder unit" refers to the value of the input instruction processed by the electronic gear ratio.

With the function of the frequency division (electronic gear ratio <1) or multiplication (electronic gear ratio > 1) of the electronic gear ratio, the actual the motor rotation or movement displacement can be set when the input position instruction is 1 instruction unit.

It is noted that the electronic gear ratio setting range of the 2500-cable incremental encoder should meet the formula (6-1), and the electronic gear ratio setting range of the 17-bit encoder should
meet the formula (6-2), setting range of the electronic gear ratio of 23-bit encoder should meet the formula (6-3)

$$0.01 < \frac{\text{Electronic gear ratio numerator}}{\text{Electronic gear ratio denominator}} < 100$$
(6-1)
$$0.001 < \frac{\text{Electronic gear ratio numerator}}{\text{Electronic gear ratio denominator}} < 500$$
(6-2)
$$0.001 < \frac{\text{Electronic gear ratio numerator}}{\text{Electronic gear ratio numerator}} < 32000$$
(6-3)

Otherwise, the servo drive will report Er.35: "Electronic gear ratio setting exceeds the limit"!

(2) Setting steps of electronic gear ratio

Figure 6-24 Setting steps of electronic gear ratio

(3) Electronic gear ratio switch setting

When the function code P00-16 is 0, the electronic gear ratio switching function could be used. You could switch between electronic gear 1 and electronic gear 2 as needed. There is only one set of gear ratios at any time. Related function codes are shown in the table below.

Function code	Name	Setting method	Effective time	Default value	Range	Definition	Unit
P00-16	Number of instruction pulses when the motor rotates one circle	Shutdown setting	Effective immediately	10000	0 to 131072	Set the number of position command pulses required for each turn of the motor. When the setting value is 0, [P00-17]/[P00-19] Electronic gear 1/2 numerator, [P00-18]/[P00-20] Electronic gear 1/2 denominator is valid.	Instruction pulse unit
P00-17	Electronic gear 1 numerator	Operation setting	Effective immediately	1	1 to 4294967294	Set the numerator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0. VD2L: 1-2147483647	-
P00-18	Electronic gear 1 denominator	Operation setting	Effective immediately	1	1 to 4294967294	Set the denominator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses	-

						of one motor rotation is 0. VD2L: 1-2147483647	
P00-19	Electronic gear 2 numerator	Operation setting	Effective immediately	1	1 to 4294967294	Set the numerator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0. VD2L: 1-2147483647	-
P00-20	Electronic gear 2 denominator	Operation setting	Effective immediately	1	1 to 4294967294	Set the denominator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0. VD2L: 1-2147483647	-

Table 6-22 Electronic gear ratio function code

To use electronic gear ratio 2, it is necessary to configure any DI port as function 09 (GEAR-SEL electronic gear switch 1), and determine the valid logic of the DI terminal.

DI function code	Function name	Function
09	GEAR-SEL electronic gear switch 1	DI port logic invalid: electronic gear ratio 1
		DI port logic valid: electronic gear ratio 2

Table 6-23 Switching conditions o	f electronic gear ratio group
-----------------------------------	-------------------------------

P00-16 value	DI terminal level corresponding to DI port function 9	Electronic gear ratio $\frac{A}{B}$
0	DI port logic invalid	$\frac{P00-17}{P00-18}$
0	DI port logic valid	$\frac{P00 - 19}{P00 - 20}$
1 to 131072		Encoder resolution P00 – 16

Table 6-24 Application of electronic gear ratio

When the function code P00-16 is not 0, the electronic gear ratio $\frac{A}{B}$ is invalid.

6.2.3 Position instruction filtering

Position instruction filtering is to filter the position instruction (encoder unit) after the electronic gear ratio frequency division or frequency multiplication, including first-order low-pass filtering and average filtering operation.

In the following situations, position instruction filtering should be added.

1 The position instruction output by host computer has not been processed with acceleration or deceleration;

- 2 The pulse instruction frequency is low;
- ③ When the electronic gear ratio is 10 times or more.

Reasonable setting of the position loop filter time constant can operate the motor more smoothly, so that the motor speed will not overshoot before reaching the stable point. This setting has no effect on the number of instruction pulses. The filter time is not as long as possible. If the filter time is longer, the delay time will be longer too, and the response time will be correspondingly longer. It is an illustration of several kinds of position filtering.

Figure 6-25 Position instruction filtering diagram

Function code	Name	Setting method	Effective time	Default value	Range	Definition	Unit
P04-01	Pulse instruction filtering method	Shutdown setting	Effective immediately	0	0 to 1	0: 1st-order low-pass filtering 1: Average filtering	-
P04-02	Position instruction 1st-order low-pass filtering time constant	Shutdown setting	Effective immediately	0	0 to 1000	Position instruction first-order low-pass filtering time constant	ms
P04-03	Position instruction average filtering time constant	Shutdown setting	Effective immediately	0	0 to 128	Position instruction average filtering time constant	ms

Table 6-25 Position instruction filter function code

6.2.4 Clearance of position deviation

Position deviation clearance means that the drive could zero the deviation register in position mode. The user can realize the function of clearing the position deviation through the DI terminal;

Position deviation = (position instruction - position feedback) (encoder unit)

6.2.5 Position-related DO output function

The feedback value of position instruction is compared with different thresholds, and output DO signal for host computer use.

Positioning completion/positioning approach output

The positioning completion function means that when the position deviation meets the value set by P05-12, it could be considered that the positioning is complete in position control mode. At this time, servo drive could output the positioning completion signal, and the host computer could confirm the completion of the positioning of servo drive after receiving the signal.

Figure 6-26 Positioning completion signal output diagram

When using the positioning completion or approach function, you could also set positioning completion, positioning approach conditions, window and hold time. The principle of window filter time is shown in Figure 6-27

To use the positioning completion/positioning approach function, a DO terminal of the servo drive should be assigned to the function 134 (P-COIN, positioning completion)/ 135 (P-NEAR, positioning approach). The related code parameters and DO function codes are shown as <u>Table 6-24</u>.

Figure 6-27 Positioning completion signal output with increased window filter time diagram

Function code	Name	Setting method	Effective time	Default value	Range	Definition	Unit
P05-12	Positioning completion threshold	Operation setting	Effective immediately	800	1 to 65535	Positioning completion threshold	Equivalent pulse unit
P05-13	Positioning approach threshold	Operation setting	Effective immediately	5000	1 to 65535	Positioning approach threshold	Equivalent pulse unit
P05-14	Position detection window time	Operation setting	Effective immediately	10	0 to 20000	Set positioning completion detection window time	ms
P05-15	Positioning signal hold time	Operation setting	Effective immediately	100	0 to 20000	Set positioning completion output hold time	ms

Table 6-26 Function code parameters of positioning completion

DO function code	Function name	Function
134	P-COIN positioning complete	Output this signal indicates the servo drive position is complete.
135	P-NEAR positioning close	Output this signal indicates that the servo drive position is close.

Table 6-27 Description of DO rotation detection function code

6.2.6 VD2-0xxSA1H collector pulse signal DO Function and VD2L pulse

signal DO output function

(1) VD2-0xxSA1H collector pulse signal DO Function

The pulse signal of VD2-0xxSA1H is a collector signal output through DO, which can be connected to the high-speed pulse input of PLC without conversion through differential to collector circuit board. However, the pulse frequency division output used by VD2 series is a differential signal, which needs to pass through differential to collector circuit board to be connected to the high-speed pulse input of PLC.

(2) Pulse signal DO output function of VD2L-0xxSA1P

The pulse signal of VD2L-0xxSA1P is the collector signal output by DO, and it can be connected to the high-speed pulse input of PLC without the conversion of differential to collector circuit board.

(3) The difference of collector pulse signal DO Function of VD2-0xxSA1H and DO output function of pulse signal of VD2L-0xxSA1P

The pulse signal of VD2-0xxSA1H is the collector signal output through DO, and it is a 4 times frequency pulse signal of Phase A/B. DO signal of VD2L is a pulse+direction signal.

DO2, DO3, and DO4 respectively correspond to the pulse frequency division outputs of the Z-axis, A-axis, and B-axis of the pulse output, as shown in the following table.

136

137

		Parameter name	Setting method	Effe	ctive time	Default	Set range	Application category	Unit
P	06-28	DO_2 channel function selection	Operation setting	E imı	ffective mediately	143	128-148	DI/DO	-
Used to a	set DO fun	ctions correspondin	g to hardware	DO2.	Refer to the	e following	table for th	ne functions	
correspo	nding to th	ne set value:							
	Setting value	DO channel f	unction		Setting value	DO	channel fu	nction	
	128	OFF (not used)				T-LIMIT (1	Forque limit	:)	
	129	RDY (Servo ready)			140	V-LIMIT (s	speed limite	ed)	
	130	ALM (fault signal)			141	BRK-OFF	BRK-OFF (Brake Output) Note1		
	131	WARN (warning si	gnal)		142	SRV-ST (Servo start status output)			
	132	TGON (rotation de	etection)		143	OZ (Z puls	se output) ^N	ote ²	
	133	133 ZSP (zero speed signal)			144	N/A	Ά		
	124	P-COIN (Positionin	Ig		145	COM_VD	01 (commu	nication	
	154	completed)			145	VDO1 out	:put)		
	125	P-NEAR (positionin	ng		146	COM_VD	01(Commu	nication	
	132	approach)			140	VDO2 output)			
						COM VD	01(commu	nication	

138T-COIN (torque arrival)When P06-28 is set to a value other than the above table, it is considered to not use DO port function.The same DO channel function is not allowed to be assigned to multiple DO ports, otherwise the servo driver willreport A-90 (DO port configuration duplicate).

147

148

VDO3 output)

VDO4 output)

COM_VDO1(communication

Note 1: To use the BRK-OFF function code, you need to repower to take effect. Note 2:

V-COIN (consistent speed)

V-NEAR (speed approach)

① Only VD2L and VD2F support function code 143. The code for this function of VD2-0xxSA1G model is empty!

② Only in the VD2-0xxSA1H model, the default function code for the DO_1 channel function selection is 130ALM (fault signal)! In the VD2-0xxSA1H model, the function code for the DO_2, DO_3, and DO_4 channels are 143 OZ (Z/A/B pulse output), and these 3 channels correspond to the Z-axis, A-axis, and B-axis of the pulse output respectively!

③ The function selection code of DO_2, DO_3 and DO_4 channels in the VD2L-0xxSA1P model are 143 OZ (Z pulse output), and these 3 channels correspond to Z axis, pulse axis, and direction axis of the pulse output respectively!

DOC 20	Parame	eter name	Setting method	Effectiv	e time	Default	Set Application range category		Unit
P06-30	DO_3	channel	Operation	Effec	tive	142	120 140		
	functior	n selection	setting	immed	liately	145	120-140	טעוט	-
Used to set DO functions corresponding to hardware					Refer to t	he followi	ng table for	the functions	
corresponding to the set value:									
	Setting value DO channel function 128 OFF (not used)				Setting value	; c	O channel	function	
	128	OFF (not use	ed)		139	T-LIMI	「(torque lin	nit)	
	129	RDY (Servo	ready)		140	V-LIMI	Г (speed lim	ited)	
	130	ALM (fault s	ignal)		141	BRK-OF	F (Brake Output) Note ¹		
	131	WARN (war	ning signal)		142	SRV-ST output	(Servo start status		
	132	TGON (rotat	tion detection)		143	OA (A p	oulse outpu	t) ^{Note²}	
	133	ZSP (zero sp	eed signal)		144	None			
	134	P-COIN (Pos completed)	P-COIN (Positioning completed) P-NEAR (positioning approach)		145	COM_\ VDO1 d	/DO1 (comr output)	nunication	
	135	P-NEAR (pos			146	COM_\ VDO2 d	/DO1(Comn output)	nunication	
	136	V-COIN (cor	nsistent speed)		147	COM_\ VDO3 d	/DO1(comm output)	nunication	
	137	V-NEAR (spe	eed approach)		148	COM_V VDO4 d	/DO1(comm output)	nunication	
	138	T-COIN (tore	que arrival)						

When P06-30 is set to a value other than the above table, it is considered to not use DO port function. The same DO channel function is not allowed to be assigned to multiple DO ports, otherwise the servo driver will report A-90 (DO port configuration duplicate).

Note 1: To use the BRK-OFF function code, you need to repower to take effect.

Note 2:

① Only VD2L and VD2F support function code 143. The code for this function of VD2-0xxSA1G model is empty!

② Only in the VD2-0xxSA1H model, the default function code for the DO_1 channel function selection is 130ALM (fault signal)! In the VD2-0xxSA1H model, the function code for the DO_2, DO_3, and DO_4 channels are 143 OZ (Z/A/B pulse output), and these 3 channels correspond to the Z-axis, A-axis, and B-axis of the pulse output respectively!

③ The function selection code of DO_2, DO_3 and DO_4 channels in the VD2L-0xxSA1P model are 143 OZ (Z pulse output), and these 3 channels correspond to Z axis, pulse axis, and direction axis of the pulse output respectively!

DOC	22	Parameter name	Setting method	Effect tim	ive e	Def	fault Set range Application category		Unit	
P06	-32	DO_4 channel function selection	Operation setting	Effect immedi	ive ately	14	43	128-148	DI/DO	-
Used	d to set D	DO functions corresponding	to hardware D	04. Refe	r to th	e follo	wing ta	ble for the funct	ions correspon	ding to
the s	set value	2:		_						
	Setting DO channel fun		nction		Sett val	ing ue	DO channel function			
	128	OFF (not used)	OFF (not used)			39	T-LIM	IT (Torque limit)		
	129	RDY (Servo ready)		14	10	V-LIM	IT (speed limited	(k		
	130	ALM (fault signal)			14	1	BRK-OFF (Brake Output) Note1		It) ^{Note1}	
	131	WARN (warning signal)	WARN (warning signal)		14	2	SRV-S	V-ST (Servo start status output)		
	132	TGON (rotation detect	TGON (rotation detection)		14	3	OB (B	pulse output) Note ²		
	133	ZSP (zero speed signal)			14	4	None			
	134	P-COIN (Positioning co	mpleted)		14	15	COM_ outpu	_VDO1 (commur t)	ication VDO1	
	135	P-NEAR (positioning ap	proach)		14	16	COM_ outpu	_VDO1(Commun t)	ication VDO2	
	136	V-COIN (consistent speed)			14	17	COM_VDO1(communication V output)		ication VDO3	
	137	V-NEAR (speed approach)			14	18	COM_ outpu	_VDO1(commun t)	ication VDO4	
	138	T-COIN (torque arrival)								

When P06-32 is set to a value other than the above table, it is considered to not use DO port function.

The same DO channel function is not allowed to be assigned to multiple DO ports, otherwise the servo drive will report A-90 (DO port configuration duplicate).

Note 1: To use the BRK-OFF function code, you need to repower to take effect.

Note 2:

1 Only VD2L and VD2F support function code 143. The code for this function of VD2-0xxSA1G model is empty!

② Only in the VD2-0xxSA1H model, the default function code for the DO_1 channel function selection is 130ALM (fault signal)! In the VD2-0xxSA1H model, the function code for the DO_2, DO_3, and DO_4 channels are 143 OZ (Z/A/B pulse output), and these 3 channels correspond to the Z-axis, A-axis, and B-axis of the pulse output respectively!

③ The function selection code of DO_2, DO_3 and DO_4 channels in the VD2L-0xxSA1P model are 143 OZ (Z pulse output), and these 3 channels correspond to Z axis, pulse axis, and direction axis of the pulse output respectively!

6.3 Speed control mode

Speed control refers to controlling the speed of the machine through speed instructions. Given the speed instruction by digital voltage or communication, the servo drive can control the mechanical speed fast and precisely. Therefore, the speed control mode is mainly used to control the rotation speed such as analog CNC engraving and milling machine. <u>Figure 6-28</u> is the speed control block diagram.

Figure 6-28 Speed control block diagram

6.3.1 Speed instruction input setting

In speed control mode, VD2A and VD2B servo drives have two instruction sources: internal speed instruction and analog speed instruction. VD2F drive only supports internal speed instruction. Speed instruction source is set by function code P01-01.

Function code	Name	Setting method	Effective time	Default value	Range	Definition	Unit
P01-01	Speed instruction source	Shutdown setting	Effective immediately	0	0 to 1	0: Internal speed instruction 1: Al_1 analog input (not supported by VD2F/VD2L)	-

Table 6-28 Speed instruction source parameter

(1) Speed instruction source is internal speed instruction (P01-01=0)

Speed instruction comes from internal instruction, and the internal speed instruction is given by a number. VD2 series servo drive has internal multi-segment speed running function. There are 8 segments speed instructions stored in servo drive, and the speed of each segment could be set individually. The servo drive uses the 1st segment internal speed by default. To use the 2nd to 8th segment internal speed, the corresponding number of DI terminals must be configured as functions 13, 14, and 15. The detailed parameters and function codes are shown as below.

Wecon VD2 Series Servo Drives Manual (Full V2.4)

Function code	Name	Setting method	Effective time	Default value	Range	Definition	Unit
P01-02	Internal speed Instruction 0	Operation setting	Effective immediately	0	-5000 to 5000	Internal speed instruction 0 When DI input port: 15-INSPD3: 0 14-INSPD2: 0 13-INSPD1: 0, select this speed instruction to be effective.	rpm
P01-23	Internal speed Instruction 1	Operation setting	Effective immediately	0	-5000 to 5000	Internal speed instruction 1 When DI input port: 15-INSPD3: 0 14-INSPD2: 0 13-INSPD1: 1, Select this speed instruction to be effective.	rpm
P01-24	Internal speed Instruction 2	Operation setting	Effective immediately	0	-5000 to 5000	Internal speed instruction 2 When DI input port: 15-INSPD3: 0 14-INSPD2: 1 13-INSPD1: 0, Select this speed instruction to be effective.	rpm
P01-25	Internal speed Instruction 3	Operation setting	Effective immediately	0	-5000 to 5000	Internal speed instruction 3 When DI input port: 15-INSPD3: 0 14-INSPD2: 1 13-INSPD1: 1, Select this speed instruction to be effective.	rpm
P01-26	Internal speed Instruction 4	Operation setting	Effective immediately	0	-5000 to 5000	Internal speed instruction 4 When DI input port: 15-INSPD3: 1 14-INSPD2: 0 13-INSPD1: 0, Select this speed instruction to be effective.	rpm
P01-27	Internal speed Instruction 5	Operation setting	Effective immediately	0	-5000 to 5000	Internal speed instruction 5 When DI input port: 15-INSPD3: 1 14-INSPD2: 0 13-INSPD1: 1, Select this speed instruction to be effective.	rpm
P01-28	Internal speed Instruction 6	Operation setting	Effective immediately	0	-5000 to 5000	Internal speed instruction 6 When DI input port: 15-INSPD3: 1 14-INSPD2: 1 13-INSPD1: 0, Select this speed instruction to be effective.	rpm
P01-29	Internal speed Instruction 7	Operation setting	Effective immediately	0	-5000 to 5000	Internal speed instruction 7 When DI input port: 15-INSPD3: 1 14-INSPD2: 1	rpm

|--|--|

Wecon VD2 Series Servo Drives Manual (Full V2.4)

			13-INSPD1: 1,	
			Select this speed instruction	
			to be effective.	

Table 6-29 Internal speed instruction parameters

DI function code	function name	Function
13	INSPD1 internal speed instruction selection 1	Form internal multi-speed running segment number
14	INSPD2 internal speed instruction selection 2	Form internal multi-speed running segment number
15	INSPD3 internal speed instruction selection 3	Form internal multi-speed running segment number

Table 6-30 DI multi-speed function code description

The multi-speed segment number is a 3-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. The corresponding relationship between INSPD1 to 3 and segment numbers is shown as below.

INSPD3	INSPD2	INSPD1	Running segment number	Internal speed instruction number
0	0	0	1	0
0	0	1	2	1
0	1	0	3	2
1	1	1	8	7

Table 6-31 Correspondence between INSPD bits and segment numbers

Figure 6-29 Multi-segment speed running curve

(2) Speed instruction source is internal speed instruction (P01-01=1)

The servo drive processes the analog voltage signal output by the host computer or other equipment as a speed instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog speed input, and AI_2 is analog speed limit.

Figure 6-30 Analog input circuit

Taking AI_1 as an example, the method of setting the speed instruction of analog voltage is illustrated as below.

Figure 6-31 Analog voltage speed instruction setting steps

Explanation of related terms:

- Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
- Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
- Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.

Figure 6-32 AI_1 diagram before and after bias

Function code	Name	Setting method	Effective time	Default value	Range	Definition	Unit
P05-01★	AI_1 input bias	Operation settings	Effective immediately	0	-5000 to 5000	Set AI_1 channel analog bias value	mV
P05-02★	AI_1 input filter time constant	Operation settings	Effective immediately	200	0 to 60000	Al_1 channel input first-order low-pass filtering time constant	0.01 ms
P05-03★	AI_1 dead zone	Operation settings	Effective immediately	20	0 to 1000	Set Al_1 channel quantity dead zone value	mV
P05-04★	AI_1 zero drift	Operation settings	Effective immediately	0	-500 to 500	Automatic calibration of zero drift inside the drive	mV

Note:

Table 6-32 AI_1 parameter

 \bigstar : Indicates that the VD2F servo drive does not support this function code

 $O\colon$ Indicates that the VD2F servo drive does not support this function code

 \star : Indicates that VD2F and VD2L servo drives do not support this function code

6.3.2 Acceleration and deceleration time setting

The acceleration and deceleration time setting can achieve the expectation of controlling acceleration by converting the speed instruction with higher acceleration into the speed instruction with gentle acceleration.

In the speed control mode, excessive acceleration of the speed instruction will cause the motor to jump or vibrate. Therefore, a suitable acceleration and deceleration time can realize the smooth speed change of the motor and avoid the occurrence of mechanical damage caused by the above situation.

Actual acceleration time T1 = $\frac{\text{speed instruction}}{1000} \times \text{acceleration time}$

Actual deceleration time T2 = $\frac{\text{speed instruction}}{1000} \times \text{deceleration time}$

Function code	Name	Setting method	Effective time	Default value	Range	Definition	Unit
P01-03	Acceleration time	Operation setting	Effective immediately	50	0 to 65535	The time for the speed instruction to accelerate from 0 to 1000rpm	ms
P01-04	Deceleration time	Operation setting	Effective immediately	50	0 to 65535	The time for the speed instruction to decelerate from 1000rpm to 0	ms

Table 6-9 Acceleration and deceleration time parameters

6.3.3 Speed instruction limit

In speed mode, the servo drive could limit the size of the speed instruction. The sources of speed instruction limit include:

- ① P01-10: Set the maximum speed limit value
- ② P01-12: Set forward speed limit value
- ③ P01-13: Set reverse speed limit value
- ④ The maximum speed of the motor: determined by motor model

The actual motor speed limit interval satisfies the following relationship:

The amplitude of forward speed instruction \leq min (Maximum motor speed, P01-10, P01-12) The amplitude of negative speed command \leq min (Maximum motor speed, P01-10, P01-13)

Function code	Name	Setting method	Effective time	Default value	Range	Definition	Unit
P01-10	Maximum speed threshold	Operation setting	Effective immediately	3600	0 to 5000	Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported	rpm
P01-12	Forward speed threshold	Operation setting	Effective immediately	3000	0 to 5000	Set forward speed limit value	rpm
P01-13	Reverse speed threshold	Operation setting	Effective immediately	3000	0 to 5000	Set reverse speed limit value	rpm

Table 6-34 Rotation speed related function codes

6.3.4 Zero-speed clamp function

The zero speed clamp function refers to the speed control mode, when the zero speed clamp signal (ZCLAMP) is valid, and the absolute value of the speed instruction is lower than the zero speed clamp speed threshold (P01-22), the servo motor is at In locked state, the servo drive is in position lock mode at this time, and the speed instruction is invalid.

If the speed instruction amplitude is greater than zero-speed clamp speed threshold, the servo motor exits the locked state and continues to run according to the current input speed instruction.

Function code	Name	Setting method	Effective time	Default value	Range	Definition	Unit
P01-21	Zero-speed clamp function selection	Operation setting	Effective immediately	0	0 to 3	Set the zero-speed clamp function. In speed mode: 0: Force the speed to 0; 1: Force the speed to 0, and keep the position locked when the actual speed is less than P01-22 2: When speed instruction is less than P01-22, force the speed to 0 and keep the position locked 3: Invalid, ignore zero-speed clamp input	-
P01-22	Zero-speed clamp speed threshold	Operation setting	Effective immediately	20	0 to 1000	Set the speed threshold of zero-speed clamp function	rpm

Table 6-35 Zero-speed clamp related parameters

Figure 6-34 Zero-speed clamp diagram

6.3.5 Speed-related DO output function

The feedback value of the position instruction is compared with different thresholds, and could output DO signal for host computer use.

(1) Rotation detection signal

After the speed instruction is filtered, the absolute value of the actual speed absolute value of the servo motor reaches P05-16 (rotation detection speed threshold), it could be considered that the motor is rotating. At this time, the servo drive outputs a rotation detection signal (TGON), which can be used to confirm that the motor has rotated. On the contrary, when the absolute value of the

actual rotation speed of the servo motor is less than P05-16, it is considered that the motor is not rotating.

Figure 6-35 Rotation detection signal diagram

To use the motor rotation detection signal output function, a DO terminal of the servo drive should be assigned to function 132 (T-COIN, rotation detection). The function code parameters and related DO function codes are shown in Table 6-34 and Table 6-35.

Function code	Name	Setting method	Effective time	Default value	Range	Definition	Unit
P05-16	Rotation detection speed threshold	Operation setting	Effective immediately	20	0 to 1000	Set the motor rotation signal judgment threshold	rpm

Table 6-36 Rotation detection speed threshold parameters

DO function code	Function name	Function
132	T-COIN rotation detection	Valid: when the absolute value of motor speed after filtering is greater than or equal to the set value of function code P05-16 Invalid, when the absolute value of motor speed after filtering is less than set value of function code P05-16

Table 6-37 DO rotation detection function code

(2) Zero-speed signal

If the absolute value of the actual speed of servo motor is less than a certain threshold P05-19, it is considered that servo motor stops rotating (close to a standstill), and the servo drive outputs a zero-speed signal (ZSP) at this time. On the contrary, if the absolute value of the actual speed of the servo motor is not less than this value, it is considered that the motor is not at a standstill and the zero-speed signal is invalid.

Figure 6-36 Zero-speed signal diagram

To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in <u>Table 6-36</u> and <u>Table 6-37</u>.

Function code	Name	Setting method	Effective time	Default value	Range	Definition	Unit
P05-19	Zero speed output signal threshold	Operation setting	Effective immediately	10	0 to 6000	Set zero-speed output signal judgment threshold	rpm

Table 6-38 Zer	o-speed outpu	t signal threshol	d parameter
10010 0 00 201	o opeca oatpa	Colonal childen	a parameter

DO function code	Function name	Function				
133	ZSP zero speed signal	Output this signal indicates that the servo motor is stopping rotation				

Table 6-39 DO zero-speed signal function code

(3) Speed consistent signal

When the absolute value of the deviation between the actual speed of the servo motor after filtering and the speed instruction meets a certain threshold P05-17, it is considered that the actual speed of the motor has reached the set value, and the servo drive outputs a speed coincidence signal (V-COIN) at this time. Conversely, if the absolute value of the deviation between the actual speed of the servo motor and the set speed instruction after filtering exceeds the threshold, the speed consistent signal is invalid.

Figure 6-37 Speed consistent signal diagram

To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in <u>Table 6-38</u> and <u>Table 6-39</u>.

Function code	Name	Setting method	Effective time	Default value	Range	Definition	Unit
P05-17	Speed consistent signal threshold	Operation setting	Effective immediately	10	0 to 100	Set speed consistent signal threshold	rpm

Table 6-10 Speed consistent signal threshold parameters

DO Function code	Function name	Function				
126	U-COIN	The output signal indicates that the absolute deviation of the actual speed				
130	consistent speed	of servo motor and the speed instruction meets the P05-17 set value				
	Table 6-11 DO speed consistent function code					

(4) Speed approach signal

After filtering, the absolute value of the actual speed of the servo motor exceeds a certain threshold [P05-17], and it is considered that the actual speed of the servo motor has reached the expected value. At this time, the servo drive can output a speed close signal (V-NEAR) through the DO terminal. Conversely, if the absolute value of the actual speed of the servo motor after filtering is not greater than this value, the speed approach signal is invalid.

Figure 6-38 Speed approaching signal diagram

To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in <u>Table 6-40</u> and <u>Table 6-41</u>.

Function code	Name	Setting method	Effective time	Default value	Range	Definition	Unit
P05-18	Speed approach signal threshold	Operation setting	Effective immediately	100	10 to 6000	Set speed approach signal threshold	rpm

Table 0-42 Speed approaching signal timeshold parameters							
DO function code	Function name	Function					
137	V-NEAR speed approach	The output signal indicates that the actual speed of the servo motor has reached the expected value					

Table 6-42 Speed approaching signal throshold parameter

Table 6-43 DO speed approach function code

6.4 Torque control mode

The current of the servo motor has a cablear relationship with the torque. Therefore, the control of the current can realize the control of the torque. Torque control refers to controlling the output torque of the motor through torque instructions. Torque instruction could be given by internal instruction and analog voltage.

Figure 6-39 Torque mode diagram

6.4.1 Torque instruction input setting

In torque instruction, VD2A and VD2B servo drives have two instruction sources: internal torque instruction and analog torque instruction. VD2F and VD2L drive only has internal torque instruction. The torque instruction source is set by the function code P01-07.

Function code	Name	Setting method	Effective time	Default value	Range	Definition	Unit
P01-07	Torque instruction source	Shutdown settings	Effective immediately	0	0 to 1	0: internal torque instruction 1: Al_1 analog input (not supported by VD2F and VD2L)	-

Table 6-44 Torque instruction source parameter

(1) Torque instruction source is internal torque instruction (P01-07=0)

Torque instruction source is from inside, the value is set by function code P01-08.

Function code	Name	Setting method	Effective time	Default value	Range	Definition	Unit
P01-08	Torque instruction keyboard set value	Operation setting	Effective immediately	0	-3000 to 3000	-300.0% to 300.0%	0.1%

Table 6-45 Torque instruction keyboard set value

(2) Torque instruction source is internal torque instruction (P01-07=1)

The servo drive processes the analog voltage signal output by host computer or other equipment as torque instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog torque input, and AI_2 is analog torque limit.

Figure 6-40 Analog input circuit

Taking AI_1 as an example, the method of setting torque instruction of analog voltage is as below. Start

Set P00-01=3	Set servo to torque control mode
Set P01-07=1	Set external analog as torque instruction source
Set P05-02	Set the filter time constant
Set P05-04	Set zero drift
Set P05-01	Bias settings
Set P05-10	Sets the torque value corresponding to $\pm 10V$
End	

Figure 6-41 Analog voltage torque instruction setting steps

Explanation of related terms:

- Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
- Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
- Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.

Wecon VD2 Series Servo Drives Manual (Full V2.4)

Function code	Name	Setting method	Effective time	Default value	Range	Definition	Unit
P05-01★	AI_1 input bias	Operation setting	Effective immediately	0	-5000 to 5000	Set AI_1 channel analog bias value	mV
P05-02★	AI_1 input filter time constant	Operation setting	Effective immediately	200	0 to 60000	Al_1 channel input first-order low-pass filtering time constant	0.01 ms
P05-03★	AI_1 dead zone	Operation setting	Effective immediately	20	0 to 1000	Set AI_1 channel dead zone value	mV
P05-04★	AI_1 zero drift	Operation setting	Effective immediately	0	-500 to 500	Automatic calibration of zero drift inside the drive	mV

Table 6-46 AI_1 parameter

Note:

 \bigstar : Indicates that the VD2F servo drive does not support this function code

 $\bigcirc\colon$ Indicates that the VD2F servo drive does not support this function code

 \star : Indicates that VD2F and VD2L servo drives do not support this function code

6.4.2 Torque instruction filtering

In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in Figure 6-43.

Function code	Name	Setting method	Effective time	Default value	Range	Definition	Unit
P04-04	Torque filtering time constant	Operation setting	Effective immediately	50	10 to 2500	This parameter is automatically set when "self-adjustment mode selection" is selected as 0	0.01ms

Table 6-47 Torque filtering time constant parameter details

Note: If the filter time constant is set too large, the responsiveness will be reduced. Please set it while confirming the responsiveness.

6.4.3 Torque instruction limit

When the absolute value of torque instruction input by host computer is greater than the absolute value of torque instruction limit, the drive's actual torque instruction is limited and equal to the

`` WECON technology Co., Ltd

limit value of torque instruction. Otherwise, it is equal to the torque instruction value input by host computer.

At any time, there is only one valid torque limit value. And the positive and negative torque limit values do not exceed the maximum torque of drive and motor and ±300.0% of the rated torque.

Figure 6-44 Torque instruction limit diagram

(1) Set torque limit source

You need to set the torque limit source by function code P01-14. After the setting, the drive torque instruction will be limited within the torque limit value. When the torque limit value is reached, the motor will operate with the torque limit value as the torque instruction. The torque limit value should be set according to the load operation requirements. If the setting is too small, the motor's acceleration and deceleration capacity may be weakened. During constant torque operation, the actual motor speed cannot reach the required value.

Function code	Name	Setting method	Effective time	Default value	Range	Definition	Unit
P01-14	Torque limit source	Shutdown setting	Effective immediately	0	0 to 1	0: internal value 1: Al_1 analog input (not supported by VD2F and VD2L)	-

1) Torque limit source is internal torque instruction (P01-14=0)

Torque limit source is from inside, you need to set torque limit, and the value is set by function code P01-15 and P01-16.

Function code	Name	Setting method	Effective time	Default value	Range	Definition	Unit
P01-15	Forward torque limit	Operation setting	Effective immediately	3000	0 to 3000	When P01-14 is set to 0, the value of this function code is forward torque limit value	0.1%
P01-16	Reverse torque limit	Operation setting	Effective immediately	3000	0 to 3000	When P01-14 is set to 0, the value of this function code is reverse torque limit value	0.1%

Table 6-48 Torque limit parameter details

2) Torque limit source is external (P01-14=1)

(2) Set torque limit DO signal output

When torque instruction reaches the torque limit value, the drive outputs a torque limit signal (T-LIMIT) for the host computer use. At this time, one DO terminal of the drive should be assigned to function 139 (T-LIMIT, in torque limit), and confirm that the terminal logic is valid.

DO function code	Function name	Function
139	T-LIMIT in torque limit	Output of this signal indicates that the servo motor torque is limited

Table 6-49 DO torque limit function codes

6.4.4 Speed limit in torque mode

In torque mode, if the given torque instruction is too large to exceed the load torque of the mechanical side. This would cause the servo motor to continuously accelerate and overspeed. In order to protect the machinery, the speed of the motor must be limited.

In torque mode, the actual motor speed would be in the limited speed. After the speed limit is reached, the motor runs at a constant speed at the speed limit. The running curves are shown as Figure 6-45 and Figure 6-46.

Speed	Speed	
Forward speed limit in torque mode P01-17		Time
	Reverse speed limit in torque mode P01-18 Time	

Figure 6-45 Forward running curve					Figure 6-46 Reverse running curve			
Function code	Name	Setting method	Effective time	Default value	Range	Definition	Unit	
P01-17	Forward torque limit in torque mode	Operation setting	Effective immediately	3000	0 to 5000	Forward torque limit in torque mode	0.1%	
P01-18	Reverse torque limit in torque mode	Operation setting	Effective immediately	3000	0 to 5000	Reverse torque limit in torque mode	0.1%	

Table 6-50 Speed limit parameters in torque mode

Note:

Function codes P01-17 and P01-18 are only effective in limiting motor speed **in the torque mode**. The speed limit value is set according to load requirements. To set speed limit in speed mode or position mode, please refer to <u>6.3.3 Speed instruction limit</u>.

6.4.5 Torque-related DO output functions

The feedback value of torque instruction is compared with different thresholds, and could output the DO signal for the host computer use. The DO terminal of the servo drive is assigned to different functions and determine the logic to be valid.

Torque arrival

The torque arrival function is used to determine whether the actual torque instruction reaches the set interval. When the actual torque instruction reaches the torque instruction threshold, the servo drive outputs a torque arrival signal (T-COIN) for the host computer use.

Figure 6-47 Torque arrival output diagram

To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in <u>Table 6-49</u> and <u>Table 6-50</u>.

Function code	Name	Setting method	Effective time	Default value	Range	Definition	Unit
P05-20	Torque arrival threshold	Operation setting	Effective immediately	100	0 to 300	The torque arrival threshold must be used with "Torque arrival hysteresis value": When the actual torque reaches Torque arrival threshold + Torque arrival hysteresis Value, the torque arrival DO is valid; When the actual torque decreases below torque arrival threshold-torque arrival hysteresis value, the torque arrival DO is invalid	%
P05-21	Torque arrival hysteresis	Operation setting	Effective immediately	10	0 to 20	Torque arrival the hysteresis value must be used with Torque arrival threshold	%

Table 6-51 Torque arrival parameters

DO function code	Function name	Function
138	T-COIN	Used to determine whether the actual torque instruction has reached
	torque arrival	the set range

Table 6-52 DO Torque Arrival Function Code

6.5 Mixed control mode

Mixed control mode means that when the servo enable is ON and the status of the servo drive is "run", the mode of the servo drive could be switched between different modes. The VD2 series servo drives have the following 3 mixed control modes:

Position mode ⇔ Speed mode

Position mode 🗇 Torque mode

Speed mode ⇔ Torque mode

Set the function code P00-01 through the software of Wecon "SCTool" or servo drive panel, and the servo drive will run in mixed mode.

Function code	Name	Setting method	Effective time	Default value	Range	Definition	Unit
P00-01	Control mode	Shutdown settings	Shutdown setting	1	1 to 6	1: Position control 2: Speed control 3: Torque control 4: Position/speed mixed control 5: Position/torque mixed control 6: Speed/torque mixed control Note: VD2L drive P0-01 setting range: 1-3. Mix mode is not supported!	_

Table 6-53 Mixed control mode parameters

Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to <u>"9 Parameters</u>". When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid.

DI function code	Name	Function name	Function				
		Mixed mode selection	Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive				
			P00-01	MixModeSel terminal logic	Control mode		
	MixModeSel		Λ	Valid	Speed mode		
17			4	invalid	Position mode		
			E	Valid	Torque mode		
			5	invalid	Position mode		
			6	Valid	Torque mode		
			0	invalid	Speed mode		

Table 6-54 Description of DI function codes in control mode

Note:

In mixed control mode, it is recommended to switch the mode at zero speed or low speed, and the switching process will be smoother.

6.6 Absolute system

6.6.1 Overview

Absolute encoder could detect the position of the servo motor within one turn, and could count the number of turns of the motor. This series of servo drives are equipped with a maximum of 23-bit encoders and could memorize 16-bit multi-turn data, and position, speed, torque control modes could be used. Especially in position control, the absolute value encoder does not need to count, could achieve direct internal high-speed reading and external output, and could significantly reduce the subsequent calculation tasks of the receiving device controller. When the drive is powered off, the encoder uses battery backup data. After power on, the drive uses the encoder's absolute position to calculate the absolute mechanical position, eliminating the need for repeated mechanical origin reset operations.

The absolute value encoder is determined by the mechanical position of the photoelectric code disc, and is not affected by power failure or interference. Each position of the absolute encoder determined by the mechanical position is unique, and no external sensor is required to assist in memorizing position.

6.6.2 Single-turn absolute value system

The single-turn absolute value system is applicable for the equipment load stroke within the single-turn range of the encoder. At this time, the absolute encoder is only as a single-turn system function and does not need to be connected to the battery. The types and information of encoders adapted to VD2 series servo drives are shown as below.

Encoder type	Encoder resolution (bits)	Data range
A1 (single-turn magnetic encoder)	17	0 to 131071

Table 6-55 Single-turn absolute encoder information

The relationship between encoder feedback position and rotating load position is shown in the figure below. (take a 17-bit encoder as an example).

Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position

6.6.3 Multi-turn absolute value system

The encoder adapted to the multi-turn absolute value system is equipped with 16-bit RAM memory. Compared with the single-turn absolute value, it can additionally memorize the number of turns of the 16-bit encoder. The multi-turn absolute encoder is equipped with a battery (the battery is installed on the encoder cable with a battery unit), which can achieve direct internal high-speed readings and external output without the need for external sensors to assist memory positions. The types and information of encoders adapted to VD2 series servo drives are shown as below.

Encoder type	Encoder resolution (bits)	Data range
C1 (multi-turn magnetic encoder)	17	0 to 131071
D2 (multi-turn Optical encoder)	23	0 to 8388607

The relationship between encoder feedback position and rotating load multi-turn is shown in the figure below (take a 23-bit encoder as an example).

Figure 6-49 The relationship between encoder feedback position and rotating load position

Multi-turn absolute value position U0-56 origin setting (only for multi-turn encoders) Under the following two working conditions: 1. The current physical position of the motor cannot reach the absolute zero point (U0-56). The value of U0-56 can be calibrated by moving the motor to the target position and setting the offset value of P10-8. 2. Move the motor to a known position on the machine and use this function to determine the position of U0-56.

P10-08 multi-turn absolute encoder origin offset compensation is used in conjunction with U0-56 multi-turn absolute encoder current position. When setting P10-06=1, the value of U0-56 is updated to the value of P10-8 multi-turn absolute value encoder origin offset compensation at the reset time.

Function code	Name	Setting method	Effective time	Default	Range	Definition	Unit
P10-06	Multi-turn absolute encoder reset	Shutdown setting	Effective immediately	0	0 to 1	0: No operation 1: Clear rotation number of multi-turn absolute encoder,	-

						 multi-turn absolute encoder current position and encoder fault alarms. Note: After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required. 	
P10-08	Multi-turn absolute encoder origin offset compensation	Operation setting	Effective immediately	0	-2147483647 to 2147483646	P10-08 multi-turn absolute encoder origin offset compensation is used in conjunction with U0-56 multi-turn absolute encoder current position. When P10-6 is set to 1, the value of U0-56 is updated to P10-8.	-

6.6.4 Related functions and parameters

(1) Encoder feedback data

The feedback data of the absolute value encoder can be divided into the position within 1 turn of the absolute value encoder and the number of rotations of the absolute value encoder. The related information of the two-feedback data is shown in the table below.

Monitoring number	Category	Name	Unit	Data type
U0-54	Universal	Absolute encoder position within 1 turn	Encoder unit	32-bit
U0-55	Universal	Rotations number of absolute encoder	circle	32-bit
U0-56	Universal	Multi-turn absolute value encoder current position	Instruction unit	32-bit

Table 6-57 Encoder feedback data

(2) Shielded multi-turn absolute encoder battery fault

VD2 series absolute value servo drive provides shielded multi-turn absolute encoder battery fault function to shield under voltage and low-voltage fault. You could set by setting the function code P00-30.

Function code	Name	Setting method	Effective time	Default value	Range	Definition	Unit
P00-30	Shield multi-turn absolute encoder battery fault	Operation setting	Power on again	0	0 to 3	0: Detect multi-turn absolute encoder battery under voltage, and battery low voltage fault 1: [Not recommended] Shield multi-turn absolute motor battery failure alarm. Multi-turn absolute application may cause mechanical fault, only multi-turn absolute encoder motors is used as single-turn absolute 2: [Not recommended] Shield multi-turn absolute value encoder battery under temperature fault, which is very likely to cause mechanical failure. Please use it carefully! 3: [Not recommended] Shield absolute value encoder battery undervoltage and	

			low voltage failure and multi-turn	
			absolute value encoder battery under	
			temperature failure are very likely to	
			cause mechanical failure, please use it	
			carefully!	

This function is permitted when a multi-turn absolute encoder motor is used as a single-turn absolute and when it is confirmed that no mechanical failure will occur.

(3) A93 warning solution

Check the encoder communication wire and its placement, reduce the abnormal frequency, and eliminate A93. In this way, the A93 warning problem can be completely solved, and the operation of the motor will not be affected after the A93 warning is released.

Increase the threshold for encoder read-write check exceptions is only suitable as a temporary solution. Eliminate A93 warning by increasing exception threshold. The disadvantage is that the motor may run in an unstable state.

Function code	Name	Setting method	Effective time	Default	Range	Definition	Unit
P00-31	Encoder read-write check abnormal frequency	Operation setting	immediately Effective	20	0 to100	The setting of the alarm threshold for the abnormal frequency of the encoder read-write 0: no alarm Others: When this setting value is exceeded, report A93.	-

Note: Be sure to use the shield multi-turn absolute encoder battery fault function carefully, otherwise it may cause data loss, mechanical failure, or even personal injury or death.

6.6.5 Absolute value system encoder battery

(1) Cautions

Er.40 (Encoder battery failure) will occur when the battery is turned on for the first time, and the function code P10-03 must be set to 1 to clear the encoder fault to operate the absolute value system again.

Figure 6-50 the encoder battery box

When it is detected that the battery voltage is less than 3.1V, A-92 (Encoder battery low voltage warning) will occur. Please replace the battery in time.

(2) Replace the battery

Please replace the battery while keeping the servo drive and motor well connected and the power on.

The specific replacement method is as follows:

1 Step1 Push open the buckles on both ends of the outer cover of the battery compartment and open the outer cover.

② Step2 Remove the old battery.

③ Step3 Embed the new battery, and the battery plug wire according to the anti-dull port on the battery box for placement.

(4) Step4 Close the outer cover of the battery box, please be careful not to pinch the connector wiring when closing.

When the servo drive is powered off, if the battery is replaced and powered on again, Er.40 (encoder battery failure) will occur, and the multi-turn data will change suddenly. Please set the function code P10-03 or P10-06 to 1 to clear the encoder fault alarms and perform the origin return function operation again.

Function code	Name	Setting method	Effective time	Default value	Range	Definition	Unit
P10-06	Multi-turn absolute encoder reset	Shutdown setting	Effective immediately	0	0 to 1	 0: No operation 1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms. Note: After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required. 	_

Table 6-12 Absolute encoder reset enable parameter

(3) Battery selection

Battery selection specification	ltem	Value
	Standard battery voltage (V)	3.6
Nominal Voltage: 3.6V	Standard cell voltage (V)	3.1
Nominal capacity: 2700mAh	Battery ambient temperature range	0 to 40
	Battery storage ambient temperature range	-20 to 60

Table 6-58 Absolute value encoder battery information

Note:

If the battery is replaced when the servo drive is powered off, the encoder data will be lost. When the servo drive is powered off, please ensure that the maximum speed of motor does not exceed 3000 rpm to ensure that the encoder position information is accurately recorded. Please store the storage device according to the specified ambient temperature, and ensure that the encoder battery has reliable contact and sufficient power, otherwise the encoder position information may be lost.

Correct placement of batteries +, - direction

- Do not disassemble the battery or put the battery into the fire! If the battery is put into the fire or heated, there is a risk of explosion!
- This battery cannot be charged.
- If the battery is left inside the machine after a long period of use or the battery is no longer usable, liquid may leak out, etc. Please replace it as soon as possible! (Recommended to replace every 2 years, you can contact the manufacturer's technical staff for replacement)
- Do not allow the battery to short-circuit or peel the battery skin! Otherwise, there may be a one-time outflow of high current, making the battery's power weakened, or even rupture.

• After the replacement of the battery, please dispose of it according to local laws and regulations.

6.7 Other functions

6.7.1 VDI

VDI (Virtual Digital Signal Input Port) is similar to hardware DI terminal. The DI function could also be assigned for use.

Note: If multiple VDI terminals are configured with the same non-zero DI function, servo drive will occur an error "A-89" (DI port configuration is duplicate).

Take the VDI_1 terminal assignment forward drive prohibition (03-POT) as an example, and the use steps of VDI are as the figure below.

Figure 6-51 VDI_1 setting steps

Function code	Name	Setting method	Effective time	Default value	Range	Definition	Unit
P13-1	Virtual VDI_1 input value	Operation setting	Effective immediately	0	0 to 1	When P06-04 is set to 1, DI_1 channel logic is control by this function code. VDI_1 input level: 0: low level 1: high level	-
P13-2	Virtual VDI_2 input value	Operation setting	Effective immediately	0	0 to 1	When P06-07 is set to 1, DI_2 channel logic is control by this function code. VDI_2 input level: 0: low level 1: high level	-
P13-3	Virtual VDI_3 input value	Operation setting	Effective immediately	0	0 to 1	When P06-10 is set to 1, DI_3 channel logic is control by this function code. VDI_3 input level: 0: low level 1: high level	-
P13-4	Virtual VDI_4 input value	Operation setting	Effective immediately	0	0 to 1	When P06-13 is set to 1, DI_4 channel logic is control by this function code. VDI_4 input level: 0: low level 1: high level	-

P13-05★	Virtual VDI_5 input value	Operation setting	Effective immediately	0	0 to 1	When P06-16 is set to 1, DI_5 channel logic is control by this function code. VDI_5 input level: 0: low level 1: high level	-
P13-06★	Virtual VDI_6 input value	Operation setting	Effective immediately	0	0 to 1	When P06-19 is set to 1, DI_6 channel logic is control by this function code. VDI_6 input level: 0: low level 1: high level	-
P13-07★	Virtual VDI_7 input value	Operation setting	Effective immediately	0	0 to 1	When P06-22 is set to 1, DI_7 channel logic is control by this function code. VDI_7 input level: 0: low level 1: high level	-
P13-08★	Virtual VDI_8 input value	Operation setting	Effective immediately	0	0 to 1	When P06-25 is set to 1, DI_8 channel logic is control by this function code. VDI_8 input level: 0: low level 1: high level	-

Table 6-59 Virtual VDI parameters

♦ Note: "★" means VD2F and V D2L servo drive does not support the function code.

6.7.2 Port filtering time

VD2A and VD2B servo drives have 8 hardware DI terminals (DI_1 to DI_8), and VD2F servo drive has 4 hardware DI terminals (DI_1 to DI_4). All the DI terminals are normal terminals.

Setting value	DI channel logic selection	Illustration
0	Active high level	High level More than 3ms Low level Valid
1	Active low level	Valid High level More than 3ms Low level

Table 6-60 DI terminal channel logic selection

6.7.3 VDO

In addition to being an internal hardware output port, DO terminal is also used as a communication VDO. The communication control DO function could help you to achieve communication control DO output on the servo drive.

Take the DO_2 terminal as communication VDO, and the use steps of VDI are as the figure below.

Function code	Name	Setting method	Effective time	Default value	Range	Definition	Unit
P13-11	Communication VDO_1 output value	Operation setting	Effective immediately	0	0 to 1	VDO_1 output level: 0: low level 1: high level	-
P13-12	Communication VDO_2 output value	Operation setting	Effective immediately	0	0 to 1	VDO_2 output level: 0: low level 1: high level	-
P13-13	Communication VDO_3 output value	Operation setting	Effective immediately	0	0 to 1	VDO_3 output level: 0: low level 1: high level	-
P13-14	Communication VDO_4 output value	Operation setting	Effective immediately	0	0 to 1	VDO_4 output level: 0: low level 1: high level	-

Figure 6-52 VDO_2 setting steps

Table 6-61 Communication control DO function parameters

DO function number	Function name	Function
145	COM_VDO1 communication VDO1 output	Use communication VDO
146	COM_VDO1 communication VDO2 output	Use communication VDO
147	COM_VDO1 communication VDO3 output	Use communication VDO
148	COM_VDO1 communication VDO4output	Use communication VDO

Table 6-62 VDO function number

Note:

You are advised to configure function codes for DO terminals in sequence to avoid errors during DO signal observation

If multiple DO terminals are configured with the same non-128 DI function, servo drive will occur an error "A-90" (DO port configuration is duplicate).

6.7.4 Motor overload protection

VD2 Series absolute encoder (VD2SA) servo drive provides motor overload protection to prevent motor burning due to high temperature. By setting function code P10-04 to modify motor overload alarm (A-82) and motor overload protection fault time (Er.34). The default value of P10-04 is 100%.

Function code	Name	Setting method	Effective time	Default value	Range	Definition	Unit
P10-04	motor overload protection time coefficient	Operation setting	Effective immediately	100	0 to 800	According to the heating condition of the motor, the value could be modified to make the overload protection time float up and down in the reference value. 50 corresponds to 50%, that is, the time is reduced by half. 300 corresponds to 300%, that is, the time extended to 3 times. When the value is set to 0, the overload protection fault detection function is disabled	%

In the following cases, it could be modified according to the actual heat generation of the motor

(1) The motor works in a place with high ambient temperature

2 The motor runs in cycle circulates, and the single running cycle is short and the acceleration and deceleration is frequent.

6.8 Homing Mode (HM)

The homing mode is used to find the mechanical origin and locate the positional relationship between the mechanical origin and the mechanical zero.

Mechanical origin: A fixed position on the machine can correspond to a certain origin switch or motor Z signal.

Mechanical zero point: Mechanically absolute 0 position.

After the homing, the stop position of the motor is the mechanical origin. By setting P10-08, the relationship between the mechanical origin and the mechanical zero can be set:

Mechanical origin = Mechanical zero +P10-08 (origin offset)

When P10-08=0, the mechanical origin coincides with the mechanical zero.

6.8.1 Control block diagram

Figure 6-53 Homing mode control block diagram

6.8.2 Homing mode related function codes

Function code	Name	Setting method	Effective time	Default value	Range	Definition	Unit
P01-39	Homing start mode	Stop setting	Effective immediately	0	0 to 2	0: Close 1: Start homing after the servo is powered and first ON 2: DI enable	-
P01-40	Homing start mode	Stop setting	Effective immediately	0	0 to 35	0 ~ 35 Homing mode; Note: VD2 currently does not support 15, 16, 31, 32 modes	-

Wecon VD2 Series Servo Drives Manual (Full V2.4)

P01-41	Homing high speed	Operation setting	Effective immediately	300	1 to 3000	The speed of the high-speed search deceleration point signal in the homing mode	rpm
P01-42	Homing low speed	Operation setting	Effective immediately	60	1 to 300	The speed of the low-speed search deceleration point signal in the homing mode	rpm
P01-43	Homing acc/dec time	Operation setting	Effective immediately	50	1 to 1000	Acceleration and deceleration in homing mode Time for speed acceleration from 0 to 1000rpm	ms
P01-44	Homing timeout limit	Operation setting	Effective immediately	65535	100 to 65535	Homing timeout limit	ms
P10-08	Multi-turn absolute encoder origin offset compensat ion	Operation setting	Effective immediately	0	-21474 83647 to 21474 83646	P10-08 multi-turn absolute encoder origin offset compensation is used in conjunction with U0-56 multi-turn absolute encoder current position. When P10-6 is set to 1, the value of U0-56 is updated to P10-8.	_

6.8.3 Introduction to homing mode

In the following figure, "H" represents P01-41 (homing high speed), and "L" represents P01-42 (homing low speed).

(1) P01-40 =1

Mechanical origin: Motor Z signal Deceleration point: Reverse limit switch (NOT)

1 The deceleration point signal is invalid when starting homing

When the motor starts to move, NOT=0, the servo motor run in the high-speed in reverse direction until it meets the rising edge of NOT, it decelerates and reverses the direction, runs at a low speed in the forward direction, and stops at the first Z signal after encountering the falling edge of NOT.

(2) The deceleration point signal is valid when starting homing

When the motor starts to move when NOT=1, it directly run in low speed in the forward direction, and stops at the first Z signal after encountering the falling edge of NOT.

(2) P01-40=2

Mechanical origin: Motor Z signal Deceleration point: Positive Limit Switch (POT)

				РОТ
V//////	///////////////////////////////////////	///////////////////////////////////////		///////////////////////////////////////
	Movement trajectory	I	Н	
			•	-L
Z signal				
DOT				
PUT signa	u			

When the motor starts to move and POT = 0, the servo motor run in the high-speed ins forward direction until it meets the rising edge of POT, it decelerates and reverses, runs at a reverse low speed, and stops at the first Z signal after encountering the falling edge of POT.

(2) The deceleration point signal is valid when starting homing

When the motor starts to home and POT=1, it directly starts to move at low speed in the reverse direction, and stops at the first Z signal after encountering the falling edge of NOT.

(3) P01-40=3

Mechanical origin: Motor Z signal Deceleration point: Home switch (HW)

1) The deceleration point signal is invalid when starting homing

The motor starts to move and HW = 0. It starts to move at a forward high speed. After encountering the rising edge of HW, it decelerates and reverses the direction. It runs at a

reverse low speed. After encountering the falling edge of HW, it continues to run, and then stops when encountering the first Z signal.

(2) The deceleration point signal is valid when starting homing

When the motor starts to home and HW=1, it directly starts to move at low speed in the reverse direction, and stops at the first Z signal after encountering the falling edge of HW.

(4) P01-40=4

Mechanical origin: Motor Z signal Deceleration point: Home switch (HW)

1 The deceleration point signal is invalid when starting homing

When the motor starts to home and HW=0, it directly starts to move at low speed in the forward direction, and stops at the first Z signal after encountering the rising edge of HW.

2 The deceleration point signal is valid when starting homing

The motor starts to move and HW = 1, It starts to move at a high speed in the reverse direction. After encountering the falling edge of HW, It decelerates and reverses, runs at a low speed in the forward direction, and stops at the first Z signal after encountering the rising edge of HW.

(5) P01-40=5

Mechanical origin: Motor Z signal Deceleration point: Home switch (HW)

1 The deceleration point signal is invalid when starting homing

When the motor start to move and HW = 0, and it starts to move at a reverse high speed. After encountering the rising edge of HW, it decelerates and reverses the direction, runs at a forward low speed, and stops at the first Z signal after encountering the falling edge of HW.

2 The deceleration point signal is valid when starting homing

When the motor starts to home and HW=1, it directly starts to move at low speed in the forward direction, and stops at the first Z signal after encountering the falling edge of HW.

(6) P01-40=6

Mechanical origin: Motor Z signal Deceleration point: Home switch (HW)

1 The deceleration point signal is invalid when starting homing

When the motor starts to home and HW=0, it directly starts to move at low speed in the reverse direction, and stops at the first Z signal after encountering the rising edge of HW.

2 The deceleration point signal is valid when starting homing

When the motor starts to home and HW = 1, it starts to move at a forward high speed. After encountering the falling edge of HW, it decelerates and reverses the direction, runs at a reverse low speed, and stops at the first Z signal after encountering the rising edge of HW.

(7) P01-40=7

Mechanical origin: Motor Z signal Deceleration point: Home switch (HW)

(1) The deceleration point signal is invalid when starting homing, the forward limit switch is not encountered

When the motor starts to home and HW = 0, it starts to move at a forward high speed. If the limit switch is not encountered, after encountering the rising edge of HW, it decelerates

and reverses the direction, and runs at a reverse low speed, and stops at the first Z signal after encountering the rising edge of HW.

2 When homing, the deceleration point signal is invalid and the forward limit switch is encountered

When the motor starts to home and HW = 0, it starts to move at a forward high speed. If the limit switch is encountered, it will reverse and run at a reverse high speed. After encountering the rising edge of HW, it decelerates and runs at a reverse low speed, and stops at the first Z signal after encountering the rising edge of HW.

When the motor starts to home and HW=1, it directly starts to move at low speed in the reverse direction, and stops at the first Z signal after encountering the falling edge of HW.

(8) P01-40=8

Mechanical origin: Motor Z signal Deceleration point: Home switch (HW)

1 The deceleration point signal is invalid when starting homing, the forward limit switch is not encountered

When it starts to home and HW = 0, it starts to move at a forward high speed. If the limit switch is not encountered, after encountering the rising edge of HW, it decelerates and reverses the direction, and runs at a reverse low speed. After encountering the falling edge of HW, it reverses and runs at a forward low speed, and stops at the first Z signal after encountering the rising edge of HW.

(2) The deceleration point signal is invalid when starting homing, the forward limit switch is encountered

When the motor starts to home and HW = 0, it starts to move at a forward high speed. If the limit switch is encountered, it will reverse and run at a reverse high speed. After encountering the rising edge of HW, it decelerates and runs at a reverse low speed. After encountering the falling edge of HW, it reverses and runs at a forward low speed, and stops at the first Z signal after encountering the rising edge of HW.

③ The deceleration point signal is valid when starting homing

When the motor starts to home and HW=1, it directly starts to move at low speed in the reverse direction. After encountering the falling edge of HW, it reverses and runs at a forward low speed, and stops at the first Z signal after encountering the rising edge of HW.

(9) P01-40=9

Mechanical origin: Motor Z signal Deceleration point: Home switch (HW)

1 The deceleration point signal is invalid when starting homing, the forward limit switch is not encountered

When the motor starts to home and HW = 0, it starts to move at a forward high speed. If the limit switch is not encountered, after encountering the rising edge of HW, it decelerates and runs at a forward low speed. After encountering the falling edge of HW, it reverses and runs at a reverse low speed, and stops at the first Z signal after encountering the rising edge of HW.

(2) The deceleration point signal is invalid when starting homing, the forward limit switch is encountered

When the motor starts to home and HW = 0, it starts to move at a forward high speed. If the limit switch is encountered, it will reverse and run at a reverse high speed. After encountering the rising edge of HW, it decelerates and runs at a forward low speed. After encountering the falling edge of HW, it reverses and runs at a reverse low speed, and stops at the first Z signal after encountering the rising edge of HW.

When the motor starts to home and HW=1, it directly starts to move at low speed in the forward direction. After encountering the falling edge of HW, it reverses and runs at a reverse low speed, and stops at the first Z signal after encountering the rising edge of HW;

(10) P01-40=10

Mechanical origin: Motor Z signal Deceleration point: Home switch (HW)

1 The deceleration point signal is invalid when starting homing, the forward limit switch is not encountered

When the motor starts to home and HW = 0, it starts to move at a forward high speed. If the limit switch is not encountered, after encountering the rising edge of HW, it decelerates and runs at a forward low speed, and stops at the first Z signal after encountering the falling edge of HW.

2)When homing, the deceleration point signal is invalid and the forward limit switch is encountered

When the motor starts to home and HW = 0, it starts to move at a forward high speed. If the limit switch is encountered, it will reverse and run at a reverse high speed. After encountering the rising edge of HW, it decelerates and runs at a forward low speed. After encountering the falling edge of HW, it reverses and runs at a forward low speed, and stops at the first Z signal after encountering the falling edge of HW.

③ The deceleration point signal is valid when starting homing

When the motor starts to home and HW=1, it directly starts to move at low speed in the forward direction, and stops at the first Z signal after encountering the falling edge of HW.

(11) P01-40=11

Mechanical origin: Motor Z signal Deceleration point: Home switch (HW)

1 The deceleration point signal is invalid when starting homing, the reverse limit switch is not encountered

When the motor starts to home and HW = 0, it starts to move at a reverse high speed. If the limit switch is not encountered, after encountering the rising edge of HW, it decelerates and runs at a forward low speed, and stops at the first Z signal after encountering the falling edge of HW.

(2) The deceleration point signal is invalid when starting homing, the reverse limit switch is encountered

When the motor starts to home and HW = 0, it starts to move at a reverse high speed. If the limit switch is encountered, it will reverse and run at a forward high speed. After encountering the rising edge of HW, it decelerates and runs at a forward low speed, and stops at the first Z signal after encountering the falling edge of HW.

③ The deceleration point signal is valid when starting homing

When the motor starts to home and HW=1, it directly starts to move at low speed in the forward direction, and stops at the first Z signal after encountering the falling edge of HW.

(12) P01-40=12

Mechanical origin: Motor Z signal Deceleration point: Home switch (HW)

(1) The deceleration point signal is invalid when starting homing, the reverse limit switch is not encountered

When the motor starts to home and HW = 0, it starts to move at a reverse high speed. If the limit switch is not encountered, after encountering the rising edge of HW, it decelerates and runs at a forward low speed After encountering the falling edge of HW, it reverses and runs at a reverse low speed, and stops at the first Z signal after encountering the rising edge of HW.

(2) The deceleration point signal is invalid when starting homing, the reverse limit switch is encountered

When the motor starts to home and HW = 0, it starts to move at a reverse high speed. If the limit switch is encountered, it will reverse and run at a forward high speed. After encountering the rising edge of HW, it decelerates and runs at a forward low speed. After encountering the falling edge of HW, it reverses and runs at a reverse low speed, and stops at the first Z signal after encountering the rising edge of HW.

When the motor starts to home and HW=1, it directly starts to move at low speed in the forward direction. After encountering the falling edge of HW, it reverses and runs at a reverse low speed, and stops at the first Z signal after encountering the rising edge of HW.

(13) P01-40=13

Mechanical origin: Motor Z signal Deceleration point: Home switch (HW)

1 The deceleration point signal is invalid when starting homing, the reverse limit switch is not encountered

When the motor starts to home and HW = 0, it starts to move at a reverse high speed. If the limit switch is not encountered, after encountering the rising edge of HW, it decelerates and runs at a reverse low speed. After encountering the falling edge of HW, it reverses and runs at a forward low speed, and stops at the first Z signal after encountering the rising edge of HW.

(2) The deceleration point signal is invalid when starting homing, the reverse limit switch is encountered

When the motor starts to home and HW = 0, it starts to move at a reverse high speed. If the limit switch is encountered, it will reverse and run at a forward high speed. After encountering the rising edge of HW, it decelerates and runs at a reverse low speed. After encountering the falling edge of HW, it reverses and runs at a forward low speed, and stops at the first Z signal after encountering the rising edge of HW.

When the motor starts to home and HW=1, it directly starts to move at low speed in the reverse direction. After encountering the falling edge of HW, it reverses and runs at a forward low speed, and stops at the first Z signal after encountering the rising edge of HW.

(14) P01-40=14

Mechanical origin: Motor Z signal Deceleration point: Home switch (HW)

(1) The deceleration point signal is invalid when starting homing, the reverse limit switch is not encountered

When the motor starts to home and HW = 0, it starts to move at a reverse high speed. If the limit switch is not encountered, after encountering the rising edge of HW, it decelerates and runs at a reverse low speed, and stops at the first Z signal after encountering the falling edge of HW.

(2) The deceleration point signal is invalid when starting homing, the reverse limit switch is encountered

When the motor starts to home and HW = 0, it starts to move at a reverse high speed. If the limit switch is encountered, it will reverse and run at a forward high speed. After encountering the rising edge of HW, it decelerates and runs at a reverse low speed, and stops at the first Z signal after encountering the falling edge of HW.

③ The deceleration point signal is valid when starting homing

When the motor starts to home and HW=1, it directly starts to move at low speed in the reverse direction, and stops at the first Z signal after encountering the falling edge of HW.

(15) P01-40=17

Mechanical origin: Negative overtravel switch (NOT) Deceleration point: Negative overtravel switch (NOT)

1 The deceleration point signal is invalid when starting homing

When the motor starts to home and NOT = 0, it starts to move at a reverse high speed. After encountering the rising edge of NOT, it decelerates and runs at a forward low speed, and stops after encountering the falling edge of NOT.

(2) The deceleration point signal is valid when starting homing

the motor starts to home and NOT=1, it directly starts to move at low speed in the forward direction, and stops after encountering the falling edge of NOT

(16) P01-40=18

Mechanical origin: Positive overtravel switch (POT) Deceleration point: Positive overtravel switch (POT)

When the motor starts to home and POT = 0, it starts to move at a forward high speed. After encountering the rising edge of POT, it decelerates and runs at a reverse low speed, and stops after encountering the falling edge of POT.

2 The deceleration point signal is valid when starting homing

When the motor starts to home and POT=1, it directly starts to move at low speed in the reverse direction, and stops after encountering the falling edge of POT

(17) P01-40=19

Mechanical origin: Home switch (HW) Deceleration point: Home switch (HW)

When the motor starts to home and HW = 0, it starts to move at a forward high speed. After encountering the rising edge of HW, it decelerates and runs at a reverse low speed, and stops after encountering the falling edge of HW.

(2) The deceleration point signal is valid when starting homing

When the motor starts to home and HW =1, it directly starts to move at low speed in the reverse direction, and stops after encountering the falling edge of HW.

(18) P01-40=20

Mechanical homing: Home switch (HW) Deceleration point: Home switch (HW)

When the motor starts to home and HW =0, it directly starts to move at low speed in the forward direction, and stops after encountering the rising edge of HW.

(2) The deceleration point signal is valid when starting homing

When the motor starts to home and HW = 1, it starts to move at a reverse high speed. After encountering the falling edge of HW, it decelerates and runs at a forward low speed, and stops after encountering the rising edge of HW.

(19) P01-40=21

Mechanical origin: Home switch (HW) Deceleration point: Home switch (HW)

When the motor starts to home and HW = 0, it starts to move at a reverse high speed. After encountering the rising edge of HW, it decelerates and runs at a forward low speed, and stops after encountering the falling edge of HW.

(2) The deceleration point signal is valid when starting homing

When the motor starts to home and HW =1, it directly starts to move at low speed in the forward direction, and stops after encountering the falling edge of HW.

(20) P01-40=22

Mechanical origin: Home switch (HW) Deceleration point: Home switch (HW)

When the motor starts to home and HW =0, it directly starts to move at low speed in the reverse direction, and stops after encountering the rising edge of HW.

②Deceleration point signal is valid when homing start

When the motor starts to home and HW = 1, it starts to move at a forward high speed. After encountering the falling edge of HW, it decelerates and runs at a reverse low speed, and stops after encountering the rising edge of HW.

(21) P01-40=23

Mechanical origin: Home switch (HW) Deceleration point: Home switch (HW)

(1) The deceleration point signal is invalid when starting homing, the forward limit switch is not encountered

When the motor starts to home and HW = 0, it starts to move at a forward high speed. If the limit switch is not encountered, after encountering the rising edge of HW, it decelerates and runs at a reverse low speed, and stops after encountering the falling edge of HW.

(2) The deceleration point signal is invalid when starting homing, the forward limit switch is encountered

When the motor starts to home and HW = 0, it starts to move at a forward high speed. If the limit switch is encountered, it will reverse and run at a reverse high speed. After encountering the rising edge of HW, it decelerates and runs at a reverse low speed, and stops after encountering the falling edge of HW.

When the motor starts to home and HW = 0, it starts to move at a forward high speed. If the limit switch is encountered, it will reverse and run at a reverse high speed. After encountering the rising edge of HW, it decelerates and runs at a reverse low speed, and stops after encountering the falling edge of HW.

(22) P01-40=24

Mechanical origin: Home switch (HW) Deceleration point: Home switch (HW)

(1) The deceleration point signal is invalid when starting homing, the forward limit switch is not encountered

When the motor starts to home and HW = 0, it starts to move at a forward high speed. If the limit switch is not encountered, after encountering the rising edge of HW, it decelerates

and runs at a reverse low speed After encountering the falling edge of HW, it reverses and runs at a forward low speed, and stops after encountering the rising edge of HW.

2 The deceleration point signal is invalid when starting homing, the forward limit switch is encountered

When the motor starts to home and HW = 0, it starts to move at a forward high speed. If the limit switch is encountered, it will reverse and run at a reverse high speed. After encountering the rising edge of HW, it decelerates and runs at a reverse low speed. After encountering the falling edge of HW, it reverses and runs at a forward low speed, and stops after encountering the rising edge of HW.

When the motor starts to home and HW=1, it directly starts to move at low speed in the reverse direction. After encountering the falling edge of HW, it reverses and runs at a forward low speed, and stops after encountering the rising edge of HW.

(23) P01-40=25

Mechanical origin: Home switch (HW)

Deceleration point: Home switch (HW)

(1) The deceleration point signal is invalid when starting homing, the forward limit switch is not encountered

When the motor starts to home and HW = 0, it starts to move at a forward high speed. If the limit switch is not encountered, after encountering the rising edge of HW, it decelerates and runs at a forward low speed. After encountering the falling edge of HW, it reverses and runs at a reverse low speed, and stops after encountering the rising edge of HW.

(2) The deceleration point signal is invalid when starting homing, the forward limit switch is encountered

When the motor starts to home and HW = 0, it starts to move at a forward high speed. If the limit switch is encountered, it will reverse and run at a reverse high speed. After encountering the rising edge of HW, it decelerates and runs at a forward low speed. After encountering the falling edge of HW, it reverses and runs at a reverse low speed, and stops after encountering the rising edge of HW.

When the motor starts to home and HW=1, it directly starts to move at low speed in the forward direction. After encountering the falling edge of HW, it reverses and runs at a reverse low speed, and stops after encountering the rising edge of HW.

(24) P01-40=26

Mechanical origin: Home switch (HW)

Deceleration point: Home switch (HW)

(1) The deceleration point signal is invalid when starting homing, the forward limit switch is not encountered

When the motor starts to home and HW = 0, it starts to move at a forward high speed. If the limit switch is not encountered, after encountering the rising edge of HW, it decelerates and runs at a forward low speed, and stops after encountering the falling edge of HW.

2 The deceleration point signal is invalid when starting homing, the forward limit switch is encountered

When the motor starts to home and HW = 0, it starts to move at a forward high speed. If the limit switch is encountered, it will reverse and run at a reverse high speed. After encountering the rising edge of HW, it decelerates and runs at a forward low speed, and stops after encountering the falling edge of HW.

③ The deceleration point signal is valid when starting homing

When the motor starts to home and HW=1, it directly starts to move at low speed in the forward direction, and stops after encountering the falling edge of HW.

(25) P01-40=27

Mechanical origin: Home switch (HW) Deceleration point: Home switch (HW)

(1) The deceleration point signal is invalid when starting homing, the reverse limit switch is not encountered

When the motor starts to home and HW = 0, it starts to move at a reverse high speed. If the limit switch is not encountered, after encountering the rising edge of HW, it decelerates and runs at a forward low speed, and stops after encountering the falling edge of HW.

(2) The deceleration point signal is invalid when starting homing, the reverse limit switch is encountered

When the motor starts to home and HW = 0, it starts to move at a reverse high speed. If the limit switch is encountered, it will reverse and run at a forward high speed. After

encountering the rising edge of HW, it decelerates and runs at a forward low speed, and stops after encountering the falling edge of HW.

③ The deceleration point signal is valid when starting homing

When the motor starts to home, HW=1, it directly starts to move at low speed in the forward direction, and stops after encountering the falling edge of HW.

(26) P01-40=28

Mechanical origin: Home switch (HW)

Deceleration point: Home switch (HW)

(1) The deceleration point signal is invalid when starting homing, the reverse limit switch is not encountered

When the motor starts to home and HW = 0, it starts to move at a reverse high speed. If the limit switch is not encountered, after encountering the rising edge of HW, it decelerates and runs at a forward low speed. After encountering the falling edge of HW, it reverses and runs at a reverse low speed, and stops after encountering the rising edge of HW.

2 The deceleration point signal is invalid when starting homing, the reverse limit switch is encountered

When the motor starts to home and HW = 0, it starts to move at a reverse high speed. If the limit switch is encountered, it will reverse and run at a forward high speed. After encountering the rising edge of HW, it decelerates and runs at a forward low speed. After encountering the falling edge of HW, it reverses and runs at a reverse low speed, and stops after encountering the rising edge of HW.

③ The deceleration point signal is valid when starting homing

When the motor starts to home and HW=1, it directly starts to move at low speed in the forward direction. After encountering the falling edge of HW, it reverses and runs at a reverse low speed, and stops after encountering the rising edge of HW.

(27) P01-40=29

Mechanical origin: Home switch (HW) Deceleration point: Home switch (HW)

1 The deceleration point signal is invalid when starting homing, the reverse limit switch is not encountered

When the motor starts to home and HW = 0, it starts to move at a reverse high speed. If the limit switch is not encountered, after encountering the rising edge of HW, it decelerates and runs at a reverse low speed. After encountering the falling edge of HW, it reverses and runs at a forward low speed, and stops after encountering the rising edge of HW.

(1) The deceleration point signal is invalid when starting homing, the reverse limit switch is encountered

When the motor starts to home and HW = 0, it starts to move at a reverse high speed. If the limit switch is encountered, it will reverse and run at a forward high speed. After encountering the rising edge of HW, it decelerates and runs at a reverse low speed. After encountering the falling edge of HW, it reverses and runs at a forward low speed, and stops after encountering the rising edge of HW.

3 The deceleration point signal is valid when starting homing

When the motor starts to home and HW=1, it directly starts to move at low speed in the reverse direction. After encountering the falling edge of HW, it reverses and runs at a forward low speed, and stops after encountering the rising edge of HW.

(28) P01-40=30

Mechanical origin: Home switch (HW) Deceleration point: Home switch (HW)

(1) The deceleration point signal is invalid when starting homing, the reverse limit switch is not encountered

When the motor starts to home and HW = 0, it starts to move at a reverse high speed. If the limit switch is not encountered, after encountering the rising edge of HW, it decelerates and runs at a reverse low speed, and stops after encountering the falling edge of HW.

(2) The deceleration point signal is invalid when starting homing, the reverse limit switch is encountered

When the motor starts to home and HW = 0, it starts to move at a reverse high speed. If the limit switch is encountered, it will reverse and run at a forward high speed. After encountering the rising edge of HW, it decelerates and runs at a reverse low speed, and stops after encountering the falling edge of HW.

③ The deceleration point signal is valid when starting homing

When the motor starts to home and HW=1, it directly starts to move at low speed in the reverse direction, and stops after encountering the falling edge of HW.

(29) P01-40=33 and P01-40=34

Mechanical origin: Z signal.

Deceleration point: None

Homing mode 33: The motor runs at low speed in the reverse direction and stops at the first Z signal it encounters.

Homing mode 34: The motor runs at low speed in the forward direction and stops at the first Z signal it encounters.

(30) P01-40=35

Homing mode 35: When the motor starts to home, it sets the current position as the mechanical origin (P01-39: $0x00 \rightarrow 0x01/0x00 \rightarrow 0x02$). After the homing is completed, it executes P10-06 (encoder multi-turn reset operation) according to the setting value of P10-08 (origin offset compensation)

7.1 Overview

The servo drive needs to make the motor faithfully operate in accordance with the instructions issued by the upper controller without delay as much as possible. In order to make the motor action closer to the instruction and maximize the mechanical performance, gain adjustment is required. The process of gain adjustment is shown in figure 7-1.

Figure 7-1 Gain adjustment process

The servo gain is composed of multiple sets of parameters such as position loop, speed loop, filter, load inertia ratio, etc., and they affect each other. In the process of setting the servo gain, the balance between the setting values of each parameter must be considered.

Note: Before adjusting the gain, it is recommended to perform a jog trial run first to ensure that the servo motor can operate normally!

The gain adjustment process description is shown in the table below.

	Gain adjust	ment process	Function	Detailed chapter
1	Oncable in	ertia recognition	Use the host computer debugging platform software matched with the drive to automatically identify the load inertia ratio. With its own inertia recognition function, the drive automatically calculates the load inertia ratio.	<u>7.2</u>
2	Automatic gain adjustment		On the premise of setting the inertia ratio correctly, the drive automatically adjusts a set of matching gain parameters.	<u>7.3.1</u>
	Manual gain adjustment F	Basic gain	On the basis of automatic gain adjustment, if the expected effect is not achieved, manually fine-tune the gain to optimize the effect.	<u>7.3.2</u>
3		Feedforward gain	The feedforward function is enabled to improve the followability.	<u>7.3.3</u>
		Model tracking control	Enable Model tracking control, shortening the responding time and improving followability.	7.3.4
4	Vibration suppression	Mechanical resonance	The notch filter function is enabled to suppress mechanical resonance.	<u>7.4.1</u>
		Low frequency vibration suppression	Enable low frequency vibration suppression	7.4.3
		Type A vibration suppression	Enable type A vibration suppression	7.4.4

Table 7-1 Description of gain adjustment process

7.2 Inertia recognition

Load inertia ratio P03-01 refers to:

Total moment of inertia of mechanical load

Sefore performing oncable load inertia recognition, the following conditions should be met: The maximum speed of the motor should be greater than 300rpm;

The actual load inertia ratio is between 0.00 and 100.00;

The load torque is relatively stable, and the load cannot change drastically during the measurement process;

The backlash of the load transmission mechanism is within a certain range;

S The motor's runable stroke should meet two requirements:

There is a movable stroke of more than 1 turn in both forward and reverse directions between the mechanical limit switches.

Before performing oncable inertia recognition, please make sure that the limit switch has been installed on the machine, and that the motor has a movable stroke of more than 1 turn each in the forward and reverse directions to prevent overtravel during the inertia recognition process and cause accidents.

Meet the requirement of inertia recognition turns P03-05.

Make sure that the motor's runable stroke at the stop position is greater than the set value of the

number of inertia recognition circles P03-05, otherwise the maximum speed of inertia recognition P03-06 should be appropriately reduced.

During the automatic load inertia recognition process, if vibration occurs, the load inertia recognition should be stopped immediately.

The related function codes are shown in the table below.							
Function code	Name	Setting method	Effective time	Default value	Range	Definition	Unit
P03-01	Load inertia ratio	Operation setting	Effective immediately	300	100 to 10000	Set load inertia ratio, 0.00 to 100.00 times	0.01
P03-05	Inertia recognition turns	Shutdown setting	Effective immediately	2	1 to 20	Offcable load inertia recognition process, motor rotation number setting	circle
P03-06	Inertia recognition maximum speed	Shutdown setting	Effective immediately	1000	300 to 2000	Set the allowable maximum motor speed instruction in offcable inertia recognition mode. The faster the speed during inertia recognition, the more accurate the recognition result will be. Usually, you can keep the default value.	rpm
P03-07	Parameter recognition rotation direction	Shutdown setting	Effective immediately	0	0 to 2	0: Forward and reverse reciprocating rotation 1: Forward one-way rotation 2: Reverse one-way rotation	-

Table 7-2 Related parameters of gain adjustment

7.3 Gain adjustment

In order to optimize the responsiveness of the servo drive, the servo gain set in the servo drive needs to be adjusted. Servo gain needs to set multiple parameter combinations, which will affect each other. Therefore, the adjustment of servo gain must consider the relationship between each parameter.

Under normal circumstances, high-rigidity machinery can improve the response performance by increasing the servo gain. But for machines with lower rigidity, when the servo gain is increased, vibration may occur, and then affects the increase in gain. Therefore, selecting appropriate servo gain parameters can achieve higher response and stable performance.

The servo supports automatic gain adjustment and manual gain adjustment. It is recommended to use automatic gain adjustment first.

7.3.1 Automatic gain adjustment

Automatic gain adjustment means that through the rigidity level selection function P03-02, the servo drive will automatically generate a set of matching gain parameters to meet the requirements of rapidity and stability.

The rigidity of the servo refers to the ability of the motor rotor to resist load inertia, that is, the self-locking ability of the motor rotor. The stronger the servo rigidity, the larger the corresponding position loop gain and speed loop gain, and the faster the response speed of the system.

Before adjusting the rigidity grade, set the appropriate load inertia ratio P03-01 correctly.

VD2L drive does not support automatic gain adjustment!

The value range of the rigidity grade is between 0 and 31. Grade 0 corresponds to the weakest rigidity and minimum gain, and grade 31 corresponds to the strongest rigidity and maximum gain. According to different load types, the values in the table below are for reference.

Rigidity grade Load mechanism type		
Grade 4 to 8	Some large machinery	
Grade 8 to 15	Low rigidity applications such as belts	
Grade 15 to 20	High rigidity applications such as ball screw and direct connection	

Table 7-3 Experience reference of rigidity grade

When the function code P03-03 is set to 0, the gain parameters are stored in the first gain by modifying the rigidity grade.

When debugging with the host computer debugging software, automatic rigidity level measurement can be carried out, which is used to select a set of appropriate rigidity grades as operating parameters. The operation steps are as follows:

① Confirm that the servo is in the ready state, the panel displays "rdy", and the communication cable is connected;

② Open the Wecon SCTool, go to the "Debugging" interface, enter the trial run interface, set the corresponding parameters, and click "Servo on";

③ Click the "Forward rotation" or "Reverse rotation" button to confirm the travel range of the servo operation;

④ After the "Identify" of inertia recognition lights up, click "Identify" to

perform inertia recognition, and the load inertia can be measured.

⑤ After the inertia recognition test is completed, click "Save inertia value";

6 Click "Next " bottom to go to the parameter adjustment interface, and click "Parameter measurement".

⑦ After the parameter measurement is completed, the Wecon SCTool will pop up a confirmation window for parameter writing and saving.

There may be a short mechanical whistling sound during the test. Generally, the servo will automatically stop the test. If it does not stop automatically or in other abnormal situations, you can click the "Servo Off" button on the interface to turn off the servo, or power off the machine!
 For the detailed operation of the host computer debugging software, please refer to "Wecon Servo Debugging Platform User Manual".

Function code	Name	Setting method	Effective time	Default value	Range	Definition	Unit
P03-03	Self-adjusting mode selection	Operation setting	Effective immediately	0	0 to 2	 0: Rigidity grade self-adjusting mode. Position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter settings are automatically adjusted according to the rigidity grade setting. 1: Manual setting; you need to manually set the position loop gain, speed loop gain, speed loop integral time constant, torque filter 	_

Wecon VD2 Series Servo Drives Manual (Full V2.4)
parameter setting 2: Oncable automatic parameter self-adjusting mode (Not implemented yet)

Table 7-4 Details of self-adjusting mode selection parameters

7.3.2 Manual gain adjustment

When the servo automatic gain adjustment fails to achieve the desired result, you can manually fine-tune the gain to achieve better results.

The servo system consists of three control loops, from the outside to the inside are the position loop, the speed loop and the current loop. The basic control block diagram is shown as below.

The more the inner loop is, the higher the responsiveness is required. Failure to comply with this principle may lead to system instability!

The default current loop gain of the servo drive has ensured sufficient responsiveness. Generally, no adjustment is required. Only the position loop gain, speed loop gain and other auxiliary gains need to be adjusted.

This servo drive has two sets of gain parameters for position loop and speed loop. The user can switch the two sets of gain parameters according to the setting value of P02-07 the 2nd gain switching mode. The parameters are below.

Function code	Name
P02-01	The 1st position loop gain
P02-02	The 1st speed loop gain
P02-03	The 1st speed loop integral time constant
P02-04	The 2nd position loop gain
P02-05	The 2nd speed loop gain
P02-06	The 2nd speed loop integral time constant
P04-04	Torque filter time constant

(1) Speed loop gain

In the case of no vibration or noise in the mechanical system, the larger the speed loop gain setting value, the better the response of servo system and the better the speed followability. When noise occurs in the system, reduce the speed loop gain. The related function codes are shown as below.

Wecon VD2 Series Servo Drives Manual (Full V2.4)

Function code	Name	Setting method	Effective time	Default value	Range	Definition	Unit
P02-02	1st speed loop gain	Operation setting	Effective immediately	65	0 to 35000	Set speed loop proportional gain to determine the responsiveness of speed loop.	0.1Hz
P02-05	2nd speed loop gain	Operation setting	Effective immediately	65	0 to 35000	Set speed loop proportional gain to determine the responsiveness of speed loop.	0.1Hz

Table 7-5 Speed loop gain parameters

Figure 7-3 Speed loop gain effect illustration

(2) Speed loop integral time constant

The speed loop integral time constant is used to eliminate the speed loop deviation. Decreasing the integral time constant of the speed loop can increase the speed of the speed following. If the set value is too small, is will easily cause speed overshoot or vibration. When the time constant is set too large, the integral action will be weakened, resulting in a deviation of the speed loop. Related function codes are shown as below.

Function code	Name	Setting method	Effective time	Default value	Range	Definition	Unit
P02-03	1st speed loop integral time constant	Operation setting	Effective immediately	1000	100 to 65535	Set the speed loop integral constant. The smaller the set value, the stronger the integral effect.	0.1 ms
P02-06	2nd speed loop integral time constant	Operation setting	Effective immediately	1000	0 to 65535	Set the speed loop integral constant. The smaller the set value, the stronger the integral effect.	0.1 ms

Table 7-6 Speed loop integral time constant parameters

Figure 7-4 Speed loop integral time constant effect illustration

(3) Position loop gain

Determine the highest frequency of the position instruction that the position loop can follow the change. Increasing this parameter can speed up the positioning time and improve the ability of the motor to resist external disturbances when the motor is stationary. However, if the setting value is too large, the system may be unstable and oscillate. The related function codes are shown as below.

Function	1 Name	Setting	Effective	Default	Range	Definition	Unit
code	Name	method	time	value	Kange	Demition	Onic

Wecon VD2 Series Servo Drives Manual (Full V2.4)

P02-01	1st position loop gain	Operation setting	Effective immediately	400	0 to 6200	Set position loop proportional gain to determine the responsiveness of position control system.	0.1Hz
P02-04	2nd position loop gain	Operation setting	Effective immediately	35	0 to 6200	Set position loop proportional gain to determine the responsiveness of position control system.	0.1Hz

Figure 7-5 Position loop gain effect illustration

(4) Torque instruction filter time

Selecting an appropriate torque filter time constant could suppress mechanical resonance. The larger the value of this parameter, the stronger the suppression ability. If the setting value is too large, it will decrease the current loop response frequency and cause needle movement. The related function codes are shown as below.

Function code	Name	Setting method	Effective time	Default value	Range	Definition	Unit
P04-04	Torque filter time constant	Operation setting	Effective immediately	50	10 to 2500	This parameter is automatically set when "self-adjustment mode selection" is selected as 1 or 2	0.01 ms

Table 7-8 Details of torque filter time constant parameters

7.3.3 Feedforward gain

Speed feedforward could be used in position control mode and full closed-loop function. It could improve the response to the speed instruction and reduce the position deviation with fixed speed. Speed feedforward parameters are shown in <u>Table 7-9</u>. Torque feedforward parameters are shown in <u>Table 7-10</u>.

Function code	Name	Adjustment description
P02-09	Speed feedforward gain	When the speed feedforward filter is set to 50 (0.5 ms), gradually increase the speed feedforward gain, and the speed feedforward will take effect.
P02-10	Speed feedforward filtering time constant	The position deviation during operation at a certain speed will be reduced according to the value of speed feedforward gain as the formula below. Position deviation (instruction unit) = instruction speed [instruction unit/s]÷position loop gain [1/s]×(100—speed feedforward gain [%])÷100

Table 7-9 Speed feedforward parameters

Function code	Name	Adjustment description
P02-11	Torque feedforward gain	Increase the torque feedforward gain because the position deviation can be close to 0 during certain acceleration and deceleration. Under the ideal
P02-12	Torque feedforward filtering time constant	condition of external disturbance torque not operating, when driving in the trapezoidal speed model, the position deviation can be close to 0 in the entire action interval. In fact, there must be external disturbance torque, so the position deviation cannot be 0. In addition, like the speed feedforward, although the larger the constant of the torque feedforward filter, the smaller the action sound, but the greater the position deviation of the acceleration change point.

Table 7-10 Torque feedforward parameters

7.3.4 Model Tracking Control Function

Model tracking control is suitable for position control mode, which adds a model loop outside the three loops. In the model loop, new position commands, speed feedforward and torque feedforward and other control quantities are generated according to the user's response requirements to the system and the ideal motor control model. Applying these control quantities to the actual control loop can significantly improve the response performance and positioning performance of the position control, the design block diagram is as follows:

Figure 7-7 Block Diagram of Model Tracking Control Design

The usage method and conditions of model tracking control:

1. Correctly set the inertia ratio of the system P3-1, which can be obtained by monitoring the real-time load inertia ratio of U0-20.

2. Set the load rigidity level P3-2, set an appropriate value, it does not need to set a high rigidity level (recommended value 17~21 under rigid load).

3. Set P2-20=1 to enable the function of model tracking control.

4. Adjust the P2-21 model tracking control gain from small to large, and gradually increase in steps of 1000 until the responsiveness of the system meets the actual demand. The responsiveness of the system is mainly determined by this parameter.

5. After the responsiveness meets the requirements, user can adjust the parameters appropriately to increase the load rigidity level P3-2.

Note: Model tracking control is only available in position mode, and cannot be used in other modes.

Function code	Name	Setting method	Effective time	Default	Range	Definition	Unit
P2-20	Model tracking control function	Shutdown setting	Effective immediately	0	0 to 1	When the function code is set to 1, enable the model tracking control function.	
P2-21	Model tracking control gain	Shutdown setting	Effective immediately	1000	200 to 20000	Increasing the model tracking control gain can	0.1/s
P2-22	Model tracking control gain compensation	Shutdown setting	Effective immediately	1000	500 to 2000	improve the position response performance of the model loop. If the gain is too high, it may cause overshoot behavior. The gain compensation affects the damping ratio of the model loop, and the damping ratio becomes larger as the gain compensation becomes larger.	0.10%

Function code	Name	Setting method	Effective time	Default	Range	Definition	Unit		
P2-23	Model tracking control forward rotation bias	Operation setting	Effective immediately	1000	0 to 10000	Torque feedforward size in the positive	Torque feedforward size in the positive	Torque feedforward size in the positive	0.10%
P2-24	Model tracking control reverses rotation bias	Operation setting	Effective immediately	1000	0 to 10000	and reverse direction under model tracking control	0.10%		

P2-25	Model tracking control speed feedforward compensation	Operation setting	Effective immediately	1000	0 to 10000	The size of the speed feedforward under model tracking control	0.10%
-------	--	----------------------	--------------------------	------	---------------	--	-------

Please refer to the following for an example of the procedure of adjusting servo gain.

Step	Content
1	Please try to set the correct load inertia ratio parameter P3-1.
2	If the automatic adjustment mode is used (P3-3 is set to 0), please set the basic rigidity level parameter P3-2. If in manual adjustment mode (P3-3 is set to 1), please set the gain P2-1~P2-3 related to the position loop and speed loop and the torque filter time constant P4-4. The setting principle is mainly no vibration and overshoot.
3	Turn on the model tracking function, set P2-20 to 1.
4	Increase the model tracking gain P2-21 within the range of no overshoot and vibration occurring.
5	If the rigidity level of step 2 is set relatively low, user can properly increase the rigidity level P3-2.
6	When overshoot occurs, or the responses of forward rotation and reverse rotation are different, user can fine-tune through model tracking control forward bias P2-23, model tracking control speed feedforward compensation P2 -25.

7.3.5 Gain switching

Gain switching function:

- •Switch to a lower gain in the motor stationary (servo enabled) state to suppress vibration;
- •Switch to a higher gain in the motor stationary state to shorten the positioning time;
- •Switch to a higher gain in the motor running state to get better command tracking performance;
- •Switch different gain settings by external signals depending on the load connected.

(1) Gain switching parameter setting

① When P02-07=0

Fixed use of the first gain (using P02-01~P02-03), and the switching of P/PI (proportional/proportional integral) control could be realized through DI function 10 (GAIN-SEL, gain switching).

Figure 7-8 Flow chart of gain switching when P02-07=0

Figure 7-8

② When P02-07=1

The switching conditions can be set through parameter P02-08 to realize switching between the first gain (P02-01~P02-03) and the second gain (P02-04~P02-06).

Figure 7-9 Flow chart of gain switching when P02-07=1

`` WECON technology Co., Ltd

Wecon VD2 Series Servo Drives Manual (Full V2.4)

(Continued on next page)

(Continued on next page)

Figure 7-10 P02-08=10 Position command + actual speed gain description

(2) Description of related parameters

P02-07 P0		neter ne	Setting method	Effective time	Default	Set range	Apj ca	olication Itegory	Unit	
		cond in hing de	Operation setting	Effective immediately	1	0 to 1	Gai	n control		
Set the s	Set the switching mode of the second gain.									
Setting value				Func	tion					
0			The first fun	gain is used by de ction 10 (GAIN-S DI logic invalio DI logic valid	efault. Switc EL, gain swi d: PI control : PI control.	hing using tching): ;	DI			
1			The first ga	in and the secon setting value	d gain are s of P02-08.	witched by	the			

	F	Parameter name	Sett met	ing hod	Effective time	Default	Set range	Application category	Unit
P02-(08 Ga	in switching condition selection	Opera sett	ation ing	Effective immediately	0	0 to 10	Gain control	
Set th	ne cond	tions for gain	switchir	ng.					_
	Setting	Gain swite	ching			Details			
	value	conditio	ons			Details			
	0	The default first ga	is the in	Fixed u	use of the first gain				
	1	Switch by D)l port	Use DI DI logi DI logi	function 10 (GAIN-S c is invalid: the first (c is valid: the second	SEL, gain sw gain (PO2-0 I gain (PO2-	itching); 1~P02-03); 04~P02-06)).	
	2	Large tor comma	que nd	In the previous first gain, when the absolute value of torque command is greater than (grade + hysteresis), the second gain is switched; In the previous second gain, when the absolute value of torque command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned.					
	3	Large actual	torque	In the torque switch In the torque duratio	In the previous first gain, when the absolute value of actual torque is greater than (grade + hysteresis), the second gain is switched; In the previous second gain, when the absolute value of actual torque is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned.				
	4	Large spo comma	Large speed command is greater than (grade + hysteresis), the second gain is switched; In the previous second gain, when the absolute value of speed command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned.					e of speed e second gain is value of speed resis) and the returned.	_
	5	Large actual	In the previous first gain, when the absolute value of actual speed is greater than (grade + hysteresis), the second gain is switched;Large actual speedIn the previous second gain, when the absolute value of actual speed is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned.						
	6	Large rate of change in speed command		In the change the sec In the absolu than th than [I	previous first gain, we e in speed command cond gain is switched previous second gain the value of the rate he value of (grade - he P02-13], the first gain	when the ab l is greater d; n, switch to of change in nysteresis) a n is returne	solute valu than (grade the first ga n speed cor and the dur d.	e of the rate of + hysteresis), in when the nmand is less ation is greater	

7	Large position deviation	In the previous first gain, when the absolute value of position deviation is greater than (grade + hysteresis), the second gain is switched; In the previous second gain, switch to the first gain when the absolute value of position deviation is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned.
8	Position command	In the previous first gain, if the position command is not 0, switch to the second gain; In the previous second gain, if the position command is 0 and the duration is greater than [P02-13], the first gain is returned.
9	Positioning complete	In the previous first gain, if the positioning is not completed, the second gain is switched; In the previous second gain, if the positioning is not completed and the duration is greater than [P02-13], the first gain is returned.
10	Position command + actual speed	In the previous first gain, if the position command is not 0, the second gain is switched; In the previous second gain, if the position command is 0, the duration is greater than [P02-13] and the absolute value of actual speed is less than (grade - hysteresis).

P02-13	Parameter name	Setting method	Effective time Default		Set range	Application category	Unit
	Delay Time for	Operation	Effective	20	0 to	Gain control	0.1ms
	Gain Switching	setting	immediately		10000		

Note: This parameter is only valid when the second gain is switched back to the first gain.

	Parameter name	Setting method	Effective time	Default	Set range	Application category	Unit		
P02-14	Gain switching grade	Operation setting	Effective immediately	50	0 to 20000	Gain control	According to the switching conditions		
Set the g	Set the grade of the gain condition. The generation of the actual switching action is affected by the								

	Parameter name	Setting method	Effective time	Default	Set range	Application category	Unit
P02-15	Gain switching hysteresis	Operation setting	Effective immediately	20	0 to 20000	Gain control	According to the switching conditions
Set the	nysteresis to m	eet the gain s	switching condit	ion.			
	P02-14 Gain switching gr	ade	Second dain		First coin	02-15 Gain switching h 202-15 Gain switching	nysteresis hysteresis

	Parameter name	Setting method	Effective time	Default	Set range	Application category	Unit
P02-16	Position loop gain switching time	Operation setting	Effective immediately	30	0 to 10000	Gain control	0.1ms

Set the time for switching from the first position loop (P02-01) to the second position loop (P02-04) in the position control mode.

If P02-04≤P02-01, then P02-16 is invalid, and the second gain is switched from the first gain immediately.

7.4 Mechanical resonance suppression

7.4.1 Mechanical resonance suppression methods

When the mechanical rigidity is low, vibration and noise may occur due to resonance caused by shaft twisting, and it may not be possible to increase the gain setting. In this case, by using a notch filter to reduce the gain at a specific frequency, after resonance is effectively suppressed, you can continue to increase the servo gain. There are 2 methods to suppress mechanical resonance.

(1) Torque instruction filter

By setting the filter time constant, the torque instruction is attenuated in the high frequency range above the cutoff frequency, so as to achieve the expectation of suppressing mechanical resonance. The cut-off frequency of the torque instruction filter could be calculated by the following formula:

Filter cutoff frequency $fc(Hz) = \frac{1}{2\pi * \text{Set parameter value} * 0.001}$

(2) Notch filter

The notch filter can achieve the expectation of suppressing mechanical resonance by reducing the gain at a specific frequency. When setting the notch filter correctly, the vibration can be effectively suppressed. You can try to increase the servo gain. The principle of the notch filter is shown in Figure 7-11.

7.4.2 Notch filter

The VD2 series servo drives have 2 sets of notch filters, each of which has 3 parameters, namely notch frequency, width grade and depth grade.

(1) Width grade of notch filter

The notch width grade is used to express the ratio of the notch width to the center frequency of the notch:

Notch filter width grade
$$=\frac{f_H - f_L}{f_T}$$
 (7-1)

In formula (7-1), f_T is the center frequency of notch filter, that is, the mechanical resonance frequency; $f_H - f_L$ is the width of notch filter, which represents the frequency bandwidth with an amplitude attenuation rate of -3dB relative to the center frequency of notch filter.

(2) Depth grade of notch filter

The depth grade of notch filter represents the ratio relationship between input and output at center frequency.

When the notch filter depth grade is 0, the input is completely suppressed at center frequency. When the notch filter depth grade is 100, the input is completely passable at center frequency. Therefore, the smaller the the notch filter depth grade is set, the deeper the the notch filter depth, and the stronger the suppression of mechanical resonance. But the system may be unstable, you should pay attention to it when using it. The specific relationship is shown in Figure 7-12.

Function code	Name	Setting method	Effective time	Default value	Range	Definition	Unit
P04-05	1st notch filter frequency	Operation setting	Effective immediately	300	250 to 5000	Set the center frequency of the 1st notch filter. When the set value is 5000, the function of notch filter is invalid.	Hz
P04-06	1st notch filter depth	Operation setting	Effective immediately	100	0 to 100	0: all truncated 100: all passed	-
P04-07	1st notch filter width	Operation setting	Effective immediately	4	0 to 12	0: 0.5 times the bandwidth 4: 1 time the bandwidth 8: 2 times the bandwidth 12: 4 times the bandwidth	-

Figure 7-12 Frequency characteristics of notch filter

Wecon VD2 Series Servo Drives Manual (Full V2.4)

P04-08	2nd notch filter frequency	Operation setting	Effective immediately	500	250 to 5000	Set the center frequency of the 2nd notch filter. When the set value is 5000, the function of the notch filter is invalid.	Hz
P04-09	2nd notch filter depth	Operation setting	Effective immediately	100	0 to 100	0: all truncated 100: all passed	-
P04-10	2nd notch filter width	Operation setting	Effective immediately	4	0 to 12	0: 0.5 times the bandwidth 4: 1 time the bandwidth 8: 2 times the bandwidth 12: 4 times the bandwidth	-

Table 7-11 filter function code parameters

7.4.3 Low frequency vibration suppression

Low-frequency vibration suppression is suitable for working conditions where the motor vibrates during deceleration and shutdown after the position command is sent, and the vibration amplitude gradually decreases. The use of the low-frequency vibration suppression function is effective in reducing the time to complete positioning due to vibration effects.

Figure 7-13 Applicable working conditions for low-frequency vibration suppression

Function code	Name	Setting method	Effective time	Default	Range	Definition	Unit
P4-11O	Enable low-frequency vibration suppression function	Operation setting	Effective immediately	0	0 to 1	When the function code is set to 1, enable the low-frequency vibration suppression function.	
P4-12()	Low-frequency vibration suppression frequency	Operation setting	Effective immediately	800	10 to 2000	Set the vibration frequency when vibration occurs at the load end.	0.1HZ
P4-14()	Shutdown vibration detection amplitude	Operation setting	Effective immediately	100	0 to 1000	When the vibration amplitude is greater than (P5-12*P4-14 detection amplitude ratio), the low-frequency vibration frequency can be recognized and updated to the U0-16 monitor quantity.	0.001

 \bigstar : Indicates that VD2F servo drive does not support this function code

O: Indicates that VD2L servo drive does not support this function code

★: Indicates that VD2F and VD2L servo drives do not support this function code

(1) Vibration frequency detection:

① Users can measure vibration by measuring equipment such as laser displacement.

③ Low-frequency vibration detection needs to be coordinated by the two parameters of completion positioning threshold and vibration detection amplitude. When the vibration amplitude is greater than (P5-12*P4-14 detection amplitude ratio), the low-frequency vibration frequency can be recognized and updated to U0-16 monitoring quantity. For example, when the vibration amplitude is greater than (P5-12*P4-14*0.001) detection amplitude ratio. For example, in P05-12=800, P04_14=50, the vibration amplitude is greater than

P5-12*P4-14*0.001=800*50*0.001=40 pulses, stop vibration frequency can be identified in U0-16. (2) Debugging method:

① Set the appropriate positioning completion thresholds P5-12 and P4-14 to help the software detect the vibration frequency.

② Run the position curve command to obtain the vibration frequency, and obtain the frequency through the speed curve of oscilloscope or U0-16.

③ Set P4-12 vibration frequency and enable low frequency vibration suppression function P4-11. Run again to observe the speed waveform and determine whether to eliminate the vibration. If the vibration is not eliminated, please manually modify the vibration frequency and try again.

If there is a speed substantial vibration and the vibration increases during the debugging, it may be that the low-frequency vibration suppression is not suitable for the current working conditions, please immediately close the servo, or power down!

7.4.4 Type A vibration suppression

Type A vibration suppression is suitable for durational vibration during motor operation or shutdown. Use Type A suppression to help reduce vibrations at specific frequencies that occur during motion (For the situation where the vibration continues to maintain and the vibration amplitude is almost constant after the command is completed.) As shown in Figure 7-14.

Function code	Name	Setting method	Effective time	Default	Range	Definition	Unit
P4-19〇	Enable the type A suppression	Operation setting	Effective immediately	0	0 to 1	When the function code is set to 1, enable	

`` WECON technology Co., Ltd

	function					the type A suppression function.	
P4-20〇	Type A suppression frequency	Operation setting	Effective immediately	1000	100 to 20000	Set the frequency of Type A suppression.	0.1HZ
P4-21()	Type A suppression gain correction	Operation setting	Effective immediately	100	0 to 1000	Correct the load inertia ratio size.	0.01
P4-22()	Type A suppression damping gain	Operation setting	Effective immediately	0	0 to 500	The type A rejection compensation value is gradually increased until the vibration is reduced to the acceptable range.	0.01
P4-23()	Type A suppression phase correction	Operation setting	Effective immediately	200	0 to 900	Type A suppression phase compensation.	0.1 degree

 \Rightarrow : Indicates that VD2F servo drive does not support this function code

 $O\colon$ Indicates that VD2L servo drive does not support this function code

★: Indicates that VD2F and VD2L servo drives do not support this function code

(1) Vibration frequency detection:

The vibration frequency can directly obtain the value of the current vibration frequency from the software oscilloscope vibration frequency, combined with real-time speed waveform to observe the current vibration situation.

(2) Debugging method:

① Please set the correct inertia ratio parameter P3-1 when using type A vibration suppression,

② Run the position curve command, observe the servo host computer software waveform interface (sine wave) to obtain the vibration frequency.

③ Set P4-20 vibration frequency and enable type A vibration suppression function P4-19. (Type A vibration frequency takes effect when P4-19 is set to 1 for the first time. If change A-type vibration frequency P4-20, please set P4-19 to 0 again, then set to 1)

④ Set P4-22 damping gain, gradually increasing from 0, each time increasing about 20.

⑤ Observe the size of the vibration speed component, if the amplitude speed component is getting larger, it can be the vibration frequency setting error, if the vibration speed component is getting smaller, it means the vibration is gradually suppressed.

6 When the vibration is suppressed, there is still a small part of the vibration speed component, users can fine-tune the P4-23 phase correction, the recommended value of 150~300.

CAUTION

If there is a speed substantial vibration and the vibration increases during the debugging, it may be that the low-frequency vibration suppression is not suitable for the current working conditions, please immediately close the servo, or power down!

VD2 series servo drive has Modbus communication function, which could cooperate with the host computer for parameter modification, parameter query, monitoring volume servo status query and control. The servo drive is used as a slave device.

8.1 Modbus communication

8.1.1 Hardware wiring

The position of RS485 communication port (take VD2B as an example) is as the figure below.

Figure 8-1 The position of RS485 communication port of VD2B drive

For the position of the RS485 communication port of other models, see <u>4.5 Communication signal</u> wiring.

The servo drive adopts RS485 half-duplex communication mode. The 485 bus should adopt the hand-in-hand structure instead of the star structure or the bifurcated structure. The star structure or bifurcation structure will produce reflected signals, which will affect 485 communication.

The wiring must use shielded twisted pair, stay away from strong electricity, do not run in parallel with the power cable, let alone bundle it together!

In a half-duplex connection, only one servo drive can communicate with the host computer at the same time. If two or more servo drives upload data at the same time, bus competition will occur. Not only will it lead to communication failure, it may also cause some components to generate large currents and damage the components.

Figure 8-2 RS485 communication network wiring diagram

The terminal of RS485 network should use a terminating resistor of 120Ω to weaken the reflection of the signal. Intermediate networks cannot use terminating resistors.

No point in the RS485 network can be directly grounded. All devices in the network must be well grounded through their own grounding terminals.

\land CAUTION

The grounding wire cannot form a closed loop under no circumstances.

When wiring, consider the drive capability of the computer/PLC and the distance between the computer/PLC and the servo drive. If the drive capacity is insufficient, a repeater is needed.

8.2 Modbus communication protocol analysis

8.2.1 Modbus data frame format

The VD2 series servo drives currently support the RTU communication format. The typical data frame format is shown in the table.

There should be a message interval not	Address	Function code	Data	CRC check code
less than 3.5 characters at the beginning	1 byte	1 byte	N bytes	2 bytes

8.2.2 Description of supported function codes

The host reads and writes data to the servo through Modbus RTU format (03, 06 function codes). The corresponding Modbus function codes are as follows:

Operate	Command code
Read 16-bit/32-bit function code	0x03
Write 16-bit function code	0x06
Write 32-bit function code	0x10

(1) Read function code: 0x03

Request format:

Address	Function	Initial	address	Numbe	r of reads	CRC check
	code	high byte	low byte	high byte	low byte	code
1 byte	03	1 byte	1 byte	1 byte	1 byte	2 bytes

Correct response format:

Addross	Function	Number of bytes of returned data	Regist	er 1		CPC chock codo	
Address	code	Number of bytes of returned data	high byte	low byte	•••		
1 byte	03	1 byte	1 byte	1 byte		2 bytes	

(2) Write function code: 0x06

Request format:

Address	Function	Register address		Da	CRC check	
	code	high byte	low byte	high byte	low byte	code
1 byte	06	1 byte	1 byte	1 byte	1 byte	2 bytes

Response format:

Address	Function	Register	r address	Da	ata	CRC check
	code	high byte	low byte	high byte	low byte	code
1 byte	06	1 byte	1 byte	1 byte	1 byte	2 bytes

If the setting is successful, the original is returned

There should be a message interval not	Address	Function code	Data	CRC check code
less than 3.5 characters at the beginning	1 byte	1 byte	N bytes	2 bytes

8.2.3 CRC check

The servo uses a 16-bit CRC check, and the host computer must also use the same check rule, otherwise the CRC check will make mistake. When transmitting, the low bit is in the front and the high bit is at the back. The CRC code are as follows:

```
Uint16 CRC16_Calc(Uint8 *pBuf, Uint16 uLen)
```

```
{
     Uint16 crc = 0xffff;
     Uint16 i;
  while(uLen--)
   {
     crc ^=(Uint16) *pBuf++;
     for(i=0; i<8; i++)
     {
        if(crc & 0x0001)
{
crc = (crc >> 1) ^ 0xa001;
}
else
{
crc = crc >> 1;
}
     }
  }
  return crc;
}
```

8.2.4 Error response frame

Address	Function code	Error code	CRC check code
1 byte	Command code+0x80	Error code	2 bytes

When an error occurs, set the function code bit7 issued by the host to 1, and return (for example, 0x03 returns 0x83, 0x06 returns 0x86); the description of the error code are as follows.

Error code	Coding description
0x0001	Illegal command code
0x0002	Illegal data address
0x0003	Illegal data
0x0004	Slave device failure

8.2.5 Communication example

03 Function code read

Read the monitoring volume U0-31 bus voltage, the Modbus register address corresponding to this variable is 7716 (0x1E24)

Request format:

Address Functic	Eurotian code	Register	address	Da	CRC check	
	Function code	high byte	low byte	high byte	low byte	code
01	03	1E	24	00	01	C2 29

The slave responds normally:

Address	Function	Number of butes	Data		
	code	Number of bytes	high byte	low byte	CRC nigh byte
01	03	02	0C	4F	FC B0

The value read is 0x0C4F, which means that the voltage is 315.1V.

06 Function code write

P01-10 maximum speed threshold is set to 3000rpm. This variable corresponds to the Modbus address: 266 (0x010A)

Request format:

Address	Function code	Register	address	Da	CRC check	
	Function code	high byte	low byte	high byte	low byte	code
01	06	01	0A	OB	B8	AF, 76

The slave responds normally:

Address	Function code	Register	address	Da	CRC check	
	Function code	high byte	low byte	high byte	low byte	code
01	06	01	0A	OB	B8	AF, 76

10 Function code write

P07-09 set the 1st segment position to 2000, and this variable corresponds to the Modbus address: 1801 (0x0709).

Request format:

Address	Function code	Initial address		Numb regis	er of ster	Number	Data 1		Data 2		CRC check code	
		high byte	low byte	high byte	low byte	of data	high byte	low byte	high byte	low byte	high byte	low byte
01	10	07	09	00	02	04	00	00	07	D0	16	59

The slave responds normally:

Addross	Function	Register a	Register address		ta	CRC check code	
Address	code	high byte	low byte	high byte	low byte	high byte	low byte
01	10	07	09	00	02	90	BE

8.3 Servo communication parameter setting

Figure 8-3 Modbus communication parameter setting process

(1) Set the servo address P12-1

When multiple servos are in network communication, each servo can only have a unique address, otherwise it will cause abnormal communication and fail to communicate.

(2) Set the serial port baud rate P12-2

The communication rate of the servo and the communication rate of the host computer must be set consistently, otherwise the communication cannot be carried out.

(3) Set the serial port data format P12-3

The data bit check methods of servo communication are:

- Odd parity
- Even parity
- No parity

The stop bit: 1 stop bit and 2 stop bits.

The data frame format of the servo and the host computer must be consistent, otherwise the communication cannot be carried out.

(4) Set that whether the function code changed by Modbus communication is written into EEPROM in real time [P12-4]

When the host computer modifies the servo function code through communication, it can choose to store it in EEPROM in real time, which has the function of power-off storage.

If the value of the function code only needs to be rewritten once, and the value is used later, the function of real-time writing of the function code to EEPROM can be enabled.

If you need to change the value of the function code frequently, it is recommended to turn off the function of real-time writing to EERPOM of function code, otherwise the EEPROM will be shortened due to frequent erasing and writing of the EEPROM.

After the EEPROM is damaged, the servo will have a non-resettable fault!

(5) Set the high and low order of the 32-bit monitoring data

Part of the monitoring volume is 32-bit length and occupies 2 consecutive bias numbers. The user needs to set the order of the data high bit and low bit correctly, otherwise it will cause data reading and writing errors!

For example, U0-54 (position within 1 circle of absolute encoder) occupies two consecutive offset numbers, which are 0x1E3D and 0x1E3E respectively. Assuming the value of U0-54 is 0x12345678, the correct data sequence bit should be 0x1E3D=0x5678, 0x1E3E=0x1234 (little endian mode: low byte first, high byte behind.)

Function code	Name	Setting method	Effective time	Default value	Range	Definition	Unit
P12-02	Baud rate	Operation setting	Effective immediately	2	0 to 5	0-2400bps 1-4800bps 2-9600bps 3-19200bps 4-38400bps 5-57600bp	-
P12-03	Serial data format	Operation setting	Effective immediately	0	0 to 3	 0: 1 stop bit, no parity 1: 1 stop bit, odd parity 2: 1 stop bit, even parity 3: 2 stop bits, no parity 	-
P12-04	Modbus communicati on data is written into EEPROM	Operation setting	Effective immediately	0	0 to 1	0: Do not write to EEPROM, and do not store after power failure;1: Write to EEPROM, power-down storage.	-
P12-06	Modbus 32-bit variable big endian and little endian	Operation setting	Effective immediately	0	0-1	0: Big-endian mode, the lower address stores the higher 16 bits of data, and the higher address stores the lower 16 bits of data 1: Little-endian mode, the lower address stores the lower 16 bits of data, and the higher address stores the higher 16 bits of data	

The description of related function codes are as follows.

8.4 Modbus communication variable address and value

8.4.1 Variable address description

Modbus registers are divided into two categories:

① The first category is servo function code parameters (address: 0x0001 to 0x0D08), this part of the register is readable and writable (that is, 0x03 and 0x06 are supported);

② The second category is the monitoring volume of the servo (address: 0x1E01 to 0x2010), this part of the register is only readable (0x03 function is supported).

Servo function code representation: PXX-YY.

XX: represents the function code group number,

YY: represents the bias within the function code group;

During servo communication, the communication address of the function code is a 16-bit address, which is composed of the function code group number (high 8 bits) + group bias (low 8 bits), for example, the Modbus address corresponding to P12-1 (servo address) is 0x0C01.

Servo monitor volume representation: Uxx-yy.

xx: represents the monitoring volume group number,

yy: represents the bias within the monitoring volume group;

During Modbus communication, the starting address of the monitoring volume is 0x1E01, and the conversion relationship of the address is similar to the representation way of the function code. For example, U0-01 (servo status) corresponds to the Modbus address is 0x1E01.

In order to facilitate actual use, this manual provides both decimal and hexadecimal address identification, it is shown in the following table:

Function code	Modbus address (Hexadecimal)	Modbus address (Decimal)	Category	Name
P00-01	0x0001	1	Basic settings	Control mode

For detailed parameter addresses, please refer to "11.1 Lists of parameters".

8.4.2 Variable value type description

When writing function codes with signed numbers, you need to convert the pre-written data into hexadecimal complements. The conversion rules are as follows:

① The data is positive or 0: complement code = original code

② The data is negative: complement code = 0xFFFF-absolute value of data + 0x0001 For example,

The 16-bit signed positive number +100, the original code is 0x0064, and the complement is: 0x0064.

The 16-bit signed positive number -100, its hexadecimal complement is: 0xFFFF-0x0064 + 0x0001 = 0xFF9C.

If it is an unsigned number, just pass it directly according to its original code. For example, if the decimal number is 32768, write 0x8000 directly.

8.4.3 Numerical unit description

Some values have units and decimals, such as 0.1%, 0.1Hz, 0.01ms, and the corresponding value conversion is required when reading and writing. The methods are as follows:

① When the unit is 0.1%: 1 represents 0.1%, 10 represents 1.0%, 1000 represents 100.0%. Therefore, writing 1000 means setting to 100.0%; on the contrary, if it is reading 1000, it means that the value is 100.0%;

② When the unit is 0.01ms: 1 means 0.01ms, 50 means 0.5ms, 10000 means 100ms. Therefore, writing 1000 means setting to 10.00ms; on the contrary, if 1000 is read, it means 10.00ms;

The other units can be deduced by this, and integer remains unchanged.

9. Parameters

Group P00 Basic settings

	Parameter nam	ne	Setting metho	od E	Effective time	Defau	ılt	Range	Category	Unit
P00-01	Control mode	•	Shutdown setting		Effective immediately	1		1 to 6	Basic setting	-
Used to s	et the control mod	le of se	ervo drive							
Setting value	Control mode		Remarks							
1	Position control	For p	For position control parameter setting, please refer to <u>6.2 Position control mode</u>					ode		
2	Speed control	For s	For speed control parameter setting, please refer to 6.3 Speed control mode							
3	Torque control	For t	For torque control parameter setting, please refer to <u>6.4 Torque control mode</u>					<u>e</u>		
	Desition (speed	A DI mixe	terminal of the d mode sele <u>ctions</u>	e servo ion), a	o drive needs to nd the DI termi	be ass inal logi	igne ic is	ed to funct determine	ion 17 (MixMoo ed to be valid.	leSel,
4 Position/speed		I ∿	MixMo	odeSel termina	l logic	C	ontrol mod	de		
		Invalid			Ро	sition cont	rol			
					Valid		Sp	peed contr	ol	
		A DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel,								
	Desition /torgue	mixe	d mode sele <u>cti</u>	ion), a	nd the DI termi	inal logi	ic is	determine	d to be valid.	
5	position/torque		N	MixMo	odeSel termina	l logic	С	ontrol mod	de	
					Invalid		Ро	sition cont	rol	
					Valid		То	orque conti	rol	
		A DI	terminal of the	e servo	o drive needs to	be ass	igne	ed to funct	ion 17 (MixMoo	leSel,
	Spood/torquo	mixe	d mode sele <u>cti</u>	ion), a	nd the DI termi	inal logi	ic is	determine	d to be valid.	
6	mix control			MixMo	odeSel termina	l logic	C	ontrol mod	de	
					Invalid		Sp	peed contr	ol	
					Valid		То	orque conti	rol	
When PO	0-01 is set to 4, 5 o	or 6, pl	ease refer to <u>6.</u>	.5 Mix	ed control moc	<u>le</u> .				

Note: VD2L driver P0-01 setting range: 1 to 3. Mix mode is not supported!

Parameter name P00-04 Rotation direction		Setting metho	bd	Effective time	Default	Range	Category	Unit	
		ation direction	Shutdown setting		Effective immediately	0	0 to 2	Basic setting	-
Set the fo	orward	rotation direction	n of the motor w	vhei	n looking at the n	notor axis.			
Setting	value	Rotation direction				Rema	rks		
0		Take CW as forward direction		When looking at the motor axis, the rotation direction of the motor is clockwise					
1		Take CCW as forward direction		W	/hen looking at th	ie motor ax motor is a	kis, the rota nticlockwis	ation direction c se	of the
				Set P1-12 and P1-17 to limit CCW direction speed					
2	2	Take CCW as for	ward direction	Set P1-15 to limit CCW direction torque					
				Set P1-13 and P1-18 to limit speed in CW direction					

CW

	Par	ameter name	Setting method	Effective time	Default	Range	Category	Unit
P00-05	P00-05 Servo OFF shutdown		Shutdown	Effective	0	0 to 1	Dasis sotting	
		method	setting	immediately	0	0101	Basic setting	-
Set the fo	orward	rotation direction	n of the motor whe	n looking at the m	notor axis.			
Setting	value	e Shutdown method		Remarks				
0		Free sh	nutdown.	Disease and reasonable should over a second in site the				
0	The motor shaft remains free Please set reasonable shutdown according to		braing to the					
1		Zero-speed shutdown.		Place refer to 6.1.7 Serve shutdown				
1		The motor sha	aft remains free	Please relef to <u>(</u>	<u>).1./ Serve</u>	<u>silutuowii</u>		

	Para	meter name	Setting method	Effective time	Default	Ran	ge	Category	Unit
P00-09	Bra	king resistor	Operation	Effective	0	0 to 3		Basic setting	_
		setting	setting	immediately	0	010	, ,	Busic setting	
Used to s	set the	way in which b	raking energy is ab	sorbed and release	ed.				
Setting	value	Braking resistor setting			Remarks				
0		Use built-in br	aking resistor				Please refer to $6.1.5$		
1		Use external b	oraking resistor and	natural cooling			Brak	ting resistor to	-
2	2 Use external braking resistor and forced air cooling (not settable)			ole)	choose the right braking				
3 No braking resistors are used, and all are absorbed by capacitance				ance	meth	nod			

Note: VD2-010SA1G and VD2F-010SA1P drives has no built-in braking resistor by default, so the default value of P00-09 is 3 (No braking resistors are used, and all are absorbed by capacitance).

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P00-10	External braking	Operation	Effective	FO	0 to	Pacie cotting	0
	resistor value	setting	immediately	50	65535	Dasic setting	12

Used to set the power of external braking resistor of servo drive.

When the maximum braking energy calculated value is greater than the maximum braking energy absorbed by capacitor, and the braking power calculated value is greater than the built-in braking resistor power, use external braking resistor.

If the value of P00-10 is too large, Er.25 (too large braking resistor value) or Er.22 (main power supply is over voltage) will occur.

When using an external braking resistor, the short wiring between C and D must be disconnected, and the external braking resistor should wiring between P+ and D.

Please refer to 2.1.2 The composition of the servo drives.

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P00-11	External braking	Operation	Effective	100	0 to	Basic setting	\٨/
	resistor power	setting	immediately	100	65535	Dasic setting	vv
Lised to a	set resistor value of ex	ternal braking resist	tor of servo drive	The nowe	of external	hraking resistor	

Used to set resistor value of external braking resistor of servo drive. The power of external braking resistor (P00-11) can not less than the braking resistance power calculation value.

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P00-12	Position pulse	Operation	Power-on	0	0 to 5	Position	
	type selection	setting	again	0		mode	-

In position cont	In position control mode, when position instruction source is pulse instruction (P01-06=0), input pulse pattern.					
Setting value	Pulse pattern	Remarks				
0	Direction + pulse(positive logic)					
1	CW/CCW	Diagona refer to Table C 15 in				
2	AB phase orthogonal pulse (4 times frequency)	6.2.1 Position instruction				
3	Direction + pulse (negative logic)	0.2.1 Position instruction				
4	CW/CCW (negative logic)	<u>Input setting</u>				
5	AB phase orthogonal pulse (4 times frequency negative logic)					
Note: VD2L series drivers do not support the pulse form of CW/CCW! P0-12 parameter setting range of VD2L:						
0, 2, 3,	5					

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit	
P00-13	Maximum position	Shutdown	Effective	200	1 to 500	Position	KHz	
	pulse frequency	setting	immediately	300	110 500	mode		
In positio	In position control mode, when position instruction source is pulse instruction (P01-06=0), input the maximum							
frequency of pulse When the actual pulse input frequency is greater than the setting value of P00-13, A-86								
would occurs (The input pulse frequency is too high).								

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P00-14	Position pulse	Operation	Power-on	2	0 +0 0	Position	
	anti-interference level	setting	again	2	0109	mode	-

In position control mode, filter the input pulse. The larger the P00-14 setting value, the greater the filter depth. Note: P0-14 filtering time of the VD2L series drive is not consistent with that of other VD2 series models.

VI	D2/VD2F
Setting value	Filtering time
0	No filtering
1	128ns
2	256ns
3	512ns
4	1.024us
5	2.048us
6	4.096us
7	8.192us
8	16.384us
0	VD2: 32.768us
9	VD2F: 25.5us

	VD2L
Setting value	Filtering time
0	No filtering
1	111.1ns
2	222.2ns
3	444.4ns
4	888.8us
5	1777.7us
6	3555.5us
7	7111.7us
8	14222.2us

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit			
P00-16	Number of instruction pulses per turn of motor	Shutdown setting	Effective immediately	10000	0 to 131072	Position mode	w			
Used to s	Used to set the number of instruction pulses required for per turn of motor									

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit			
P00-17	Electronic gear 1	Operation	Effective	1	0 to	Position	14/			
	numerator	setting	immediately	Ţ	4294967294	mode	vv			
Used to set the numerator of the first group electronic gear for position instruction. This function code is only valid when P00-16=0.										
Note:										
The setting range of VD2L is inconsistent with other models of VD2 series as follows: 1 to 2147483647.										
P00-18	Parameter name	Setting method	Effective time	Default	Range	Category	Unit			

P00-18	Parameter name	Setting method	Effective time	Default	Range	Category	Unit

Electronic gear 1	Operation	Effective	1	0 to	Position	14/
denominator	setting	immediately	Ţ	4294967294	mode	vv

Used to set the numerator of the first group electronic gear for position instruction. This function code is only valid when P00-16=0.

Note:

The setting range of VD2L is inconsistent with other models of VD2 series as follows: 1 to 2147483647.

P00-19	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
	Electronic gear 2	Operation	Effective	1	0 to	Position	w
	numerator	setting	immediately	T	4294967294	mode	

Used to set the numerator of the second group electronic gear for position instruction. This function code is only valid when P00-16=0.

Note:

The setting range of VD2L is inconsistent with other models of VD2 series as follows: 1 to 2147483647.

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P00-20	Electronic gear 2 Operation Effective		Effective	1	0 to	Position	14/
	denominator	setting	immediately	Ţ	4294967294	mode	vv

Used to set the numerator of the second group electronic gear for position instruction. This function code is only valid when P00-16=0.

Note:

The setting range of VD2L is inconsistent with other models of VD2 series as follows: 1 to 2147483647.

D00 21	Parameter name	Setting method	Effective time	Default	Range	Category	Unit				
+00-21	Pulse frequency division	Operation	Power-on	0	0 to 1	Position	-				
M	output direction	setting	again	0	0101	mode					
Used to s	Used to set the pulse frequency division output direction										

et the pulse frequency division output direction

Setting value	Output direction
0	CW is forward direction (A is ahead of B)
1	CCW is forward direction (A is ahead of B)

VD2L is used to set the pulse frequency division output direction.

Setting value	Output direction
0	Direction+pulse (Positive logic)
1	Direction+pulse (Negative logic)

"☆" indicates that the VD2F servo drive does not support this function code.

DUU 33	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
FUU-22	The number of output	Operation	Power-on	2500	0 to	Position	
X	pulses per turn of motor	setting	again	2500	2500	mode	-

Note: In addition to VD2L models, every time the VD2 series motor rotates, Phase A and Phase B can each output up to 2,500 pulses, and the upper receiving device needs to support 4 times frequency analysis to obtain 10,000 pulses.

[Attention]! The setting range of this parameter for VD2L is inconsistent with that for other models of VD2 series as follows: 0 to 10000.

" \star " indicates that the VD2F servo drive does not support this function code.

DUU 33	Parameter nam	e Setting m	ethod	Effective time	Default	Range	Category	Unit		
F00-23	Z pulse output C	Z Operat	ion	Power-on	0	0 to 1	Desition mode			
ਸ	polarity	settin	g	again	0	0101	Position mode	-		
Used to s	Used to set the level logic of Z pulse									
Setting value Out			Output dired	tion						
	0			Active high level						
		1		Active low lo	evel					

P00 24	Parameter name	Setting method	Effective time	Default	Set range	Application category	Unit			
P00-24	Z pulse output	Operation	Power on	C C	1 to 200	Position	ms			
	width	setting	again	J	1 10 200	mode	1115			
Set Z pulse output width:										
1: Pulse width 1ms										
2: Pulse	width 2ms									
200: Pulse width 200ms										
Note:	Note: This function code is only supported by VD2F series models!									

D00 25	Parameter name	Setting method	Effective time	Default	Range	Category	Unit			
P00-25	Position	Shutdown	Effective	60000	0 to	Position	Equivalent			
	deviation limit	setting	immediately	00000	2147483646	mode	pulse unit			
Used to s	set position deviatio	on limit value. Wi	nen the actual d	eviation of	motor exceeds t	he setting va	alue of this			
function	function code, Er.36 would occurs (position deviation is too large).									
When th	e function code is s	et to 0, positiona	l bias is ignored.							

D00 27	Parameter name	Setting method	Effective time	Default	Range	Category	Unit			
F00-27	Pulse output frequency	Operation	Power-on	1	1 to	Position				
×	division numerator	setting again		T	2500	mode	-			
Orthogonal coded output (numerator/denominator format). Used to set pulse output frequency division										
numerat	numerator. (When P00-22=0, and the pulse output frequency division numerator value is less than the pulse									

output frequency division denominator value, this function code is valid)

☆: Indicates that VD2F servo drive does not support this function code

 $O\colon$ Indicates that VD2F servo drive does not support this function code

★: Indicates that VD2F and VD2L servo drives do not support this function code

DUU 28	Parameter name	Setting method	Effective time	Default	Range	Category	Unit			
FUU-20	Pulse output frequency	Operation	Power-on	1	1 to	Position				
×	division denominator	setting	again	1	2500	mode	_			
Orthogor	Orthogonal coded output (numerator/denominator format). Used to set pulse output frequency division									
denomin	denominator. (When P00-22=0, and the pulse output frequency division denominator value is greater than the									
pulse out	pulse output frequency division numerator value, this function code is valid)									

☆: Indicates that VD2F servo drive does not support this function code

O: Indicates that VD2F servo drive does not support this function code

★: Indicates that VD2F and VD2L servo drives do not support this function code

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit			
P00-29	The number of equivalent position units in one circle	Shutdown setting	Effective immediately	10000	0 to 131072	Position mode	-			
The equi	The equivalent position unit of one circle of the motor									

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P00-30	Shielded multi-turn absolute encoder battery failure	Operation setting	Power-on again	0	0 to 3	Basic setting	-

Used to set mul	ti-turn absolute encoder battery f	ault alarm setting function. (VD2-SA V1.13 firmware added)
Setting value	Function	Remarks
		Detect multi-turn absolute encoder battery under voltage
0	Not shield	and battery low-voltage fault. Please refer to <u>6.6 Absolute</u>
		system.
	Shield multi turn absolute	Shield multi-turn absolute encoder battery under voltage
1	motor battery fault	and battery low-voltage fault. This would cause mechanical
		failure, please use with caution.
	Shielded encoder	Shield multi-turn absolute value encoder battery under
2	overtemporature fault	temperature fault, which is very likely to cause mechanical
	overtemperature lault	failure. Please use it carefully!
	Simultaneously shielding	Shield absolute value encoder battery undervoltage and low
2	multi-turn absolute value	voltage fault and multi-turn absolute value encoder battery
5	motor battery fault and	under temperature fault, which are likely to cause
	encoder overtemperature fault	mechanical failure. Please use it carefully!

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P00-31	Encoder read-write check abnormal frequency	Operation setting	Effective immediately	20	0 to 100	Basic setting	-
0 [.] no ala	rm						

0: no alarm

Other values: After exceeding this set value, A93 encoder read/write verification abnormal frequency warning will be reported.

Group P01 Control parameters

	Parameter name		Setting method	Effective time	Default	Range	Category	Unit	
P01-01	Speed	instruction	Shutdown cottin	g Dowor on again	0	0 to 1	Speed mode		
		source	Shutuown Settin	g POwer-On again	0	0101	speed mode	-	
Select sp	Select speed instruction source								
Setting	value	value Function		Remarks					
0		Internal sp	eed instruction	Please refer to 6.3.1	Speed inst	ruction inp	ut setting.		
1*		AI_1 analog input		Please refer to <u>4 Wiring</u> .					
"*" indic	(*" indicates that the VD2E serve drive does not support this function code								

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit				
P01-02	Internal speed instruction 0	Operation setting	Effective immediately	0	-5000 to 5000	Speed mode	rpm				
Used to s when P0	Used to set speed value of internal speed instruction when servo drive is in speed control mode, and only valid when P01-01=0.										

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit			
P01-03	Acceleration time	Operation setting	Effective	50	0 to 65535	Speed mode	mc			
		Operation setting	immediately	50	01005555	Speed mode	1115			
The time	The time that the speed instruction accelerates from 0 to 1000 rpm.									
Please re	Please refer to 6.3.2 Acceleration and deceleration time setting									

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit		
P01-04	docoloration time	Operation setting	Effective	50	0 to 65525	Spood mode	mc		
		Operation setting	immediately	50	0 10 05555	Speed mode	1115		
The time	The time that the speed instruction decelerates from 0 to 1000 rpm.								
Please re	Please refer to <u>6.3.2 Acceleration and deceleration time setting</u>								

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit	
P01-05	Shutdown	Shutdown setting	Effective	50	0 to 65535	_	ms	
	deceleration time	Shutuown setting	immediately	50	0 10 05555	_	1113	
The tim	The time for the speed command to decelerate from 1000rpm to 0							

	Parar	neter name	Setting metho	d	Effective time	Default	Range	Category	Unit	
P01-06	F	Position	tion Operation settir		Effective	0	0 to 1	-	-	
Used to s	Jsed to select position instruction source when servo drive is in position control mode.									
Setting	ng value Instruction source				Remarks					
				Ρι	Pulse instructions are generated by PLC or other pulse					
0		Pulse instruction		ge	enerator and input	t to servo o	drive via the h	ardware termii	nals.	
				Please refer to <u>6.2.1 Position instruction input setting</u>						
				Th	ne internal multi-s	egment po	osition instruc	tion is triggere	d by	
1 Interna		Internal posi	ition instruction	DI	function 20 (inte	rnal multi-	segment posi	tion enable sigi	nal).	
				Please refer to internal multi-segment position function.						

	Parar	neter name	Setting method	d	Effective time	Default	Range	Category	Unit
P01-07		Torque	Shutdown sottir	ha la	Effective	0	0 to 1	Torquo modo	
	instru	ction source	Shutdown Setti	ig	immediately	0	0101	loique moue	-
Used to s	Jsed to select torque instruction source when servo drive is in torque control mode.								
Setting value Instruction source		tion source	Remarks						
0		Internal tor	que instruction	Please refer to 6.4.1 Torque instruction input setting					
1* AI_1 analog input				Pl	ease refer to <u>4 W</u>	iring			
"*" indic	"*" indicates that the VD2F and VD2L servo drive cannot support this instruction source								

	Ра	rameter name	Setting me	ethod	Effective tir	ne	Defau	ılt	Range	Category	Unit
P01-08	Tor	que instruction	o Operati	ion	Effective		0		-3000 t	0	0 1 9/
	keybo	oard setting val	ue settin	g	immediate	ly	0		3000		0.1%
Used to s	set the	required torque	e instruction valu	ue whe	n P01-07 is se	et to	0 (inter	rna	torque i	nstruction).	
	Para	meter name	Setting metho	d Ef	fective time	De	fault	F	lange	Category	Unit
P01-09	Speed	d limit source	Shutdown		Effective		0) to 1	Torquo modo	
	in to	orque mode	setting	ir	nmediately		0	, c	101	lorque mode	-
Used to s	set spee	ed limit source	when servo driv	e is in t	orque control	l mo	de.				
Setting	value	Instructi	on source				Rei	mai	′ks		
0		Internal i	nstruction	Please refer to <u>6.4.4 Speed limit in torque mode</u>							
1*		Al_2 ana	alog input	Please refer to <u>4 Wiring</u>							
"*" indic	"*" indicates that the VD2F servo drive does not support this instruction source.										

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit	
P01-10	Maximum speed	Operation	Effective	2600	0 to 5000	Protection and	* 2 2 2	
	threshold	setting	immediately	3000	0 10 5000	restriction	грш	
Used to s	Used to set the maximum speed limit value. If the actual speed of motor exceeds this value, Er.32 would occur							
(Exceed the maximum speed of motor).								

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P01-11	Warning speed	Operation	Effective	2200	0 to 5000	Protection and	
	threshold	setting	immediately	3300	0 10 5000	restriction	rpm
Used to s	set the limit value of	maximum speed. I	f the actual speed	d of motor	exceeds this	value, A-81 woul	d
occur (Exceed the maximum speed of motor).							

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit	
P01-12	Forward speed threshold	Operation setting	Effective immediately	3000	0 to 5000	Protection and restriction	rpm	
Used to set the limit value of forward speed								

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit		
P01-13	Reverse speed	Operation	Effective	2000	0 to 5000	Protection and	rom		
	threshold	setting	immediately	3000	0105000	restriction	трп		
Used to s	Used to set the limit value of reverse speed								

	Para	meter name	Setting metho	d Effective time	Default	Range	Category	Unit
P01-14	Torau	limit courco	Shutdown	Effective	0	0 to 1	Protection and	
	lorqu	e innit source	setting	immediately	U	0101	restriction	-
Used to s	select to	orque instructio	on source when s	ervo drive is in torc	que control	mode.		
Setting	value	Instructio	on source		Re	marks		
0	0 Internal instruction		Please refer to <u>6.4.3 Torque instruction limit</u>					
1		AI_2 ana	log input	Please refer to <u>4 W</u>	/iring			

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit		
P01-15	Forward torque limit	Operation setting	Effective immediately	3000	0 to 3000	Protection and restriction	0.1%		
Used to s	Used to set the limit value of forward speed								

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit	
P01-16	Reverse	Operation	Effective	2000	0 to 2000	Protection and	0 10/	
	torque limit	setting	immediately	5000	0103000	restriction	0.1%	
When P01-14 is set to 0 ()internal), the setting value of this function code is reverse torque limit value.								
If the value of P01-15 and P01-16 is set too small, the servo motor may be insufficient torque phenomenon								
when performing acceleration and deceleration movements. Please refer to <u>6.4.3 Torque instruction limit</u> .								

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit	
P01-17	Forward speed limit	Operation	Effective	2000	0 to	Protection and	rnm	
	in torque mode	setting	immediately	5000	5000	restriction	ipin	
Used to set forward speed limit value in torque control mode. Please refer to <u>6.4.4 Speed limit in torque mode</u>								
	Parameter name	Setting method	Effective time	Default	Range	Category	Unit	
P01-18	Reverse speed limit	Operation	Effective	2000	0 to	Protection and	* 2 2	
	in torque mode	setting	immediately	3000	5000	restriction	грш	
Used to set reverse speed limit value in torque control mode. Please refer to 6.4.4 Speed limit in torque mode								

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P01-19	Torque saturation	Operation	Effective	2000	0 to	Protection and	mc
	timeout	setting	immediately	5000	65535	restriction	ms

When torque is limited by the setting value of P01-15 or P01-16, and exceeds the setting time, drive would report fault "torque saturation abnormal".

Note: When the value of this function code is set to 0, the torque saturation timeout fault detection is not executed, and this fault is ignored.

	Param	eter name	Setting method	Effective time	Default	Range	Category	Unit
P01-21	Zero-s	beed clamp	Operation	Effective	0	0 to 2	Speed mode	
	functio	on selection	setting	immediately	0	0105	speed mode	-
Please re	efer to <u>6.3</u>	6.3.4 Zero-speed clamp function						
Setting	, value		Function					
C)	Force speed	to 0					
1	-	Force speed	to 0, and keep pos	ition locked wher	n the actua	l speed is l	ess than P01-22	
2)	When the actual speed is less than P01-22, force speed to 0, and keep position locked						
3	8	Invalid. Igno	valid. Ignore zero-speed clamp input					

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit		
P01-22	Zero speed clamp	Operation	Effective	20	0 to 5000	Spood mode	rom		
P01-22	speed threshold	setting immediatel		20	0 10 5000	Speed mode	грп		
Used to set the speed threshold of zero-speed clamp function Please refer to 6.3.4 Zero-speed clamp									
function. 6.4.4 Speed limit in torque mode									

Effective time Parameter name Setting method Default Range Category Unit P01-23 Effective Internal speed Operation Speed 0 -5000 to 5000 rpm Instruction 1 immediately mode setting Used to set the speed value of internal speed instruction 2. To use internal speed instruction 1 to 7, you need to set 3 DI terminals as DI function 13 (INSPD1, internal speed instruction 1) to (INSPD3, internal speed instruction 3). The switch of the internal speed instruction section is realized by controlling the DI terminal logic of the servo control device. The running instruction segment number is 3-bit binary number. The corresponding relationships between internal speed instruction 1 to 3 and running segment number are as below. INSPD3 INSPD2 INSPD1 Internal speed instruction segment number 0 0 0 0 0 0 1 1 2 0 1 0 7 1 1 1 Please refer to 6.3.1 Speed instruction input setting

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit	
P01-24	Internal speed	Operation	Effective	0	E000 to E000	Speed	rpm	
	Instruction 2	setting	immediately	0	-5000 10 5000	mode		
Used to s	set the speed value of	of internal speed in	struction 2.					
P01-25	Parameter name	Setting method	Effective time	Default	Range	Category	Unit	

	Internal speed Instruction 3	Operation setting	Effective immediately	0	-5000 to 5000	Speed mode	rpm	
Used to set the speed value of internal speed instruction 3.								
	Parameter name	Setting method	Effective time	Default	Range	Category	Unit	
P01-26	Internal speed	Operation	Effective	0	5000 to 5000	Speed	rom	
	Instruction 4	setting	immediately	0	-5000 10 5000	mode	трш	
Used to set the speed value of internal speed instruction 4.								

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit		
P01-27	Internal speed	Operation	Effective	0	E000 to E000	Speed	rnm		
	Instruction 5	setting	immediately	0	-5000 10 5000	mode	трп		
Used to set the speed value of internal speed instruction 5.									

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P01-28	Internal speed	Operation	Effective	0	-5000 to 5000	Speed	rnm
	Instruction 6	setting	0	5000 10 5000	mode	1 pin	
Used to set the speed value of internal speed instruction 6.							

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit			
P01-29	Internal speed	Operation	Effective	0	5000 to 5000	Speed	rom			
	Instruction 7	setting	immediately	0	-5000 10 5000	mode	ipin			
Used to	Used to set the speed value of internal speed instruction 7.									

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
D01 20	Delay from brake	Operation	Effoctivo				
P01-50	output ON to	operation	immodiately	250	0 to 500	-	rpm
P01-30 Set the do	instruction reception	setting	inimediately				
Set the delay time from the brake (BRK-OFF) output is ON to the servo drive allows to start receiving input							t
instructi	ons. When the brake ou	tput (BRK-OFF) is no	ot allocated, this f	function coc	le has no effe	ect. Please re	efer to
6.1.8 Bra	ake device.						

							_	
	Parameter name	Setting method	Effective time	Default	Range	Category	Unit	
P01-31	Stationary state. delay from	Operation	Fffective		1 to			
	the brake output is OFF to	setting	immediately	150	1000	-	rpm	
	the motor is not energized	Setting	minediatery		1000			
When the	When the motor is in a static state, set the delay time from the brake (BRK-OFF) output is OFF to the servo drive is in						e is in	
the non-p	the non-powered state. When the brake output (BRK-OFF) is not allocated, this function code has no effect. Please							
refer to	refer to <u>6.1.8 Brake device</u> .							

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P01-32	Rotation state, when the brake output is OFF, the speed threshold	Operation setting	Effective immediately	30	0 to 3000	-	rpm
The moto	or is rotating, the motor speed	threshold when the	brake (BRK-OFF) is	allowed to	output O	FF. When the	e
brake out	tput (BRK-OFF) is not allocated,	this function code h	as no effect. Plea	se refer to	6.1.8 Bra	<u>ke device</u> .	

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P01-33	Rotation status, delay from servo enable OFF to brake output OFF	Operation setting	Effective immediately	500	1 to 1000	-	rpm
The moto	The motor is rotating, the delay time from the brake (BRK-OFF) output OFF is allowed to the servo enable (S-ON) OFF.) OFF.
When the	e brake output (BRK-OFF) is not	allocated, this funct	tion code has no e	ffect. Pleas	e refer to	6.1.8 Brake	<u>;</u>
device.							

D01 27	Parameter name	Setting method	Effective time	Default	Range	Categor y	Unit
P01-57	IOC acceleration time	Operation	Effective	E00	1 to		mc
	JOG acceleration time	setting	immediately	500	5000	-	1115
The time	for JOG instruction to acceler	ate from 0 to 1000r	pm.				
Solution Note: N	/D2L does not support DI con	trol JOG function f	or the time being	g, but the J	OG funct	ion of VD2	L
supports	P1-37 and P1-38 parameters.	•					

D01 29	Parameter name	Setting method	Effective time	Default	Range	Categor Y	Unit	
PU1-30	IOC deceleration time	Operation	Effective	E00	1 to		mc	
	JOG deceleration time	setting	immediately	500	5000		1115	
Time for a	a JOG instruction to decelerate	e from 100rpm to 0						
🔊 Note: \	/D2L does not support DI con	trol JOG function f	or the time being	g, but the J	OG functi	on of VD2	L	
supports P1-37 and P1-38 parameters.								

D01 20	Parameter name		Setting method	Effective time	Default	Range	Categor y	Unit
P01-39	Homing start mode		Stop setting	Effective immediately	0	0 to 4	-	-
	Setting		Correct					
	value		Corresponding function					
	0	Close						
	1	Start when servo first time enable after powering on						
	2	2 DI start						
	3		Reserved					
	4	Reserved						

P01-40	Parameter name	Setting method	Effective time	Default	Range	Categor y	Unit		
	Homing mode	Stop setting	Effective immediately	0	0 to 35	-	-		
Homing n	node. Please refer to the intro	duction of homing	mode in the tech	nical manu	al for det	ails.			
Note: VD2 disables the four homing modes of 15, 16, 31, and 32.									

P01-41	Parameter name	Setting method	Effective time	Default	Range	Categor y	Unit
101-41	Homing high speed	Operation setting	Effective immediately	300	1 to 3000	-	rpm
High-speed search deceleration point signal velocity in homing mode.							

P01-42	Parameter name	Setting method	Effective time	Default	Range	Categor Y	Unit
	Homing low speed	Operation setting	Effective immediately	60	1 to 300	-	rpm
Low-spee	d search origin signal velocity	in homing mode.					

P01-43	Parameter name	Setting method	Effective time	Default	Range	Categor Y	Unit
10145	Homing acceleration and deceleration time	Operation setting	Effective immediately	500	1 to 1000	-	ms
Accelerat	ion and deceleration time in h	ioming mode.					
Time for s	speed acceleration from 0 to 1	.000rpm					

P01-44	Parameter name	Setting method	Effective time	Default	Range	Categor Y	Unit
	Homing timeout	Operation setting	Effective immediately	65535	100 to 65535	-	ms
Homing ti	meout limited time.						

Group P02 Gain adjustment

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P02-01	1st position loop gain	Operation setting	Effective immediately	232	0 to 6200	Gain control	0.1Hz
Set the p	roportional gain of the 1s	t position loop to d	etermine the res	oonsivenes	s of positio	n control sys	tem.

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit		
P02-02	1st speed loop gain	Operation setting	Effective immediately	200	0 to 252	Gain control	0.1Hz		
Set the proportional gain of the 1st speed loop to determine the responsiveness of speed loop.									

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit		
P02-03	1st speed loop integral time constant	Operation setting	Effective immediately	210	100 to 65535	Gain control	0.1ms		
Set the 1st speed loop integral constant. The smaller the set value, the stronger the integral effect.									

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit	
P02-04	2nd position loop gain	Operation setting	Effective immediately	35	0 to 6200	Gain control	0.1Hz	
Set the proportional gain of the 2nd position loop to determine the responsiveness of position control system.								

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit	
P02-05	2nd speed loop gain	Operation setting	Effective immediately	65	0 to 35000	Gain control	0.1Hz	
Set the proportional gain of the 2nd speed loop to determine the responsiveness of speed loop.								

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit		
P02-06	2nd speed loop integral time constant	Operation setting	Effective immediately	1000	100 to 65535	Gain control	0.1ms		
Set the 2nd speed loop integral constant. The smaller the set value, the stronger the integral effect									

Setting method Effective time Default Parameter name Range Category Unit P02-07 2nd gain switching Operation Effective Gain 1 0 to 1 _ mode setting immediately control Used to set the 2nd gain switching mode. Setting value Definition First gain fixed. Use DI function 10 (GAIN-SEL) to switch: 0 DI logic invalid: PI control; DI logic valid: P control. 1 Switch first gain and second gain by the setting value of P02-08.

	I	Paran	neter name	Setting r	nethod	nethod Effective time Default Range Category Uni						
P02-0	08	Gain co se	n switching ondition election	Opera sett	ation ing	Effective immediately	0	0 to 10	Gain control			
Set th	e con	ditior	ns for gain sw	itching.								
	Sett val	ing ue	Gain swit conditi	tching ons			Details	i.				
	0)	The defaul first g	t is the ain	Fixed us	se of the first gain						
	1	-	Switch by	DI port	Use DI f DI logic DI logic	function 10 (GAIN is invalid: the first is valid: the secor	-SEL, gain s t gain (P02- nd gain (P02	witching); 01~P02-03 2-04~P02-0	5); 06).			
	2	<u>-</u>	Large to comma	rque and	In the p comma switche In the p comma duration	n the previous first gain, when the absolute value of torque command is greater than (grade + hysteresis), the second gain is witched; n the previous second gain, when the absolute value of torque command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned.						
	3	5	Large actua	l torque	In the previous first gain, when the absolute value of actual torque is greater than (grade + hysteresis), the second gain is switched; In the previous second gain, when the absolute value of actual torque is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned.							
	4	ŀ	Large sp comma	beed and	In the previous first gain, when the absolute value of speed command is greater than (grade + hysteresis), the second gain is switched; In the previous second gain, when the absolute value of speed command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned.							
	5	;	Large actua	al speed	In the p speed is switche In the p	revious first gain, s greater than (gra d; revious second ga	when the a ide + hystei iin, when th	absolute va resis), the s	lue of actual second gain is e value of actual			

		speed is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned.
6	Large rate of change in speed command	In the previous first gain, when the absolute value of the rate of change in speed command is greater than (grade + hysteresis), the second gain is switched; In the previous second gain, switch to the first gain when the absolute value of the rate of change in speed command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned.
7	Large position deviation	In the previous first gain, when the absolute value of position deviation is greater than (grade + hysteresis), the second gain is switched; In the previous second gain, switch to the first gain when the absolute value of position deviation is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned.
8	Position command	In the previous first gain, if the position command is not 0, switch to the second gain; In the previous second gain, if the position command is 0 and the duration is greater than [P02-13], the first gain is returned.
9	Positioning complete	In the previous first gain, if the positioning is not completed, the second gain is switched; In the previous second gain, if the positioning is not completed and the duration is greater than [P02-13], the first gain is returned.
10	Position command + actual speed	In the previous first gain, if the position command is not 0, the second gain is switched; In the previous second gain, if the position command is 0, the duration is greater than [P02-13] and the absolute value of actual speed is less than (grade - hysteresis).

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit		
P02-09	Speed feedforward gain	Operation setting	Effective immediately	0	0 to 1000	Gain control	0.1%		
Set spee	Set speed feedforward gain								

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit		
P02-10	Speed feedforward	Operation	Effective	50	0 to	Gain	0.01		
	filtering time constant	setting	immediately	30 ward input	10000	control	ms		
Set the time constant of one delay filter related to the speed feedforward input.									
	Parameter name	Setting method	Effective time	Default	Range	Category	Unit		
P02-11	Torque feedforward	Operation	Effective	0	0 to	Gain	0.1%		
	gain	setting	immediately	0	2000	control	0.1%		
Set torque feedforward gain									

P02-12	Parameter name	Setting method	Effective time	Default	Range	Category	Unit			
	Torque feedforward	Operation	Effective	FO	0 to	Gain	0.01			
	filter time constant	setting	immediately	50	10000	control	ms			
Set the t	Set the time constant of one delay filter related to the torque feedforward input.									

Note: This parameter is only valid when the second gain is switched back to the first gain.

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P02-14	Gain switching grade	Operation setting	Effective immediately	50	0 to 20000	Gain control	According to the switching conditions
Set the g	rade of the gain con	dition. The genera	tion of the actual	switching a	action is af	fected by the	two
condition	ns of grade and hyst	eresis.		-			
	P02-14 ↔ Gain switching grade				- ¥ P02-15:	Gain switching hy Gain switching h	steresis iysteresis
	First g	ain '	Second gain	' Firs	t gain		

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit			
P02-15	Gain switching hysteresis	Operation setting	Effective immediately	20	0 to 20000	Gain control	According to the switching conditions			
Set the h	Set the hysteresis to meet the gain switching condition.									

If P02-04 <> P02-01, then P02-16 is invalid, and the second gain is switched from the first gain immediately.

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P02-20	Enable model tracking control function	Shutdown setting	Effective immediately	0	0 to 1	Gain control	
Set 1 to e	enable the model tracking	control function.					

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit	
P02-21	Model tracking control gain	Shutdown setting	Effective immediately	1000	200 to 20000	Gain control	0.1/s	
Increasing the model tracking control gain can improve the position response performance of the model loop. If								
the gain	the gain is too high, it may cause overshoot behavior.							

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit			
P02-22	Model tracking control gain compensation	Shutdown setting	Effective immediately	1000	500 to 2000	Gain control	0.10%			
The gain compensation affects the damping ratio of the model loop, and the damping ratio becomes larger as										
the gain	the gain compensation becomes larger.									

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit			
P02-23	Model tracking control forward rotation bias	Operation setting	Effective immediately	1000	0 to 10000	Gain control	0.10%			
Torque fe	Torque feedforward size in the positive direction under model tracking control.									

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit				
P02-24	Model tracking control reverses rotation bias	Operation setting	Effective immediately	1000	0 to 10000	Gain control	0.10%				
Torque fe	Torque feedforward size in the reverse direction under model tracking control.										

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit				
P02-25	Model tracking control speed feedforward compensation	Operation setting	Effective immediately	1000	0 to 10000	Gain control	0.10%				
The size	The size of the speed feedforward under model tracking control.										

Group P03 Self-adjusting parameters

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P03-01	Load inartia ratio	Operation	Effective	200*	100 to	Solf tuning	0.01
		setting	etting immediately 500		10000	Sen-tuning	0.01
Set load	Set load inertia ratio: 0.00 to 100.00 times.						
"*" indicates that the factory defaults for different models may differ.							

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit			
P03-02	Load rigidity grade selection	Operation setting	Effective immediately	14*	0 to 31	Self-tuning	-			
Set the rigidity of servo system. The higher the value, the faster the response, but too high rigidity will cause										

vibration. "*" indicates that the factory defaults for different models may differ.

	Para	meter name	Setting m	ethod	Effective time	Default	Range	Category	Unit		
P03-03	Se	lf-adjusting	Operat	ion	Effective	0	0 to 2	Solf tuning			
	mo	de selection	settir	ng	immediately	0	0102	Sell-turning	-		
Different	gain ac	djustment mode	es could be	set, and	l the relevant gaiı	n paramete	ers could b	e set manually or			
automat	ically se	et according to t	he rigidity l	evel tab	ole.						
Setting	value	Instruction	source		Remarks						
				Position loop gain, speed loop gain, speed loop integral time							
0		Self-adjustin	g mode.	constant, torque filter parameter settings are automatically							
				adjusted according to the rigidity grade setting.							
1		Manual	otting	You ne	ed to manually s	et the posi [.]	tion loop ន្	gain, speed loop ga	ain,		
T		Ivialiual Se	etting	speed	loop integral time	e constant,	torque fil	ter parameter			
2		Oncable aut	tomatic	Not in	nlemented vet						
		self-adjustin	g mode	NOUTIN	ipiementeu yet						

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P03-04	Oncable inertia	Operation	Effective	0	0 to 2	Solf tuning	
	recognition sensitivity	setting	immediately	0	0102	Sen-tuning	
Not impl	emented yet.						

P03-05	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
	Number of circles Inertia recognition	Shutdown setting	Effective immediately	2	1 to 20	Self-tuning	Circle
Offcable load inertia recognition process, motor rotation number setting							

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit			
P03-06	Inertia recognition	Shutdown	Effective	1000	300 to	Solf tuning				
	maximum speed	setting	immediately 1000		2000	Sen-tuning	rpm			
Set the a	llowable maximum moto	or speed instruction	in offcable inerti	a recogniti	on mode. ⁻	The faster the	speed			
during in	during inertia recognition, the more accurate the recognition result will be. You are advised to keep the default									
value.	value.									

	Parameter r	name	Setti	ng method	Effective time	Default	Range	e Category	Unit
P03-07	Parameter reco	ognition	Sł	nutdown	Effective	0	0 to 2	Colf tuning	
	rotation dire	ction		setting	immediately	0	0102	sen-tuning	-
Set parar	et parameter recognition rotatio		direct	ion					
	Setting		/alue		Rotation direction	on			
	0			Forward and reverse reciprocating rotation			tion		
	1			Forward on	e-way rotation				
	2			Reverse on	e-way rotation				

P03-08	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
	Parameter recognition waiting time	Shutdown setting	Effective immediately	1000	300 to 10000	Self-tuning	ms
During offcable inertia recognition, the time interval between two consecutive speed instructions							

Group P04 Vibration suppression

	Parameter name	e	Setting meth	od	Effective time	Default	Range	Category	Unit
P04-01	Pulse instruction	n	Shutdown		Effective	0	0 to 1	Position	
	filtering method	k	setting		immediately	0	0101	mode	-
			Setting value		Filtering metho	d			
			0	Firs	st-order low-pass	filter			
			1	Ave	erage filtering				
	Parameter name	e	Setting meth	od	Effective time	Default	Range	Category	Unit
P04-02	Position instructio first-order low-pas filtering time consta	on Iss tant	Shutdown setting		Effective immediately	0	0 to 1000	Position mode	ms
Used to s	set position instructio	ons firs	st-order low-pa	ass fi	Itering time cons	tant.			
The position instructions are rectangular waves			Position instruction		2t		Input position First-order filt	instruction ering Time	
The pos is tra	sition instruction pezoidal wave		Position instruction		2t		Input position First-order filte	instruction ering	

2t Time

				Wecon VD2 S	eries Serve	o Drives Ma	nual (Full V	2.4)
	Parameter name	e Settin	g method	Effective time	Default	Range	Category	Unit
P04-03	Position instructio average filtering ti constant	on Shu me se	utdown etting	Effective immediately	0	0 to 128	Position mode	ms
Used to s	set average filtering t	ime constant.						
	The position instructions		osition truction		In A	put position inst verage filtering	truction	
The pos is rect	ition instructions tangular waves			t	t	т	ime	
			osition truction	t	In A	put position insi verage filtering	truction	
The pos is tra	sition instruction pezoidal wave							
						t T	ime	

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit		
P04-04	Torque filtering	Operation	Effective	00	10 to 2500	Vibration	0.01mc		
	time constant	setting	immediately	80	10 10 2500	suppression	0.01115		
Used to s	set torque filtering ti	me constant. Whe	n the function co	de P03-03	(Self-adjustme	ent mode selec	tion) is		
set to 0, the parameter is automatically set by servo. Please refer to <u>6.4.2 Torque instruction filtering</u>									

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit		
P04-05	1st notch filter	Operation	Effective	200	250 to	Vibration	U-7		
	frequency	setting	immediately	300	5000	suppression	112		
Set the center frequency of the 1st notch filter.									

When the function code is set to 5000, the function of the notch filter is invalid.

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit			
P04-06	1st notch filter	Operation	Effective	100	0 to 100	Vibration				
	depth	setting	immediately	100	0 10100	suppression	-			
Set the n	Set the notch filter depth grade (the ratio between input and output at the center frequency of the notch filter)									
The large	The larger the set value of this function code is, the smaller the notch filter depth is, and the weaker the									
suppression effect of mechanical vibration is. However, setting too large could cause system instability. Please										

refer to <u>7.4.2 Notch filter</u>

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit		
P04-07	1st notch filter	Operation	Effective	Λ	0 to 12	Vibration	_		
	width	setting	immediately	4	0 10 12	suppression	-		
Sat the notab filter width grade (the notic between input and extruct at the center frequency of the notab filter)									

Set the notch filter width grade (the ratio between input and output at the center frequency of the notch filter)

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit		
P04-08	2nd notch filter	Operation	Effective	E00	250 to	Vibration	U-7		
	frequency	setting	immediately	500	5000	suppression	п		
Set the c	Set the center frequency of the 1st notch filter.								
When th	When the function code is set to 5000, the function of the notch filter is invalid.								

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P04-09	2nd notch filter	Operation	Effective	100	0 to 100	Vibration	
	depth	setting	immediately	100	010100	suppression	-

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P04-10	2nd notch filter	Operation	Effective	Λ	0 to 12	Vibration	
	width	setting	immediately	4	01012	suppression	-

P04-11 OEnable low-frequency vibration suppressionOperation settingEffective immediately00 to 1Vibration suppression		Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P04-11 Olow-frequency vibration suppressionOperation settingEffective immediately00 to 1Vibration suppression		Enable						
function function	P04-11 〇	low-frequency vibration suppression function	Operation setting	Effective immediately	0	0 to 1	Vibration suppression	

When the function code is set to 1, enable the low-frequency vibration suppression function.

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit		
D04-12	Low-frequency								
P04-12 O	vibration suppression frequency	Operation setting	Effective immediately	800	10 to 2000	Vibration suppression	0.1HZ		
Sat the vibration frequency when vibration occurs at the load and									

Set the vibration frequency when vibration occurs at the load end.

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit	
P04-14	Shutdown vibration detection amplitude	Operation setting	Effective immediately	100	0 to 3000	Vibration suppression	0.001	
When the vibration amplitude is greater than detection amplitude ratio, the low-frequency vibration frequency can be recognized and updated to the U0-16 monitor quantity. The function code is set too large or too small to affect the recognition of the vibration frequency.								

DOA 19	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P04-10	Speed feedback	Operation	Effective	40	20 to 1000	Vibration	0.01mc
U	filtering time	setting	immediately	40	20 10 1000	suppression	0.01115
Wave filt	ering of the feedbac	k speed of the enc	oder. When the f	iltering tin	ne is set large,	it may cause th	ne motor
to vibrat	e.						

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit	
P04-19 〇	Enable the type A suppression function	Operation setting	Effective immediately	0	0 to 1	Vibration suppression		
When the function code is set to 1, enable the type A suppression function.								

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P04-20 〇	Type A suppression frequency	Operation setting	Effective immediately	1000	100 to 20000	Vibration suppression	0.1HZ
Set the f	requency of Type A s	suppression.					

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P04-21	Type A suppression gain correction	Operation setting	Effective immediately	100	0 to 1000	Vibration suppression	0.01
Correct t	he load inertia ratio	size.					

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit			
P04-22	Type A suppression damping gain	Operation setting	Effective immediately	0	0 to 500	Vibration suppression	0.01			
The ture	The type A valenties componenties value is analyelly increased until the vibration is reduced to the accorded									

The type A rejection compensation value is gradually increased until the vibration is reduced to the acceptable range.

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit		
P04-23	Type A suppression phase correction	Operation setting	Effective immediately	200	0 to 900	Vibration suppression	0.1 degree		
Type A suppression phase compensation.									

Group P05 Signal input and output

DOE 01	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P05-01	AL 1 input bias	Operation	Effective	0	-5000 to	Analog	m)/
×	AI_1 IIIput bias	setting	immediately	0	5000	input	IIIV
Set Al_1	channel analog bias	value					
		Sample voltage			No bias		
		(mv)			After bias		
		-10V	+:	10V Input v AI_1 fi	oltage after Itering (mV)		
			Bias				
" ☆" indi	cates that the VD2F	servo drive does no	ot support this fu	inction cod	le.		

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit		
FU3-U2	AI_1 input filter	Operation	Effective	200	0 to 60000	Analog	0.01mc		
*	time constant	setting	immediately	200	0 10 00000	input	0.01115		
Set Al_1	channel input first-o	rder low-pass filter	r time constant						
" ☆" indi	" \star " indicates that the VD2F servo drive does not support this function code.								

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit					
*	AI_1 dead zone	Operation setting	Effective immediatelv	20	0 to 1000	Analog input	mV					
Set AI_1 voltage is	Set AI_1 channel analog quantity dead zone value. "Dead zone" is the input voltage interval when the sample voltage is 0.											
		Sample voltage			No bias							
		(mV)			After bias							
		-10V	+ Dead zone	10V Input	voltage after							
" ☆" indi	cates that the VD2F s	servo drive does no	ot support this fur	AI_1	litering (mV)							

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
F03-04	AL 1 zero drift	Operation	Effective	0	-500 to 500	Analog	m\/
*	AI_1 Zero unit	setting	immediately	0	-300 10 300	input	IIIV
Set the z	ero drift of AI_1 cha	nnel analog. "zero	drift" is the samp	ole voltage	co voltage rel	ative to GND w	hen
analog c	hannel voltage is 0.						
	Sample volt	age	The vol	tage whei	n analog inpu	t 0V	
	(mV)	C	The vol	tage after	zero drift co	rrection	
	Zero drift	0	Analog inpu (m\	ut voltage /)			

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
*	AI_2 input bias	Operation setting	Effective immediately	0	-5000 to 5000	Analog input	mV

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
F03-00	AI_2 input filter	Operation	Effective	200	0 to 60000	Analog	0.01mc
×	time constant	setting	immediately	200	0 10 00000	input	0.01115
		•					

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P05-07	AL 2 doad zono	Operation	Effective	20	0 to 500	Analog	m\/
×	AI_2 dead 2011e	setting	immediately	20	010500	input	IIIV

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
*	AI_2 zero drift	Operation setting	Effective immediately	0	-500 to 500	Analog input	mV

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P05-09 ★	Analog 10V corresponds to the speed value	Shutdown setting	Effective immediately	3000	100 to 4500	Analog input	rpm

Set the speed value corresponding to the analog 10V

Mode	Function code value	Sampling voltage and speed diagram
		Speed(rpm)
		+(P05-09)
Speed mode	P01-01=1	-10V +10V Sample voltage (V)
		-(P05-09)
Given speed = sau	mpling voltage / 10 * (P	05-09)

★: Indicates that neither VD2F nor VD2L servo drivers support this function code

	Para	meter name	Settir	ng method	Effective time	Default	Range	Category	Unit
P05-10 ★	Ar corres tor	nalog 10V sponds to the rque value	Sh s	utdown etting	Effective immediately	1000	0 to 3000	Analog input	0.1%
Set the to	orque va	lue correspondir	ng to th	e analog 10V					
Mo	de	Function code	value	Sampling voltage and speed diagram					
Torque	mode	P01-07=1		-10V	Torque value +(P05-10)	-(P05-10)	+10V	Sample volta;	ge (V)
Given tor	que= sai	mpling voltage /	10 * (P	05-09)					

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit	
P05-11	Positioning completion, positioning approach condition setting	Operation setting	Effective immediately	0	0 to 3	Position mode	-	
Set the conditions of setting positioning completion and positioning approach. When servo is in position mode,								
and the	absolute value of the	positional deviati	on is within the	range of	P05-12 (p	ositioning co	mplete	
threshold	d) or P05-13 (positioning	approach threshol	ld), servo would o	utput the	positioning	complete sig	nal and	
positioni	ng approach signal.							
Set valu	ue	Output condition						
0	It is valid when the	It is valid when the absolute value of the position deviation is smaller than or close to the						
	It is valid when the	absolute value of t	he nosition deviat	ion is sma	ller than or	close to the		
1	threshold and innu	t position instruction	nn is 0	.1011 13 31110				
	It is valid when the	absolute value of t	the position deviat	ion is sma	ller than or	close to the		
2	threshold and innu	t position instruction	on filtering value is	: 0 : 0				
	It is valid when the	absolute value of t	the nosition deviat	ion is sma	ller than or	close to the		
3	threshold input or	sition instruction f	iltering value is Ω	and contin	uous nositi	ioning detects		
	window time				uous positi		,	
L Given tor	rque= sampling voltage /	10 * (P05-09)						

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit				
P05-12	Positioning completion threshold	Operation setting	Effective immediately	800	1 to 65535	Position mode	Equivalent pulse unit				
Set the t	Set the threshold of absolute value of position deviation when servo drive output positioning completion signal										

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit							
P05-13	Positioning approach threshold	Operation setting	Effective immediately	5000	1 to 65535	Position mode	Equivalent pulse unit							
Set the t	hreshold of absolute	value of position of	deviation when se	ervo drive	Set the threshold of absolute value of position deviation when servo drive output positioning approach signal									

" \star " indicates that the VD2F servo drive does not support this function code.

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P05-14	Position detection	Operation	Effective	10	0 to 20000	Position	ms
	window time	setting	mmeulately			moue	1
Catthad		for positioning on	malation				

Set the detection window time for positioning completion

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit			
P05-15	Positioning signal	Operation	Effective	100	0 to 20000	Position	20			
	holding time	setting	immediately	100	0 10 20000	mode	1115			
Set the t	holding time setting immediately ot to 20000 mode immediately Set the time for the signal to remain in effect after positioning when P05-11=3 (Positioning completion and mode <td< td=""></td<>									
positioni	ng approach conditio	n setting)								

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P05-16	Rotation detection speed threshold	Operation setting	Effective immediately	20	0 to 1000	Speed mode	rpm
C							

Set the speed threshold that triggers the motor rotation signal. The motor rotation signal (TGON) is used to confirm that the motor has rotated. Please refer to 6.3.5 Speed-related DO output function

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P05-17	Speed consistent	Operation	Effective	10	0 to 100	Speed	
	signal threshold	setting	immediately	10	010100	mode	грш

Set the speed threshold that triggers the motor speed consistent signal. The motor outputs speed consistent signal (V-COIN) indicates that the actual speed has reached the speed instruction setting value. Please refer to <u>6.3.5 Speed-related DO output function</u>

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P05-18	Speed approach	Operation	Effective	100	10 to 6000	Speed	rom
	signal threshold	setting	immediately	100	10 10 0000	mode	трпі

Set the speed threshold that triggers the motor speed approach signal. The motor outputs speed approach signal (V-NEAR) indicates that the actual speed has reached the expected value. Please refer to 6.3.5 Speed-related DO output function

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit			
P05-19	Zero speed output	Operation	Effective	10	0 to 6000	Speed	rom			
	signal threshold	setting	immediately	10	0100000	mode	трп			
Set the s	Set the speed threshold that triggers the motor zero speed output signal. The motor outputs zero speed signal									
(ZSP) ind	(ZSP) indicates that the actual speed is almost stationary. Please refer to 6.3.5 Speed-related DO output									
function										

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit			
P05-20	Torque arrival threshold	Operation setting	Effective immediately	100	0 to 300	Torque mode	%			
Please refer to 6.4.5 Tergue related DO output functions										

Please refer to 6.4.5 Torque-related DO output functions

P05-21	Parameter name	Setting method	Effective time	Default	Range	Category	Unit			
	Torque arrival	Operation	Effective	10	0 to 20	Torque	0/			
	hysteresis value	setting	immediately	10	0 10 20	mode	/0			
Please refer to 6.4.5 Torque-related DO output functions										

Group P06 DI/D0 configuration

	Parameter name	Setting method	l Ef	fective time	Default	Range	Category	Unit
P06-02	DI_1 channel function selection	Operation settin	g Po	wer on again	1	0 to 32	DI/DO	-
Set DI fu	nctions corresponding to	hardware DI_1. T	he relat	ed functions a	re as belov	V.		
Set value	DI channel fu	inction	Set value		DI cha	nnel funct	ion	
0	Off (not used)	13	INSPD1 (In	ternal spee	ed instruct	ion selectior	າ 1)	
1	S-ON (Servo enable)		14	INSPD2 (In	ternal spee	ed instruct	ion selectior	า 2)
2	A-CLR (Fault and warning	ng clear)	15	INSPD3 (In	ternal spee	ed instruct	ion selectior	ı 3)
3	POT (Forward drive pro	16	J-SEL Inert	ia ratio swi	tch (not in	nplemented	yet)	
4	NOT (Reverse drive pro	17	MixModeS	el Mix mo	de selectio	n		
5	ZCLAMP (Zero-speed cla	18	None					
6	CL (Clear deviation cour	nter)	19	None				
7	C-SIGN (instruction is re	eversed)	20	ENINPOS (Internal m	ulti-segme	nt enable sig	gnal)
8	E-STOP (Emergency stop	o)	21	INPOS1 (Internal m	ulti-segme	ent positio	n selection 1	.)
9	GEAR-SEL (Electronic Ge	ear Switch 1)	22	INPOS2 (Internal m	ulti-segme	ent positio	n selection 2	<u>?</u>)
10	GAIN-SEL (Gain switch)		23	INPOS3 (Internal m	ulti-segme	ent positio	n selection 3	5)
11	INH (Instruction pulse prohibited input)		24	INPOS4 (Internal m	ulti-segme	ent positio	n selection 4	+)
12	VSSEL (Vibration contro	l switching input)	-	-				

If P06-02 is set to a value other than that in the preceding table, the DI port function is not require The same DI channel function could not be allocated to multiple DI ports, otherwise servo drive will occur A-89 (DI port configuration duplication)

	Parameter name	Setting meth	od	Effective time	Default	Range	Category	Unit
P06-03	DI_1 channel logic selection	Operation set	ting	Effective immediately	0	0 to 1	DI/DO	-
DI port input logic validity function selection			n					
Set value	Set value Content			I	llustration			
0	Normally open in Active low level	Normally open input. Active low level (switch on)		High level More than 3ms Low level				
1	Normally closed Active high level	input. (switch off)		High level Low level	Va More th	lid nan 3ms		

	Parameter name	Setting metho	d Effective time	Default	Range	Category	Unit
P06-04	DI_1 input source selection	Operation setti	ng Effective immediately	0	0 to 1	DI/DO	-
Select the enabled DI_1 port type							
		Set value	Content				
0		Hardware DI_1 input termi	inal				
		1	Virtual VDI_1 input termina	al			

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P06-05	DI_2 channel function selection	Operation setting	Power on again	2	0 to 32	DI/DO	-

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P06-06	DI_2 channel logic selection	Operation setting	Effective immediately	0	0 to 1	DI/DO	-

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P06-07	DI_2 input source selection	Operation setting	Effective immediately	0	0 to 1	DI/DO	-

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P06-08	DI_3 channel function selection	Operation setting	Power on again	3	0 to 32	DI/DO	-

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P06-09	DI_3 channel logic selection	Operation setting	Effective immediately	0	0 to 1	DI/DO	-

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P06-10	DI_3 input source selection	Operation setting	Effective immediately	0	0 to 1	DI/DO	-

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P06-11	DI_4 channel function selection	Operation setting	Power on again	4	0 to 32	DI/DO	-

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P06-12	DI_4 channel	Operation setting	Effective immediately	0	0 to 1	DI/DO	-
	logic selection	operation setting		-		= ., = 0	

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P06-13	DI_4 input source selection	Operation setting	Effective immediately	0	0 to 1	DI/DO	-

DOG 1/	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
*	DI_5 channel function selection	Operation setting	Power on again	7	0 to 32	DI/DO	-

D06 15	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
*	DI_5 channel logic selection	Operation setting	Effective immediately	0	0 to 1	DI/DO	-

D06 16	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
*	DI_5 input source selection	Operation setting	Effective immediately	0	0 to 1	DI/DO	-

D06 17	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
*	DI_6 channel function selection	Operation setting	Power on again	11	0 to 32	DI/DO	-

"☆" indicates that the VD2F servo drive does not support this function code.

14/	ELUN		Weco	n VD2 Sei	ries Servo	Drives Ma	nual (Full V	2.4)
DOC 10	Parameter name	Setting method	Effective	e time	Default	Range	Category	Unit
P06-18 ★	DI_6 channel logic selection	Operation setting	Effective im	mediately	0	0 to 1	DI/DO	-
P06-19	Parameter name	Setting method	Effective	e time	Default	Range	Category	Unit
*	DI_6 input source selection	Operation setting	Effective im	mediately	0	0 to 1	DI/DO	-
	Parameter name	Setting method	Fffectiv	e time	Default	Range	Category	Unit
P06-20 ★	DI_7 channel function selection	Operation settir	ng Power o	n again	2	0 to 32	DI/DO	-
	Parameter name	Setting method	Effective	time	Default	Range	Category	Unit
P06-21 ★	DI_7 channel logic selection	Operation setting	Power or	n again	0	0 to 1	DI/DO	-
P06-22	Parameter name	Setting method	Effective	e time	Default	Range	Category	Unit
*	DI_7 input source selection	Operation setting	Effective im	mediately	0	0 to 1	DI/DO	-
DOC 33	Parameter name	Setting method	d Effectiv	e time	Default	Range	Category	Unit
*	DI_8 channel function selection	Operation settir	ng Power o	n again	0	0 to 32	DI/DO	-
	-					-		
P06-24	Parameter name	Setting method	Effective	e time	Default	Range	Category	Unit
*	logic selection	Operation setting	Power or	n again	0	0 to 1	DI/DO	-
P06-25	Parameter name	Setting method	Effective	e time	Default	Range	Category	Unit
*	DI_8 input source selection	Operation setting	Effective im	mediately	0	0 to 1	DI/DO	-
	Parameter name	Setting method	Effective t	ime D	efault	Range	Category	Unit
P06-26	DO_1 channel function selection	Operation setting	Effectiv immediat	e tely	132 1	28 to 148	DI/DO	-
Set DO fu	nctions correspondi	ng to hardware DO_	1. The related	function	s are as be	low.	·	
Set valu	e DO chan	nel function	Set value		DO ch	nannel fund	ction	
128	Close	(not used)	139		T-LIM	IT (Torque	limit)	
129	RDY (Se	ervo ready)	140		V-LIMI	T (speed lir	nited)	
130	ALM (f	ault signal)	141		BRK-OFF	(brake out	tput) 🍾	
			141 BRK-OFF (brake output)					

132	TGON (rotation detection)	143	OZ (Z pulse output)
133	ZSP (zero speed signal)	144	None
134	P-COIN (positioning completed)	145	COM_VDO1 (communication VDO1 output)
135	P-NEAR (positioning approach)	146	COM_VDO1 (communication VDO2 output)
136	V-COIN (consistent speed)	147	COM_VDO1 (communication VDO3 output)
137	V-NEAR (speed approach)	148	COM_VDO1 (communication VDO4 output)
138	T-COIN (torque arrival)	-	
If P06-26 is s	set to a value other than that in the pro	eceding table	e, the DO port function is not required
The serves D	مرجا المرجعة المراجع والمرجع المرجع المرجع والمرجع	مثدانيمت مدامه	

The same DO channel function could not be allocated to multiple DO ports, otherwise servo drive will occur A-90 (DO port configuration duplication)

" $\$ means use the function code BRK-OFF would be effective after power on again.

Note: Only VD2F supports 143: OZ (Z pulse output). The function of VD2-0 SA1G is empty.

" \star " indicates that the VD2F servo drive does not support this function code.

DOC 23	Parameter name	Setting method	Effective time	Default	Range	Category	Unit			
PU0-27	DO_1 channel	Operation	Effective	0	0 to 1	DI/DO	-			
	logic selection	setting	immediately							
DO Port	DO Port input logic validity function selection.									
Set			Contont							
value	Content									
0	Output transistor is on when the output is valid, and output transistor is off when the output is invalid.									
1	Output transistor is a	off when the outpu	t is valid, and output tr	ansistor is o	n when the	e output is in	valid.			

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P06-28	DO_2 channel function selection	Operation setting	Effective immediately	130	128 to 148	DI/DO	-

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P06-29	DO_2 channel logic selection	Operation setting	Effective immediately	0	0 to 1	DI/DO	-

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P06-30	DO_3 channel function selection	Operation setting	Effective immediately	129	128 to 148	DI/DO	-

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P06-31	DO_3 channel	Operation setting	Effective immediately	0	0 to 1	DI/DO	-

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P06-32	DO_4 channel function selection	Operation setting	Effective immediately	134	128 to 148	DI/DO	-

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P06-33	DO_4 channel	Operation setting	Effective	0	0 to 1	DI/DO	-
	logic selection	operation setting	immediately				

Group P07 multi-segment position

D07 01	Parameter name	Setting method	Effective time	Default	Range	Category	Unit	
P07-01	Multi-segment position	Shutdown	Effective	0	0 to 2			
	operation mode	setting	immediately	0	0102	-	-	
When serv	o is in position mode, and	d P01-06 (position in	struction source	e) =1, set th	e operatio	n mode of		
multi-segment position								
Set value	value Operation mode Remarks							
0	Single running	Stop after running of switching.	one round. The s	egment nu	mber auto	matic incren	nent	
1	Cycle running	Cycle running. The	segment numbe	r automatio	c incremen	t switching.		
2	DI switching running	Segment number up	odates can conti	nue to run	. The segm	ent numbers	are	
2	DI SWITCHING FUHIINING	determined by the	DI terminal logic					
To use mu	To use multi-segment position function, a DI port channel of servo drive should be configured to function 20							
(ENINPOS,	internal multi-segment p	osition enabled sign	al), and the logi	c of the DI 1	terminal va	alid should be	ē	
confirmed	Please refer to Group PO	6 DI/DO configuration	ion					

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P07-02	Starting position number	Shutdown setting	Effective immediately	1	1 to 16	-	-

Set the starting segment number in single running or cycle running.

When P07-01 \neq 2, the segment number automatic increment switching.

When P07-01=2, 4 DI ports need be set to DI function 21 (INPOS1, internal multi-segment position segment selection 1 to INPOS4, internal multi-segment position segment selection 4), and the segment number is switched by the servo host computer to control the DI terminal logic. Multi-segment number is 4-bit binary number. The corresponding relations between internal multi-segment position segment selection and segment number are as below.

If DI terminal logic is valid, the value of internal multi-segment position segment selection is 1, otherwise it is 0.

INPOS4	INPOS3	INPOS2	INPOS1	Operation segment number
0	0	0	0	1
0	0	0	1	2
0	0	1	0	3
1	1	1	1	16

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P07-03	End position	Shutdown	Effective	1	1 to 16	-	-
	number	setting	inineulately				

Set the end segment number in single running or cycle running.

When P07-01≠2, the segment number automatic increment switching. The switching sequence is: P07-02,, P07-03.

D07 04	Parameter name	Setting method	Effective time	Default	Range	Category	Unit		
P07-04	Margin handling	Shutdown	Shutdown Effective		0 to 1				
method		setting	immediately	U	0101	-	-		
The startin	g segment number	used for the serve	drive will run when it	resumes aft	er pausing	in multi-segr	ment.		
"Pause" indicates that internal multi-segment position enable signal changes from valid to invalid.									
Set value	Margin handlin method	ng	Remarks						
0	Run the remain positions	ing Segment. Af would run fr	nd segment number) =1 ter restoring the "Interr om the 3rd segment.	.6, servo wo nal Multi-Se	uld stop ru gment Ena	inning in the ble Signal", s	2nd ervo		
1	Run again from starting positic	If P07-02 (state the =16, servo w on "Internal Mu of P07-02	If P07-02 (start segment number) =1, and P07-03 (end segment number) =16, servo would stop running in the 2nd segment. After restoring the "Internal Multi-Segment Enable Signal", servo would run from the set va						
Once paus	ed during multi-seg	gment position ope	eration, the servo drive	will abando	n the unfir	nished position	on		

instructions in this segment and shutdown. Please refer to Margin handling method

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit	
P07-05	Displacement	Shutdown	Effective	0	0 to 1			
	instruction type	setting	immediately	0	0101	-	-	
Set the dis	Set the displacement instruction type of multi-segment position function. "Displacement instruction" is the							
sum of the	sum of the displacement instructions over a period of time.							
Set value	Instruction type		R	Remarks				
0	Relative position	Relative displace	cement is the increm	nent of the p	osition of t	the target re	lative	
0	instruction	to the current	position of motor.					
Absolute position Absolute displacement is the increment of the position of the target relative								
	instruction	to the origin of	motor					

	Parameter name	Setting	method	Effective time	Default	Range	Category	Unit
P07-06	06 Waiting time Shutdo		down	Effective	0	0 to 1		
	unit sett		ting	immediately	0	0101	-	-
Set the waiting unit of multi-segment position function. "waiting time" is the interval between the end of this								this
instructior	and the start of the	e next inst	ruction.					
			Set value	Waiting time unit				
			0	ms				
			1	S				

P07-09	Parameter name	Setting method	Effective time	Default	Default Range		Unit				
	The 1st segment	Operatio	Effective	10000	-2147483647 to						
	displacement	n setting	immediately	10000	2147483646	-	-				
Set the 1s	Set the 1st segment position displacement										

P07-10	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
	Maximum speed of the 1st	Operation	Effective	100	1 to		rom
	segment displacement	setting	immediately	100	5000	-	трп
Set the m	aximum speed of the 1st posit	ion displacement.	. Maximum run	ning speed	refers to t	he speed the	e
motor tha	at is not in the process of accel	eration and decel	eration. If P07-0)9 (1st posi	tion displa	cement) is s	et too

small, the actual speed of motor would be less than P07-10.

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P07-11	Acceleration and deceleration time of the 1st segment displacement	Operation setting	Effective immediately	100	1 to 65535	-	ms
-							

Used to set the time when the motor in the multi-segment position is uniformly accelerated from 0rpm to the P07-10 (maximum speed of the 1st segment displacement) in the multi-segment position.

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit		
P07-12	Waiting time after completion of the 1st segment displacement	Operation setting	Effective immediately	100	1 to 65535	-	Set by P07-06		
Used to set the waiting time before running the next segment displacement after the multi-segment position of									

Used to set the waiting time before running the next segment displacement after the multi-segment position of the 1st displacement is completed

D07 12	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
PU7-13	The 2nd segment displacement	Operation setting	Effective immediately	10000	-2147483647 to 2147483646	-	-

P07-14	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
	Maximum speed of the 2nd segment displacement	Operation setting	Effective immediately	100	1 to 5000	-	rpm

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P07-15	Acceleration and deceleration time of the 2nd segment displacement	Operation setting	Effective immediately	100	1 to 65535	-	ms

	Parameter name	Set	tting me	thod	Effectiv	e time	De	fault	Range	Category	Unit
D07 16	Waiting time after		Oporatio	n	Effor	tivo			1 to		Sothy
P07-10	completion of the 2nd		operation		immod	listoly	1	.00		-	
	segment displacement		setting	5	IIIIIIeu	lately			05555		F07-00
	Parameter name	Se	tting	Effe	ective	Defau	1+		Pango	Categor	v Unit
D07-17	Farameter name	me	ethod	ti	ime	Delau			Nange	Categor	y Onic
107-17	The 3rd segment	Оре	eration	Effe	ective	1000	0	-2147	7483647 to		_
	displacement	se	tting	imme	ediately	1000	0	214	7483646		
			a								
	Parameter name		method		Effective		De	fault	Range	Categor	y Unit
P07-18	Maximum analadatha	کسط	met	noa	tir	ne					-
	Maximum speed of the	310	Opera	ation	Ene	diatab	1	.00	1 to 500	0 -	rpm
	segment displacemen	ιι	seu	ing	Imme	ulately					
			Sott	ina	Effect	tivo					
	Parameter name		method		tim		Defa	ault	Range	Categor	y Unit
P07-19	Acceleration and		method								
	deceleration time of t	he	Operation		Effec	tive	10	00	1 to 6553	5 -	ms
	3rd segment displacem	ent	setting i		immed	iately				-	
	. .				1						
	Parameter name	Set	ting me	thod	Effectiv	e time	De	fault	Range	Category	Unit
D07 20	Waiting time after		Oporatio	20	Effor	tivo			1 to		Sot by
P07-20	completion of the 3rd		setting		immed	listoly	1	L00	65535	-	201 DY
	segment displacement		Setting	b	mineu	latery			05555		107 00
	Parameter name	Se	tting	Effe	ective	Defau	lt	R	lange	Category	/ Unit
P07-21		me	ethod	t	ime						•
	The 4th segment	Ope	eration	Ette	ective	1000	0	-2147	483647 to	-	-
	displacement	se	tting	Imme	ediately			214	/483646		
			Sott	ting	Effo	ctivo					
	Parameter name		met	hod	tir	ne	De	fault	Range	Categor	y Unit
P07-22	Maximum speed of the	4th	Opera	ation	Effe	ctive					
	segment displacemer	nt	sett	ing	imme	diately	1	.00	1 to 500	0 -	rpm
					1	,			1		
	Deremeter name		Sett	ing	Effec	tive	Def		Danga	Catagor	/ Unit
	Parameter name		meth	hod	tim	e	Dela	aun	капде	Categor	y Unit
P07-23	Acceleration and		Onera	ation	Fffec	tivo					
	deceleration time of t	he	sett	ing	immed	iately	10	00	1 to 6553	5 -	ms
	4th segment displacem	ent	5011	115	IIIIIcu	latery					
			- •				_		_		
	Parameter name	Set	ting me	thod	Effectiv	e time	De	fault	Range	Category	Unit
P07-24	Waiting time after		Operatio	on	Effec	tive	.		1 to		Set by
	completion of the 4th		cotting	,	immed	iatelv	1	100	65535	-	DOZ-06
	المتعمم والمتعالم ومعتومه		Julia)	mmea	iucciy			05555		F07-00
	segment displacement		Jetting)		latery			05555		F07-00

P07-25	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
	The 5th segment displacement	Operation setting	Effective immediately	10000	-2147483647 to 2147483646	-	-

DO7 36	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
PU7-26	Maximum speed of the 5th segment displacement	Operation setting	Effective immediately	100	1 to 5000	-	rpm

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P07-27	Acceleration and deceleration time of the 5th segment displacement	Operation setting	Effective immediately	100	1 to 65535	-	ms

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P07-28	Waiting time after completion of the 5th segment displacement	Operation setting	Effective immediately	100	1 to 65535	-	Set by P07-06

P07-29	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
	The 6th segment	Operation	Effective	10000	-2147483647 to	_	_
	displacement	setting	immediately	10000	2147483646		

D07 20	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
PU7-30	Maximum speed of the 6th	Operation	Effective	100	1 to 5000	_	rnm
	segment displacement	setting	immediately	100	1 10 5000	-	ipin

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P07-31	Acceleration and deceleration time of the 6th segment displacement	Operation setting	Effective immediately	100	1 to 65535	-	ms

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P07-32	Waiting time after completion of the 6th segment displacement	Operation setting	Effective immediately	100	1 to 65535	-	Set by P07-06

007 22	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P07-33	The 7th segment displacement	Operation setting	Effective immediately	10000	-2147483647 to 2147483646	-	-

007.24	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
PU7-34	Maximum speed of the 7th segment displacement	Operation setting	Effective immediately	100	1 to 5000	-	rpm

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P07-35	Acceleration and deceleration time of the 7th segment displacement	Operation setting	Effective immediately	100	1 to 65535	-	ms

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P07-36	Waiting time after completion of the 7th segment displacement	Operation setting	Effective immediately	100	1 to 65535	-	Set by P07-06

D07 27	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P07-37	The 8th segment displacement	Operation setting	Effective immediately	10000	-2147483647 to 2147483646	-	-

007 29	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
PU7-30	Maximum speed of the 8th	Operation	Effective	100	1 to 5000	-	rpm
	segment displacement	setting	immediately				•

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P07-39	Acceleration and deceleration time of the 8th segment displacement	Operation setting	Effective immediately	100	1 to 65535	-	ms

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P07-40	Waiting time after completion of the 8th segment displacement	Operation setting	Effective immediately	100	1 to 65535	-	Set by P07-06

DO7 41	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P07-41	The 9th segment	Operation	Effective	10000	-2147483647 to		
	displacement	setting	immediately	10000	2147483646	-	-

D07 42	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
PU7-42	Maximum speed of the 9th segment displacement	Operation setting	Effective immediately	100	1 to 5000	-	rpm

P07-43	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
	Acceleration and deceleration time of the 9th segment displacement	Operation setting	Effective immediately	100	1 to 65535	-	ms

P07-44	Parameter name	Setting method	Effective time	Effective time Default		Category	Unit
	Waiting time after completion of the 9th segment displacement	Operation setting	Effective immediately	100	1 to 65535	-	Set by P07-06

P07-45	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
	The 10th segment	Operation	Effective	10000	-2147483647 to	-	-
	displacement	setting	immediately	10000	2147483646		

D07 46	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
107-40	Maximum speed of the 10th segment displacement	Operation setting	Effective immediately	100	1 to 5000	-	rpm

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P07-47	Acceleration and deceleration time of the 10th segment displacement	Operation setting	Effective immediately	100	1 to 65535	-	ms

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P07-48	Waiting time after completion of the 10th segment displacement	Operation setting	Effective immediately	100	1 to 65535	-	Set by P07-06

DO7 40	Parameter name	name Setting Effective method time		Default	Range	Category	Unit
F07-45	The 11th segment	Operation	Effective	10000	-2147483647 to		
	displacement	setting	immediately	10000	2147483646	-	-

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
F07-30	Maximum speed of the 11th	Operation	Effective	100	1 to 5000	-	rnm
	segment displacement	setting	immediately	100	1 10 5000		1 pin

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P07-51	Acceleration and deceleration time of the 11th segment displacement	Operation setting	Effective immediately	100	1 to 65535	-	ms

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P07-52	Waiting time after completion of the 11th segment displacement	Operation setting	Effective immediately	100	1 to 65535	-	Set by P07-06

D07 E2	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
F07-33	The 12th segment	Operation	Effective	10000	-2147483647 to	-	-
	displacement	setting	immediately	10000	2147483646		

Maximum speed of the 12th Operation Effective 100 1 to 5000 - re		Parameter name Setting method		Effective time	Default	Range	Category	Unit
segment displacement setting immediately	107-34	Maximum speed of the 12th segment displacement	Operation setting	Effective immediately	100	1 to 5000	-	rpm

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P07-55	Acceleration and deceleration time of the 12th segment displacement	Operation setting	Effective immediately	100	1 to 65535	-	ms

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P07-56	Waiting time after completion of the 12th segment displacement	Operation setting	Effective immediately	100	1 to 65535	-	Set by P07-06

P07-57	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
107 57	The 13th segment displacement	Operation setting	Effective immediately	10000	-2147483647 to 2147483646	-	-

P07-58	Parameter name	Parameter name Setting method		Default	Range	Category	Unit
	Maximum speed of the 13th Operation Effective		Effective	100	1 to 5000		rom
	segment displacement	setting	immediately	100	1 10 5000	-	грп

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P07-59	Acceleration and deceleration time of the 13th segment displacement	Operation setting	Effective immediately	100	1 to 65535	-	ms

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P07-60	Waiting time after completion of the 13th segment displacement	Operation setting	Effective immediately	100	1 to 65535	-	Set by P07-06

P07-61	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
	The 14th segment	he 14th segment Operation Effective		10000	-2147483647 to		
	displacement	setting	immediately	10000	2147483646	-	-

P07-62	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
	Maximum speed of the 14th	Naximum speed of the 14th Operation Effective 100		100	1 to 5000		rnm
	segment displacement	setting	immediately	100	1 10 5000	-	трш

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P07-63	Acceleration and deceleration time of the 14th segment displacement	Operation setting	Effective immediately	100	1 to 65535	-	ms

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P07-64	Waiting time after completion of the 14th segment displacement	Operation setting	Effective immediately	100	1 to 65535	-	Set by P07-06

P07-65	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P07-05	The 15th segment displacement	Operation setting	Effective immediately	10000	-2147483647 to 2147483646	-	-

P07-66	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
	Maximum speed of the 15th segment displacement	Operation setting	Effective immediately	100	1 to 5000	-	rpm

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P07-67	Acceleration and deceleration time of the 15th segment displacement	Operation setting	Effective immediately	100	1 to 65535	-	ms

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P07-68	Waiting time after completion of the 15th segment displacement	Operation setting	Effective immediately	100	1 to 65535	-	Set by P07-06

P07-69	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
	The 16th segment	Operation setting	Effective	10000	-2147483647 to	-	-
	uispiacement	setting	inineulately		2147403040		

P07-70	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
	Maximum speed of the 16th	Operation	Effective	100	1 to 5000	-	rpm
	segment displacement	setting	immediately				

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P07-71	Acceleration and deceleration time of the 16th segment displacement	Operation setting	Effective immediately	100	1 to 65535	-	ms

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P07-72	Waiting time after completion of the 16th segment displacement	Operation setting	Effective immediately	100	1 to 65535	-	Set by P07-06

Group P10 Accessibility

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit		
P10-01	JOG speed	Operation setting	Effective immediately	100	0 to 3000	Accessibility	ms		
Used to set JOG speed									

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit				
P10-02	Eactory reset	Shutdown	Effective	0	0 to 65535	Accessibility	_				
	Tactory reset	setting	immediately	0	0 10 05555	Accessionity	-				
Write 1	Write 1 to factory reset										
		Set value	Function								
		0	Inva	Invalid							
		1	Factory reset								
		Others	Reser	ved							

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit		
P10-03	Foult clearing	Operation setting	Effective	0	0 to 1	Accossibility			
	Fault clearing	Operation setting	immediately	0	0101	Accessionity	-		
Fault res	Fault reset operation selection								
Set valu	e Function		Remarks						
0	No operation	-							
		For clearable fau	lts, after the caus	e of fault is	s removed, an	d write 1 to the			
1	Fault clearing	function code, th	function code, the drive will stop the fault display and enter the Rdy (or RUN)						
		state again.	state again.						

Note: If the servo S-ON is valid, when the fault is removed and cleared, the servo will directly enter "Run" state. When performing fault clearing actions, please be sure to stop sending control instructions such as pulses to ensure personal safety.

P10-04	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
	Motor overload	Operation	Effective	100	1 to	Accessibility	0/
	protection time factor	setting	immediately	100	800		70

Set the time for code A-82 (Motor overload warning) and Er.34 (Motor overload protection fault) through this function code.

According to the heating condition of the motor, modifying this value could make the overload protection time fluctuate up and down the reference value. 50 corresponds to 50%, that is, the time is reduced by half; 300 corresponds to 300%, that is, the time is extended to 3 times.

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P10-05	Motor model	Operation setting	Power-on again	0	0 to 65535	Accessibility	-

This function code displays the motor code of the motor currently recognized by the servo drive (including the last successful recognition).

Note: It is necessary to connect the motor first, and then power on the drive. Otherwise, it will report "Er.27" (encoder disconnection fault).

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit	
P10-06	Multi-turn absolute	Shutdown	Effective	0	0 to 1	Accossibility		
	encoder reset	setting	immediately	0	0101	Accessionity	-	
Used to clear the rotation number of multi-turn absolute encoder (U0-55), current position (U0-56) or clear the								
encoder fault alarms								

Set value	Function				
0	No operation;				
1	Clear multi-turn data, encoder current position and encoder fault alarms				

Note: After reset (P10-06 is set to 1), the absolute position of the encoder will change suddenly, and the mechanical origin return operation is required.

P10-07	Parameter name	Setting method	Effective time	Default	Range	Category	Unit		
	Set machine	Operation setting	Power-on again	0	0 to 1	Accessibility			
	code manually	Operation setting					-		
This function code modifies the motor code of the servo drive. When set to 0, the motor code is read from the									
motor side; when set to 1, the motor code is read from the P10-5 motor model.									

Note: VD2L manual setting machine code is inconsistent with other VD2 series drives: Used to modify the Motor Code of the servo drive.

0: Automatic reading of motor code

1: Not read the motor code, use the motor code set by [P10-5]

Note: Do not modify it at will, otherwise it may cause motor damage.

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit				
P10-08	Multi-turn absolute encoder origin offset	Operation setting	Effective immediately	0	-2147483647 to 2147483646	Accessibility	-				
	compensation										
P10-08	P10-08 multi-turn absolute encoder origin offset compensation is used in conjunction with U0-56										

P10-08 multi-turn absolute encoder origin offset compensation is used in conjunction with U0-56 multi-turn absolute encoder current position. When P10-6 is set to 1, the value of U0-56 is updated to P10-8.

	Parameter name	Setting method	Effective time	Default	Set range	Application category	Unit	
P10-11	Enable Function of							
	Motor Stall and	Operation setting	Power on again	0	0 to 1	Auxiliary	-	
	Overtemperature			_		function		
	Protection							
This func	tion code displays the m	notor code of the motor	currently recognized b	y the servo	drive (including th	e last successful		
recogniti	iti <u>o</u> n).							
	Set value		Func	tion				
	0	When the motor is stalling, the actual rpm is less than 10. The torque instruction exceeds the rated torque. The continuous time is reaching the motor overheating protection time in the corresponding torque, which will report ER.45 fault and shutdown immediately.						
	1	When the motor is stalling, the torque is becoming the 70% of the rated. (Shield drive stalling over-temperature protection function, which will cause)						

Group P12 Communication parameters

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit		
P12-01	Servo address	Operation setting	Effective immediately	1	1 to 247	Communication parameter	-		
Set the Modhus communication address of servo drive									

ne woodbus communication address of servo drive

	Parameter na	me Setti	ng method	Effectiv	ve time	Defau	ılt	Range	Category	Unit
P12-02	Paud rate	Op	peration	Effe	ctive	C		0 to 6	Communication	
	Bauurate	S	etting immed		diately	Z	Z	0100	parameter	-
Set the communication rate betwe			n servo driv	e and M	odbus so	ftware.				
Set		Set value	Baud rate	setting	Set valu	ie Ba	ud ı	rate setting		
		0	2400 k	ops	4		384	400 bps		
		1	4800 b	ps	5		57	600 bps		
2		9600 bps		6		115200bps				
		3	19200	bps]	
The com	The communication rate of the servo drive must be con						oft	the ModBus	software, otherwi	se it

could not communicate.

	Parameter name	Setting	method	Effective time	Default	Range	Category	Unit
P12-03	Serial data	Ope	ration	Effective	0	0 to 2	Communication	
	format	set	ting	immediately	0	0105	parameter	-
Used to set the data verification mode when the			servo drive com	municates	with ModB	lus.		
	Set value Data format							
				1 stop bit, no	o parity			
			1	1 stop bit, od	d parity			
			2	1 stop bit, eve	en parity			
			3	2 stop bits, n	o parity			
The data commun	format of servo driv licate.	ve must b	e consister	nt with that of th	e ModBus	software, o	therwise it could no	ot

		Para	meter name	Setting method	Effective time	Default	Range	Category	Unit
P12-04		Write Modbus communication data to EEPROM		Operation Effective 0 setting immediately		0	0 to 1	Communication parameter	-
Whether the function code written by the communication method is saved to EEPRO									
	Set	value	Whether the	function code writt	en by the comm	unication	method is	s saved to EEPROM	l
		0	Do not write t	o EEPROM, and do	not save data aft	er power f	failure;		
1 Write to EEPROM, and save data after power failure;									
N	Note: If you need to change the function code value frequently, it is recommended to set the function code								
to 0,	0, otherwise the EEPROM would be damaged due to frequent erase of EEPROM. "Er.02" (Parameter Storage								

Error) will occur on the servo drive.

D12 OF	Parameter name	Setting method	Effective time	Default	Range	Category	Unit		
۳12-05 بر	RS422/RS485	Operation	Effective	0	0 to 1	Communication			
×	function selection setting immediately of otor parameter								
Used to set the communication method of VD2E serve drive (The CN3 and CN4 of VD2E are time division									

Used to set the communication method of VD2F servo drive (The CN3 and CN4 of VD2F are time division multiplexing communication ports, and support RS422 and RS485 time division multiplexing).

Set value	Communication method
0	RS422 communication
1	RS485 communication

Note: "A" indicates that only VD2F servo drive support this function code. The VD2-0XXSA1G model does not have this function code.

	Pa	arameter nar	ne	Setting method	Effective time	Default	Range	Category	Unit
P12-06		Modbus 32-b ariable high a ow byte orde	it nd er	Operation setting	Effective immediately	0	0 to 1	Communication parameter	-
Used to s	set tł	ne data comn	nunica	ation format when	the servo driver of	communic	ates with	ModBus.	
Set value Data definition									
0 In big-endian, the low address stores high 16-bi address stores low 16-bit data.				gh 16-bit d	ata, and t	he high			
1 In small-endian, the low address stores the low 16-bit data and the high address stores the high 16-bit data.							and the		
The data commun	forn icati	nat of the ser on will fail.	vo dri	ve must be consist	ent with that of t	he ModBu	ıs softwar	e; otherwise,	

Group P13 Communication input and output terminal

	Parameter name	Setting meth	od	Effective time	Default	Range	Category	Unit
P13-01	Virtual VDL 1 input value	Operation		Effective	0	0 to 1	00/וח	
		setting		immediately	0	0101	0700	-
When PC	l logic is contro	olled	by this function	code.				
		Set value	VD	I_1 input level				
		0		High level				
		1		Low level				

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit		
P13-02	Virtual VDI_2 input value	Operation setting	Effective immediately	0	0 to 1	DI/DO	-		
When P06-07 is set to 1, DI_2 channel logic is controlled by this function code.									

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit		
P13-03	Virtual VDI_3 input value	Operation setting	Effective immediately	0	0 to 1	DI/DO	-		
When PC	When P06-10 is set to 1, DI_3 channel logic is controlled by this function code.								

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit		
P13-04	Virtual VDI_2 input value	Operation setting	Effective immediately	0	0 to 1	DI/DO	-		
When PC	When P06-13 is set to 1, DI_4 channel logic is controlled by this function code.								

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit				
P13-05	Virtual VDI_5 input value	Operation setting	Effective immediately	0	0 to 1	DI/DO	-				
When PC	When P06-16 is set to 1, DI_5 channel logic is controlled by this function code.										

P13-06	Parameter name	Setting method	Effective time	Default	Range	Category	Unit		
P13-06 ☆	Virtual VDI_6 input value	Operation setting	Effective immediately	0	0 to 1	DI/DO	-		
When P06-19 is set to 1, DI 6 channel logic is controlled by this function code.									

D12 07	Parameter name	Setting method	Effective time	Default	Range	Category	Unit	
☆	Virtual VDI_7 input value	Operation setting	Effective immediately	0	0 to 1	DI/DO	-	
When P06-22 is set to 1, DI_7 channel logic is controlled by this function code.								

D12 09	Parameter name	Setting method	Effective time	Default	Range	Category	Unit		
×	Virtual VDI_8 input value	Operation setting	Effective immediately	0	0 to 1	DI/DO	-		
When P06-25 is set to 1, DI_8 channel logic is controlled by this function code.									

When P06-25 is set to 1, DI_8 channel logic is controlled by this function code.

	Parameter name	Setting meth	nod	Effective time	Default	Range	Category	Unit
P13-11	Virtual VDO 1 input value	Operation	1	Effective	0	0 to 1	00/וס	
virtual vDO_1 input valu		setting		immediately	0	0101	ססקום	-
Used to set the input level logic when the DO function selected by VDO								
		Set value	VD	o_1 input level				
		0		High level				
		1		Low level				

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P13-12	Virtual VD0_2 input value	Operation	Effective	0	0 to 1		
		setting	immediately	0	0101	DI/DO	-
	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P13-13	Virtual VD0 2 input value	Operation	Effective	0	0 to 1		
	Virtual VD0_3 input value	setting	immediately	0	0101	0700	-
	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P13-14	Virtual VDQ 4 in put value	Operation	Effective	0	0 to 1		
	virtual vD0_4 input value	setting	immediately	U	0.01	0,00	-

" \ddagger " indicates that the VD2F servo drive does not support this function code.

Group U0 Universal monitoring

110.01	Monitor	Range		Category	Panel	display	Unit	Data type	
00-01	Servo	1 to 4	1 to 4		Decimal		-	16-bit	
Display th	e status of servo drive.								
	Display value		Status	Displ	lay value	Status			
		1	Initialization		3	Run			
		2	Rdy and JOG		4	Fault			

110.02	Monitoring nam	Ra	nge	Category	Panel display	Unit	Data type	
00-02	Servo motor spee	ed	-5000 to 5000		Universal	Decimal	rpm	16-bit
Display th	e actual speed of servo drive. The acc		uracy is	1 rpm. T	he display of	servo drive pane	el is as b	pelow.
	500 rpm d		display	-500 rp	om display			

110.02	Monitoring name	Ra	nge	Category	Panel display	Unit	Data type
00-05	Input speed instruction	-5000	to 5000	Universal	Decimal	rpm	16-bit
Display in	out speed instruction. The accura	y is 1 rpm.	The displ	ay of servo d	lrive panel is as b	elow.	
	3000 rpm		-3000 r	pm display			

	Monitoring name		Ran	ge	Category	Panel display	Unit	Data type
U0-04	Corresponding speed	l of	E000 +c		Universal	Docimal	rom	16 hit
	position instruction	n	-5000 10	0 5000 Universal		Decimal	rpm	10-01
Display th	e current speed instructior	n value o	f servo driv	ve in posi	tion mode. T	The accuracy is 1	rpm. Tl	ne display
of servo d	rive panel is as below.							
		3000 rp	m display	-3000 r	pm display			

	Monitoring name	Range	Category	Panel display	Unit	Data type
U0-05	Pulse deviation	-2 ³¹ to 2 ³¹	Universal	Decimal	Equivalent pulse deviation	32-bit
Display pu	Ilse deviation. If U0-05	5 is set to 32768,	, the display o	f servo drive pan	el is as below.	
			Shift			
		Shift		Shift		
	高2位	<u><u>v</u></u>	高2位		高2位	
	第三	贞	第三页		第三贝	
	Low 4	bits	Middle 4 bi	ts	High 4 bits	
	1st pa	ige	2nd page		3rd page	

U0-07	Monitoring name	Range	Category	Panel display	Unit	Data type
	Encoder abnormality counter	-	Universal	Decimal	-	16-bit
Record da	ta of the encoder abnormality of th	ne servo drive.				

	Monitoring name	Range	Category	Panel display	Unit	Data type
U0-08	Input instruction pulse frequency	-	Universal	Decimal	KHz	16-bit
Display th	e input instruction pulse frequency	of servo drive.				

	Monitoring name	Range	Category	Panel display	Unit	Data type			
U0-09	Input instruction	2^{31} to 2^{31}	Universal	Docimal	Equivalent pulse	22 hit			
	pulse number	-2 10 2	Universal	Decimal	deviation	52-bit			
Display in:	struction pulse numbe	er that input the	servo drive. I	f U0-09 is set to -2	2147483646, the disp	ay of servo			
drive panel is as below.									
	Shift								
		Shift		Shift					
	Low 4 b	its	Middle 4 bi	ts	High 4 bits				
	1st pag	ge	2nd page		3rd page				

	Monitoring name	Range	Category	Panel display	Unit	Data type
U0-12	Real-time torque value	-3000 to 3000	Universal	Decimal	0.1%	16-bit

	Monitoring name	Range	Category	Panel display	Unit	Data type	
U0-13	Encoder cumulative position	-2 ³¹ to 2 ³¹	Universal	Decimal	Encoder unit	32-bit	
	(200001 52 5103)						

	Monitoring name	Range	Category	Panel display	Unit	Data type		
U0-15	Encoder cumulative position (High 32 bits)	-2 ³¹ to 2 ³¹	Universal	Decimal	Encoder unit	32-bit		
Display th	Display the cumulative data of encoder position. It is used with U0-13 cooperatively.							

	Monitoring name	Range	Category	Panel display	Unit	Data type
U0-16	Shutdown vibration frequency	0 to 2000	Universal	Decimal	0.1Hz	16-bit
Display th	e detected frequency during th	e deceleration	to stop.			

	Monitoring name	Range	Category	Panel display	Unit	Data type
U0-17	DI input signal status	00000000 to 11111111	Universal	Binary	Encoder unit	16-bit
Display th	e current level status of DI	terminal. The uppe	er part of the	digital tube of se	ervo drive panel	is lit up to
indicate a	high level (denoted by "1'	'). The lower part is	lit up to indic	cate a low level (denoted by "0")	
Take the D	011 to DI7 terminals as the	high level and DI8 a	as the low lev	el as an example	. The correspon	ding binary
code is "0	1111111", and Wecon serv	vo control device de	ebugging soft	ware U0-17 disp	lays the current	binary
value is Ob	0111 1111. The panel of s	servo drive is displa	yed as below.			
	·	DI8 DI6	DI4 DI2			
		DI7 I	DI5 DI3 DI1	L		
		Low HighHigh Hig	ghHighHigh HighHi	gh		
i		0 1 1 1	1 1 1 1	L		

	Monitoring name	Range	Category	Panel display	Unit	Data type			
U0-19	DO output signal status	00000000 to 00001111	Universal	Binary	Encoder unit	16-bit			
Display th	e current level status of 4	DO terminals. The ι	pper part of	the digital tube of	of servo drive pa	inel is lit up			
to indicate	to indicate a high level (denoted by "1"). The lower part is lit up to indicate a low level (denoted by "0").								
Take the D	001, DO2 and DO3 termina	als as the high level	and DO2 as t	he low level as a	in example. The				
correspor	ding binary code is "1101'	', and Wecon servo	upper compu	uter debugging s	oftware U0-17 d	isplays the			
current bi	nary value is 0b0000 1101	. The panel of servo	o drive is disp	layed as below.					
	DO4 DO2								
			DO3	DO1					
		nig	n nign low	nign					
		1	1 0	1					

U0-20	Monitoring name	Range	Category	Panel display	Unit	Data type
	Real-time load inertia ratio	0 to 1000000	Universal	Decimal	%	16-bit
Display th displayed	e current load inertia ratio. If t as below.	he load inertia ratio i	s 3 times (300%	%) , the panel of	servo dri	ve is

	Monitoring name	Range	•	Category	Panel display	Unit	Data type	
U0-21	AI1 input voltage value			Universal	Decimal	V	16 bit	
	Reserved ☆	-		Universal	Decimal	v	10-DIT	
Display the actual sampling voltage of analog channel 1.								
	1	0.00V display		-10.00V display	y			
"☆" indica	"☆" indicates that the VD2F and VD2L servo drive does not have this monitoring.							

	Monitoring name	Range	Category	Panel display	Unit	Data type	
U0-22	Al2 input voltage value		Universal	Desimal	V	16 hit	
	Reserved 🛠	-	Universal	Decimal	v	10-01	
"☆" indicates that the VD2F and VD2L servo drive does not have this monitoring.							

110.22	Monitoring name	Range	Category	Panel display	Unit	Data type
00-23	Vibration Frequency	-	Universal	Decimal	Hz	16-bit

110.24	Monitoring name	Range	Category	Panel display	Unit	Data type
00-24	Vibration amplitude	-	Universal	Decimal	rpm	16-bit

U0-25	Monitoring name	Range	Category	Panel display	Unit	Data type		
	Forward torque limit value	0 to 300	Universal	Decimal	%	16-bit		
Display the set value of P01-15 (forward torque limit) of servo drive. If U0-25 is 288%, the panel of servo drive is displayed as below.								

Wecon VD2 Series Servo Drives Manual (Full V2.4)

U0-26	Monitoring name	Range	Category	Panel display	Unit	Data type
	Reverse torque limit value	0 to 300	Universal	Decimal	%	16-bit
Display th displayed	e set value of P01-16 (reverse tor as below.	rque limit) of servo	drive. If U0-26	is 300%, the pa	nel of se	rvo drive is

U0-27	Monitoring name	Range	Category	Panel display	Unit	Data type		
	Forward speed limit value	0 to 5000	Universal	Decimal	rpm	16-bit		
Display the set value of P01-12 (forward speed threshold) of servo drive. If P01-12 is set to 2000, the panel of								
servo drive is displayed as below.								

110.20	Monitoring name	Range	Category	Panel display	Unit	Data type
00-28	Reverse speed limit value	-5000 to 0	Universal	Decimal	rpm	16-bit
Display th servo driv	e set value of P01-13 (reverse spo e is displayed as below.	eed threshold) of s	ervo drive. If P	01-13 is set to 30	000, the	panel of

U0-29	Monitoring name	Range	Category	Panel display	Unit	Data type		
	Mechanical angle	0 to 359	Universal	Decimal	0	16-bit		
Display current mechanical angle of motor. O corresponds to a mechanical angle of O degree.								
If the mechanical angle is 270°, the panel of servo drive is displayed as below.								

U0-30	Monitoring name	Range	Category	Panel display	Unit	Data type	
	Electrical angle	0 to 359	Universal	Decimal	0	16-bit	
Display current electrical angle of motor. The accuracy is 1°. When the motor rotates, the angle range is 360°.							

When the motor is 4 poles, every time the motor is rotated one turn, it undergoes a change process of 0° to 359° four times.

U0-31	Monitoring name	Range	Category	Panel display	Unit	Data type		
	Bus voltage	-	Universal	Decimal	V	16-bit		
Display the DC bus voltage of the main circuit input voltage of servo drive after rectification. If the bus voltage is								
310.9, the panel of servo drive is displayed as below.								

110.22	Monitoring name	Range	Category	Panel display	Unit	Data type
00-32	Radiator temperature	-	Universal	Decimal	°C	16-bit
110 22	Monitoring name	Range	Category	Panel display	Unit	Data type
00-55	Instantaneous output power	-	Universal	Decimal	W	16-bit
110.24	Monitoring name	Range	Category	Panel display	Unit	Data type
00-34	Average output power	-	Universal	Decimal	W	16-bit

Wecon VD2 Series Servo Drives Manual (Full V2.4)

U0-35	Monitoring name	Range	Category	Panel display	Unit	Data type
	Total operation time (hour)	-	Universal	Decimal	h	16-bit

U0-37	Monitoring name	Range	Category	Panel display	Unit	Data type
	Total operation time (minutes)	-	Universal	Decimal	min	16-bit
110.20	Monitoring name	Range	Category	Panel display	Unit	Data type

00-39					~ (
110.20	Monitoring name	Range	Category	Panel display	Unit	Data type
00-56	Total operation time (seconds)	-	Universal	Decimal	S	16-bit

Load torque percentage-UniversalDecimal%16-bitDisplay current load torque percentage. If the current load torque percentage is 10.3%, the panel of servo drive
is displayed as below.

110.40	Monitoring name	Range	Cate	egory	Panel di	splay	Unit	Data type
00-40	Current operation time (hour)	-	Univ	/ersal	Decim	nal	h	16-bit
110 42	Monitoring name	Range	Cate	egory	Panel di	splay	Unit	Data type
00-42	Current operation time (minutes)	-	Univ	/ersal	Decim	nal	min	16-bit
110 42	Monitoring name	Range	Cate	egory	Panel di	splay	Unit	Data type
00-43	Current operation time (seconds)	-	Univ	/ersal	Decim	nal	S	16-bit
110 44	Monitoring name	Range	Cate	egory	Panel di	splay	Unit	Data type
00-44	Instantaneous braking resistor power	-	Univ	/ersal	Decim	nal	W	16-bit
110.46	Monitoring name	Range	Cate	egory	Panel di	splay	Unit	Data type
00-40	Average braking resistor power	-	Univ	/ersal	Decim	nal	W	16-bit
110.49	Monitoring name	Range	Cate	egory	Panel di	splay	Unit	Data type
00-40	Power-on times	-	Univ	/ersal	Decim	nal	Times	16-bit
110-49	Monitoring value name	Range	Cate	gory	Panel dis	play	Unit	Data type
00-49	Internal counting of motor overload		Univ	ersal	Decima	al	100	16 Bit
	Monitoring name	Range	Cate	egory	Panel di	splay	Unit	Data type
U0-50	Motor cumulative number of turns	$0 + 2^{32}$		orcal	Dacim		Cuclo	22 hit
	(low 32 bits)	0102 -		leisai	Decin	Idi	Cycle	52-DIL
	Monitoring name	Range	Cate	egory	Panel di	splay	Unit	Data type
U0-51	Motor cumulative number of turns	$0 + 2^{32}$		orcal	Docim	1	Cyclo	22 hit
	(high 32 bits)	0102 -		/01301	Decin	iai	Cycle	32-bit
110-53	Monitoring name	Range	Cate	egory	Panel di	splay	Unit	Data type
00-33	Motor model code	-	Univ	/ersal	Hexadeo	imal	-	16-bit
Display cu	rrent Motor model code. Take WD80M-	07530S-A1	LF (A026)	as an ex	ample, the	e pane	l of servo	o drive is
displayed	as below.							
110-54	Monitoring name Pango	Cat	logory	Danal	display		nit	Data typo
- 00-54	Monitoring name Range	Ca	legory	Fallel	uispidy	0	m	Data type

	Absolute encoder	0 to 2 ³² -1	Universal	Decimal	Encoder unit	32-bit
Display th	e single turn position feed		1			

	Monitoring name	Range	Category	Panel display	Unit	Data type		
U0-55	Circle numbers of multi-turn absolute encoder	0 to 65535	Universal	Decimal	Encoder unit	32-bit		
Display the circle number of multi-turn absolute encoder								

	Monitoring name	Range	Category	Panel display	Unit	Data type	
U0-56	Multi-turn absolute encoder current position	-2 ³¹ to 2 ³¹	Universal	Decimal	Instruction unit	32-bit	
Display the absolute position of motor (instruction unit). It is only valid is multi-turn absolute encoder motor							

Display the absolute position of motor (instruction unit). It is only valid is multi-turn absolute encoder motor

	Monitoring name	Range	Category	Panel display	Unit	Data type		
U0-59	Historical maximum bus voltage	0 to 65535	Universal	Decimal	V	16-bit		
Display th	Display the bus voltage history maximum.							

	Monitoring name	Range	Category	Panel display	Unit	Data type	
U0-60	Historical maximum average power	0 to 65535	Universal	Decimal	W	16-bit	
Display av	Display average power history max.						

Group U1 Warning monitoring

114 04	Monitoring name	Range	Category	Panel display	Unit	Data type		
01-01	Current fault code	-	Warning	-	-	16-bit		
If there is fault in servo drive, it would display the corresponding fault. If not, the panel displays "".								
Take the fault "encoder disconnect" as an example, the panel of servo drive is displayed as below.								
	Servo drive has an fault "encoder disconnection"			Servo drive has r	no fault			

114.00	Monitoring name	Range	Category	Panel display	Unit	Data type			
01-02	Current warning code	-	Warning	-	-	16-bit			
If there is warning in servo drive, it would display the corresponding warning. If not, the panel displays "".									
Take the warning"DI port configuration duplication" as an example, the panel is displayed as below.									
	Servo drive has an warning "DI port configuration duplication"			ervo drive has no	o warnii	ng			

111.02	Monitoring name	Range	Category	Panel display	Unit	Data type
01-03	U phase current when faults occur	-	Warning	Decimal	А	16-bit

114 04	Monitoring name	Range	Category	Panel display	Unit	Data type
01-04	V phase current when faults occur	-	Warning	Decimal	А	16-bit

111.05	Monitoring name	Range	Category	Panel display	Unit	Data type
01-05	Bus voltage when faults occur	-	Warning	Decimal	V	16-bit

U1-06	Monitoring name	Range	Category	Panel display	Unit	Data type
	IGBT temperature when faults occur	-	Warning	Decimal	°C	16-bit

U1-07	Monitoring name	Range	Category	Panel display	Unit	Data type

Torque component when faults occur	-	Warning	Decimal	%	16-bit

U1-08	Monitoring name		Category	Panel display	Unit	Data type
	Excitation component when faults occur	-	Warning	Decimal	%	16-bit

	Monitoring name	Range	Category	Panel display	Unit	Data type
U1-09	Position deviation when faults occur	-	Warning	Decimal	Encoder unit	32-bit

	ELCIN	Wecon VD2 Series Servo Drives Manual (Full V2.4)						
	Monitoring name	Range	Category	Panel display	Unit	Data type		
01-10	The speed when faults occur	-	Warning	Decimal	rpm	16-bit		
111 11	Monitoring name	Range	Category	Panel display	Unit	Data type		
01-11	The time when faults occur	-	Warning	Decimal	S	16-bit		
U1-12	Monitoring name	Range	Category	Panel display	Unit	Data type		
	Number of faults in this operation	-	Warning	Decimal	-	16-bit		
		Danas	Catagon	Danal diamlars	11	Data turna		
U1-13	Number of warnings in this expertion	капде	Lategory	Panel display	Unit	Data type		
	Number of warnings in this operation	-	warning	Decimai	-	10-DIL		
	Monitoring name	Range	Category	Panel disnlav	Unit	Data type		
U1-14	Total number of historical faults	-	Warning	Decimal	-	16-hit		
			Warning	Deemia		10 510		
	Monitoring name	Range	Category	Panel display	Unit	Data type		
U1-15	Total number of historical warnings	-	Warning	Decimal	-	16-bit		
111 16	Monitoring name	Range	Category	Panel display	Unit	Data type		
01-10	The 1st fault code of the most recent	-	Warning	-	-	16-bit		
Display the	1st fault code of the most recent of servo d	rive						
				-				
111-17	Monitoring name	Range	Category	Panel display	Unit	Data type		
01-17	The 2nd fault code of the most recent	-	Warning	-	-	16-bit		
U1-18	Monitoring name	Range	Category	Panel display	Unit	Data type		
	The 3rd fault code of the most recent	-	Warning	-	-	16-bit		
U1-19	Monitoring name	Range	Category	Panel display	Unit	Data type		
	The 4th fault code of the most recent	-	Warning -		-	16-bit		
		_	-			_		
U1-20	Monitoring name	Range	Category	Panel display	Unit	Data type		
	The 5th fault code of the most recent	-	Warning	-	-	16-bit		
		-	•			• • •		
U1-21	Monitoring name	Range	Category	Panel display	Unit	Data type		
	The 1st warning code of the most recent	-	warning	-	-	16-DIt		
Display the	1st warning code of the most recent of serv	o arive						
		Dente	0.1	Devel d'autor		Data tana		
U1-22	IVIONITORINg name	Range	Category	Panel display	Unit	Data type		
	The 2nd warning code of the most recent	-	warning	-	-	10-DIL		
	Monitoring name	Danca	Catagoni	Danal diselar	د. ۱۱۰۰:	Data tura		
U1-23	INIONITORINg name	капде	Lategory	Panel display	Unit	Data type		
	The Stu warning code of the most recent	-	warning	-	-	10-DIL		
	Monitoring name	Panca	Catagory	Danal display	+ اما ا	Data tura		
U1-24	The 4th warning code of the most recent	nalige	Warning	Faller display	Unit	16 bit		
		-	vvarning	-	-	10-01L		
	Monitoring name	Danca	Catagory	Danal disular	د. المال	Data tura		
U1-25	The Eth warning code of the most recent	капде	Warning	Parter display	Unit			
	The still warning code of the most recent	-	vvarning	-	-	TO-DIL		

Group U2 Device monitoring

112 01	Monitoring name	Range	Category	Panel display	Unit	Data type				
02-01	Product series	-	Device	Hexadecimal	-	16-bit				
Display the product series code of servo drive.										
The code name of VD2 A and VD2 B servo drivers is 0x4432, and the code name of VD2F servo drivers is 0x3246; The										
VD2L servo	driver is codenamed 0x324C. The panel is sho	wn below.								
				UF						
			JL	J L						
		-	-							
	Monitoring name	Range	Category	Panel display	Unit	Data type				
02-02	Model	_	Device	Hexadecimal	-	16-bit				

	1110401			201100	Пеланее	innan	10 010
Display the servo drive n	nodel.						
	U2-01display	U2-02	display	M	odel		
				VD2-0	10SA1G		
				VD2-0	14SA1G		
				VD2-0	16SA1G		
				VD2-0	19SA1G		
				VD2-0	21SA1G		
				VD2-0	25SA1G		
				VD2-0	30SA1G		
				VD2F-0	D10SA1P		
				VD2F-0	014SA1P		

112.02		Monitoring name			Category	Panel d	isplay	Unit	Data	type
02-	02-05		Model	-		Warning Hexadecii		-	16	-bit
	U2-01 display U2-02 display				U2-03 display			Model		
							VD2-0	021TA1	G	

112.04	Monitoring name	Range	Category	Panel display	Unit	Data type
02-04	Firmware version	- Device		Decimal	-	16-bit
Display the	firmware version. Display format: X.YY. For e	example, 1	1.13. The par	nel is displayed a	s below	<i>ı</i> .
112.05	Monitoring name	Range	Category	Panel display	Unit	Data type
02-05	FPGA version	-	Device	Decimal	-	16-bit
Display the	hardware version (FPGA)					
Display form	nat: X.YY. For example, 1.01. The panel is dis	played as	below.			

U2-06	Monitoring name	Range	Category	Panel display	Unit	Data type				
	Manufacture date (year)		Device	Decimal	Year	16-bit				
	Firmware date (year) *] -								
Display the year of manufacture of the VD2F drive firmware.										

U2-07	Monitoring name	Range	Category	Panel display	Unit	Data type			
	Manufacture date (month)		Device	Decimal	Month	16-bit			
	Firmware date (month) *	-							
Display the month of manufacture of the VD2E drive firmware									

Display the month of manufacture of the VD2F drive firmware.

				_					_	
		Monitoring name		Range	Cate	egory	Panel display	Unit	Data type	
U2-08	Ν	Vanufacture date (day)			Do	vico	Docimal	Day	16-bit	
	F	irmware date (day) *		_	Device	Decimal				
Displays the production date of the VD2F drive firmware.										
For example	For example, the firmware production day of VD2F-014SA1P_V1.01 is January 10, 2022, the panel is displayed as									
below.										
		U2-06	U2-07		U2-07		U2-08			

112.00	Monitoring name	Range	Category	Panel display	Unit	Data type
02-09	Device serial number 1	-	Warning	Decimal	-	16-bit

112 10	Monitoring name	Range	Category	Panel display	Unit	Data type
02-10	Device serial number 2	-	Warning	Decimal	-	16-bit

112 44	Monitoring name	Range	Category	Panel display	Unit	Data type
02-11	Device serial number 3	-	Warning	Decimal	-	16-bit

112 42	Monitoring name	Range	Category	Panel display	Unit	Data type
02-12	Device serial number 4	-	Warning	Decimal	-	16-bit

	Monitoring name	Range	Category	Panel display	Unit	Data type
02-13	Device serial number 5	-	Warning	Decimal	-	16-bit

112 4 4	Monitoring name	Range	Category	Panel display	Unit	Data type
02-14	Device serial number 6	-	Warning	Decimal	-	16-bit

112.45	Monitoring name	Range	Category	Panel display	Unit	Data type
02-15	Device serial number 7	-	Warning	Decimal	-	16-bit

112.40	Monitoring name	Range	Category	Panel display	Unit	Data type
U2-16	Device serial number 8	-	Warning	Decimal	-	16-bit

10. Malfunctions

10.1 Faults and warnings handling at startup

10.1.1 Position control mode

Boot process	Fault phenomenon	Reason	Confirmation method			
Power supply	① Digital tube does not light up	Control terminal is disconnected	 Rewiring L1C and L2C power cables are led separately from the socket 			
(L1, L2, L3) Turn on control	② Voltage indicator does not light up	Control the supply voltage failure	Measures the AC voltage between L1C &L2C.			
supply (L1C, L2C)		Servo drive fault	Contact the agent or customer service			
	Panel display "Er.xx"	Refer to 10.2 Handling of faults and warnings during operation				
	After removing the fault	er removing the fault, the servo drive panel should display "rdy"				
Servo drive enable signal is valid (S-ON is ON)	The axis of servo motor is in a free running state	Servo enable signal is invalid	 Check whether group P06 is set the servo enable signal (DI function 1: S-ON). If it is, check whether the corresponding DI terminal logic is valid. If it is invalid, please make it valid. Refer to Group P06 DI/DO configuration ▲ If group P06 parameters have set the servo enable signal, and the corresponding terminal logic is valid, but the panel still displays "rdy", check whether the DI terminal wiring is correct, please refer to <u>4</u> Wiring 			
		Control mode	Check whether the parameter P00-01 is set			
		error	correctly			
	Panel displays Er.xx	Refer to 10.2 Handlin	ng of faults and warnings during operation			
	After troubleshooting, t	he servo drive panel s	hould display "run"			

Input position instruction	The motor does not rotate	U0-09 (input instruction pulse number) always displays 0	Not input position instruction ① Confirm whether DI terminal uses forward drive prohibited (DI function 3: POT) or reverse drive prohibited (DI function 4: NOT). ② Confirm whether DI terminal uses instruction pulse input prohibited (DI function 11: INH) ③ When P01-06=0(position instruction source), PLC or other pulse output device do not output pulse. Please use oscilloscope to check whether there is pulse input or check U0-08 (input instruction pulse frequency). Refer to <u>4 Wiring</u> ④ When P01-06=1(position instruction source), please check whether the parameters of group P07 are set correctly. If yes, please confirm whether the DI function 20 (internal multi-segment position enable signal) and the corresponding DI terminal logic are set to be valid. Refer to <u>Group P07</u>
			multi-segment position
	After troubleshooting, t	he servo motor shoul	d be able to rotate normally
The motor does	Unstable low speed	Unreasonable gain setting	Please adjust the gain.
not rotate	The motor shaft	Load inertia ratio	After the inertia recognition is complete,
smoothly at low	vibrates left and right	is too large	performs gain adjustment.
speed	After troubleshooting, t	he servo motor shoul	d be able to rotate normally
Normal operation	Inaccurate positioning	There is a position deviation that does not meet production requirements	 Confirm theU0-09 value (input instruction pulse number) is consistent with the actual one sent by the host computer. If not, please check confirm whether the motor is blocked. Confirm whether the device is vibrating. If yes, adjust the gain. Confirm whether the coupling at the motor shaft is locked.

10.1.2 Speed control mode

Boot process	Fault phenomenon	Reason	Confirmation method
Power supply (L1, L2, L3)	 Digital tube does not light up Nother indicator 	Control terminal is disconnected	 Rewiring L1C and L2C power cables are led separately from the socket
supply (L1C, L2C)	does not light up	Control the supply voltage failure	Measures the AC voltage between L1C &L2C.

		Servo drive fault	Contact the agent or customer service
	Panel display "Er.xx"	Refer to 10.2 Handli	ng of faults and warnings during operation
	After removing the faul	t, the servo drive pane	el should display "rdy"
Servo drive enable signal is valid(S-ON is ON)	The axis of servo motor is in a free running state	Servo enable signal is invalid	 Check whether group P06 is set the servo enable signal (DI function 1: S-ON). If it is, check whether the corresponding DI terminal logic is valid. If it is invalid, please make it valid. Refer to Group P06 DI/DO configuration If group P06 parameters have set the servo enable signal, and the corresponding terminal logic is valid, but the panel still displays "rdy", check whether the DI terminal wiring is correct, please refer to <u>4</u>
			Wiring
		Control mode	Check whether the parameter P00-01 is set
		error	correctly
	Panel display Er.xx	Refer to 10.2 Handli	ng of faults and warnings during operation
Input torque instruction	After troubleshooting, t The motor does not rotate	U0-03 (input instruction pulse number) always displays 0	 Al wiring error Al wiring error When selecting analog input signal, make sure that the connection of analog input terminal is correct. Refer to <u>4 Wiring</u>. Not input speed instruction or speed instruction abnormal When selecting analog input signal, please confirm the Al parameters of group P05 is set correct, and then check the analog input voltage signal. It could be observed by oscilloscope or read by monitoring U0-21 and U0-22. When the internal speed instruction is given, please confirm P01-02 (internal speed instruction) is 0. When using multi-segment speed function, please confirm the internal speed instruction parameters 0 to 7 of group P01 are right. Please confirm whether the ZERO-speed clamp function is used for the DI terminal. (DI function 5: ZCLAMP)
The motor does	Unstable low speed	Unreasonable gain	Please adjust the gain
not rotate		setting	
smoothly at low speed	The motor shaft vibrates left and right	Load inertia ratio	After the inertia recognition is complete, performs gain adjustment.

After troubleshooting, the servo motor should be able to rotate normally

Note: VD2F does not support monitoring U0-21 and U0-22.

10.1.3 Torque control mode

Boot process	Fault phenomenon	Reason	Confirmation method
Power supply	① Digital tube does not light up	Control terminal is disconnected	 Rewiring L1C and L2C power cables are led separately from the socket
(L1, L2, L3) Turn on control	② Voltage indicator does not light up	Control the supply voltage failure	Measures the AC voltage between L1C &L2C.
supply (L1C, L2C)		Servo drive fault	Contact the agent or customer service
	Panel display "Er.xx"	Refer to 10.2 Handli	ng of faults and warnings during operation
	After removing the fault	t, the servo drive pane	el should display "rdy"
Servo drive enable signal is valid(S-ON is ON)	The axis of servo motor is in a free running state	Servo enable signal is invalid	 Check whether group P06 is set the servo enable signal (DI function 1: S-ON). If it is, check whether the corresponding DI terminal logic is valid. If it is invalid, please make it valid. Refer to Group P06 DI/DO configuration If group P06 parameters have set the servo enable signal, and the corresponding terminal logic is valid, but the panel still displays "rdy", check whether the DI terminal wiring is correct, please refer to <u>4</u> Wiring
		Control mode	Check whether the parameter P00-01 is set
		error	correctly
	Panel display Er.xx	Refer to 10.2 Handli	ng of faults and warnings during operation
	After troubleshooting, t	he servo drive panel s	hould display "run"
Input speed instruction	After troubleshooting, the servo drive pane U0-03 (input instruction pulse number) always displays 0		 Al wiring error When selecting analog input signal, make sure that the connection of analog input terminal is correct. Refer to <u>4 Wiring</u>. Not input torque instruction When selecting analog input signal, please confirm the Al parameters of group P05 is set correct, and then check the analog input voltage signal. It could be observed by oscilloscope or read by monitoring U0-21 and U0-22. When the internal speed instruction is given, please confirm P01-08 (torque instruction keyboard set value) is 0.
	After troubleshooting, t	he servo motor shoul	d be able to rotate normally

The motor does	Unstable low speed	Unreasonable gain setting	Please adjust the gain.		
not rotate	The motor shaft	Load inertia ratio	After the inertia recognition is complete,		
speed	vibrates left and right	is too large	performs gain adjustment.		
	After troubleshooting, the servo motor should be able to rotate normally				

Note: VD2F and VD2L does not support monitoring U0-21 and U0-22.

10.2 Faults and warnings handling during operation

10.2.1 Overview

The faults and warnings of Wecon VD2 series servo drives are graded according to their severity, which can be divided into four grades: Category 1, Category 2, Category 3, Category 4. Severity level: Category 1> Category 2> Category 3 > Category 4, the specific classifications are as follows:

Category 1: faults cannot be cleared;

Category 2: faults are clearable;

Category 3: faults are clearable;

Category 4: warnings are clearable.

Among them, "clearable" means that the panel stops the fault display state by giving a "clear signal". The specific operations are as follows:

① Set the function code P10-03=1 (fault clearing) or use DI function 02 (02-A-CLR, fault and warning clearing) and set it to logic valid, which can stop the fault display on the panel.

② The clearing method of category 2 and category 3 clearable faults: first turn off the servo enable signal (set S-ON to OFF), then set P10-03=1 or use DI function 02.

③ The clearing method of category 4 of clearable warnings: set P10-03=1 or use DI function
 02.

For some faults and warnings, you must change the settings to eliminate the causes before they can be cleared, but clearing does not mean that the changes take effect. For the changes that need to be re-powered to take effect, the power must be re-powered. For the changes that need to be stopped to take effect, the servo enable must be turned off. After the change takes effect, the servo drive can operate normally.

Function Code	Name	Setting method	Effective time	Default value	Range	Definition	Unit
P10-03	Fault clearing	Operation setting	immediately Effective	0	0 to 1	0: No operation 1: For clearable faults, after the cause of fault is removed, and write 1 to the function code, the drive will stop the fault display and enter the Rdy (or RUN) state again.	_

Associated function codes

			Note: If the servo S-ON is valid,	
			when the fault is removed and	
			cleared, the servo will directly	
			enter the Run state. When	
			performing fault clearing actions,	
			be sure to stop sending control	
			instructions such as pulses to	
			ensure personal safety.	

Associated function number:

Code	Name	Function name	Function
2	A-CLR	Fault and warning clearing	DI port logic is invalid, no reset faults and warnings DI port logic is valid, reset faults and warnings

VD2 series servo drives have a fault recording function, which could record the last 5 faults and the last 5 warning names and the status parameters of servo drive when the fault or warning occurs. After the fault or warning is cleared, the fault record will still save the fault and warning. The current fault code could be viewed through the monitoring parameter U1-01, and the current warning code could be viewed through U1-02. The monitoring U1-16 to U1-25 could display the last 5 fault codes and warning codes. Please refer to <u>Group U1 Warning monitoring</u>.

10.2.2 Fault and warning code table

Category	Error name	Fault code	Content	Whether Clearable	Operation
Catagory 1	Paramotor dostruction	Er 01	Abnormal servo internal	No	Stop
Category I		L1.01	parameters	NO	immediately
Catagory 1	Daramotor storago orror	Er 02	Abnormal servo internal	No	Stop
Category I	Parameter storage error	E1.02	parameters	NO	immediately
Catagory 1	ADC reference source	F *02		Ne	Stop
Category I	faults	E1.05	Abnormal ADC reference source	INO	immediately
Catagory 1	AD current sampling	Er 04	AD current sampling conversion	No	Stop
Category I	conversion error	E1.04	error	NO	immediately
Catagory 1	Abnormal FPGA	Er OE	Abnormal ERCA communication	No	Stop
Category 1	communication	E1.05		NO	immediately
Catagory 1	Wrong FPGA program	Er O6	Wrong EBCA program vorsion	No	Stop
	version	E1.00	wrong rroa program version	NO	immediately
Catagory 1	Clock abnormal	Fr 07	Clock abnormal	No	Stop
Category I		Er.07		NO	immediately
Catagory 1	ADC conversion unders	Er 60	ADC conversion error	No	Stop
Category 1	ADC conversion undone	E1.00	ADC conversion error	INO	immediately
Catagory 1	Internal cofficience fault	Er C1	Abnormal servo internal	No	Stop
	Internal Software fault	CI.01	software	INU	immediately
Catagory 1	Internal cofficience facilit	Er 62	Abnormal servo internal	No	Stop
	internal software fault	E1.02	software	INO	immediately

(1) The first category (category 1 for short) The fault could not be cleared

Catagory 1	Internal cofficience fault	Er 62	Abnormal servo internal	No	Stop
Category 1	Internal software fault	E1.05	software	NO	immediately
Catagory 1	Internal cofficience fault	Er C A	Abnormal servo internal	No	Stop
Category 1	Internal software fault	E1.04	software	NO	immediately
Catagory 1	Internal coftware fault	Eree	Abnormal servo internal	No	Stop
Category I	Internal software fault	E1.05	software	NO	immediately
Catagory 1	Motor model error	Er 26	Motor model error	No	Stop
Category I	Category I Motor model error	E1.20		NO	immediately
Catagory 1	Catagory 1 Encodor 7 pulso lost		Encodor 7 pulso lost	No	Stop
Category I	Elicodel 2 puise lost	E1.20	Encodel 2 pulse lost	NO	immediately
Catagory 1	Encodor LIV/W/ signal orror	Er 20	Encodor LIV/W signal orror	No	Stop
Category I	Encoder OVW Signal error	E1.50		NO	immediately
Catagory 1	Exceeds motor	Er 22	Exceeds motor	No	Stop
Category I	maximum speed	E1.52	maximum speed	NO	immediately
Catagory 1	Over current	Er 20	Servo drive hardware	No	Stop
Category I	Over current	E1.20	overcurrent	NO	immediately
The brake resis	The brake resistor is	Er 24	The brake resistor of servo drive	No	Stop
	turned on abnormally	E1.24	is turned on abnormally	INU	immediately

(2) The 2nd category (category 2 for short) clearable faults

Category	Error name	Fault code	Content	Whether Clearable	Operation
Catagory 2	Main power supply	Er 22	Main nower supply overveltage	Voc	Stop
Category 2	overvoltage	L1.22	Wall power supply over voltage	163	immediately
Catagory 2			The encoder cable is incorrectly	Vac	Stop
Category 2	Encoder disconnection	E1.27	connected	res	immediately
Catagory 2	Power cable	Fr 21	The power cable is incorrectly	Voc	Stop
Category 2	disconnection	E1.51	connected	res	immediately

(3) The 3rd Category (category 3 for short) clearable faults

Category	Error name	Fault code	Content	Whether clearable	Operation
Catagory 2	Main power supply under	Er 21	Main power supply under	Voc	Stop
Category 5	voltage	L1.21	voltage	163	immediately
Catagory 2	Braking resistor is not	Er 22	Braking resistor is not	Voc	Stop
Category 5	connected	E1.25	connected	res	immediately
Catagory 2	Braking resistor resistance is	Er 2E	Braking resistor resistance is	Yes	Stop
Category 3	too large	E1.25	too large		immediately
Cotogory 2	Power module is over	F# 22	Power module is over	Vec	Stop
Category 3	temperature	E1.33	temperature	res	immediately
Cotogory 2	Motor overland protection	F # 2 4	Mater everland protection	Vec	Stop
Category 5	Motor overload protection	E1.54	wotor overload protection	res	immediately
Cotogory 2	Electronic gear ratio exceeds	F# 2F	Electronic gear ratio exceeds	Vec	Stop
Category 3	limit	E1.35	limit	Yes	immediately
Catagory 2	Position deviation is too	Er 26	B	N/s s	Stop
Category 3	large	E1.30	Position deviation is too large	res	immediately

Category 3	Torque saturation abnormal	Fr.37	Torque saturation abnormal	Voc	Stop
Category 5	lorque saturation abhorman	L1.57	forque saturation abhormai	103	immediately
Catagory 2	Main circuit electricity	Er 20	Main circuit electricity	Voc	Stop
Category 5	is lack of phase	E1.30	is lack of phase	res	immediately
Catagory 2	Emorgonauston	Er 20	Triggered the emergency stop	Voc	Stop
Category 3	Emergency stop	EI.39	signal	res	immediately
Catagory 2	Encodor battory failura	Er 40	Encodor battony failuro	Voc	Stop
Category 5	Encoder battery failure	E1.40		TES	immediately
Catagory 2	Motor (encoder) over	Er 11	Motor (encoder) over	Voc	Stop
Category 3	temperature	C1.41	temperature	res	immediately
Catagory 2	Encodor write faulte	Er 42	The encoder fails to write	Voc	Stop
Category 3	Encoder write faults	Er.42	data	res	immediately

(4) The 4th category (category 4 for short) clearable warnings

Category	Error name	Fault code	Content	Whether Clearable	Operation
Category 4	Overspeed alarm	A-81	Motor exceeds the speed limit	Yes	Continue to run
Category 4	Overload	A-82	The motor was run continuously with a torque exceeding the rated value	Yes	Continue to run
Category 4	Braking resistor is over temperature or overloaded	A-83	Braking resistor is over temperature or overloaded	Yes	Continue to run
Category 4	Parameter modification that needs to be powered on again	A-84	Modify the parameter that needs to be powered on again	Yes	Continue to run
Category 4	Receive position pulse when servo is OFF	A-85	Servo drive receives position pulse when it is OFF	Yes	Continue to run
Category 4	Input pulse frequency is too high	A-86	Input pulse frequency is too high	Yes	Continue to run
Category 4	Main circuit momentary power off	A-88	Main circuit momentary power off	Yes	Continue to run
Category 4	DI port configuration is duplicate	A-89	DI port configuration is duplicate	Yes	Continue to run
Category 4	DO port configuration is duplicate	A-90	DO port configuration is duplicate	Yes	Continue to run
Category 4	Parameter modification is too frequent	A-91	Parameter modification is too frequent	Yes	Continue to run
Category 4	low encoder battery voltage Warning	A-92	The battery voltage of encoder is less than 3.1V	Yes	Continue to run
Category 4	Encoder read and write check abnormal and frequency is too high	A-93	Encoder read and write check abnormal and frequency is too high	Yes	Continue to run

10.3 Troubleshooting

Er.01 Parameter destruction

Fault

Troubleshooting

Reason	Troubleshooting methods	Handling
EEPROM could not be	Factory reset the parameter (P10-02=1) and power on again. If	Please contact the
read and written	the servo drive still alarms after multiple operations, it is faulty.	technician.

Er.02 Parameter storage error

Fault

Servo drive panel display	Fault name
Er.02	Parameter storage error

Troubleshooting

Reason	Troubleshooting methods	Handling
Firmware uupgraded	Check whether the program has been upgraded.	Power on the servo drive again
Daramator road and	After a parameter is changed, power it on again	If the parameters are not saved
verite exceptions	and check whether the parameter is caude	after multiple power-on, contact
write exceptions	exceptions and check whether the parameter is saved	technician.
		VD2-0xxSA1G model: Contact
	Check if the servo drive monitoring quantity	manufacturer to upgrade the
Servo drive firmware	U2-04 (firmware version) is in the following range.	firmware to V1.14 and above.
faulty	VD2-0xxSA1G model: earlier than V1.14.	VD2F-0xxSA1P model: Contact
	VD2F-0xxSA1P model: earlier than V1.02	technician to upgrade the
		firmware to V1.02 and above.

Er.03 ADC reference source fault

Fault

Servo drive panel display	Fault name
Er.0]	ADC reference source fault

Troubleshooting

Reason	Troubleshooting methods	Handling
The internal analog	Factory reset the parameter (P10-02=1) and power	If there is still alarm after
reference source of the	on again. If the servo drive still alarms after	multiple power-on, contact the
drive is not accurate	multiple operations, it is faulty.	technician.

Er.04 AD current sampling conversion error

Fault

Servo drive panel display	Fault name
Er.04	AD current sampling conversion error

Troubleshooting

Reason	Troubleshooting methods	Handling
Current sampling timeout	Factory reset the parameter (P10-02=1) and power	If there is still alarm after
	on again. If the servo drive still alarms after multiple	multiple power-on, contact
current sensor error	operations, it is faulty.	the technician.

Er.05 FPGA communication abnormal

Fault

Servo drive panel display	Fault name
Er.05	FPGA communication abnormal

Troubleshooting

Reason	Troubleshooting methods	Handling
FPGA communication	Factory reset the parameter (P10-02=1) and power	If there is still alarm after
abnormal	on again. If the servo drive still alarms after multiple	multiple power-on, contact
	operations, it is faulty.	the technician.

Er.06 Wrong FPGA program version

Fault

Ser	vo drive panel display	Fault name
	Er.06	Wrong FPGA program version

Troubleshooting

Reason	Troubleshooting methods	Handling
The FPGA program	Check whether the monitoring quantity of servo	Contact technical to
version does not match	drive U2-04 (firmware version) and U2-05	upgrade FPGA (hardware
firmware version	(hardware version) conform to the following table	version)
	Factory reset the parameter (P10-02=1) and	If there is still alarm after
Servo drive fault	power on again. If the servo drive still alarms	multiple power-on, contact
	after multiple operations, it is faulty.	the technician.

Firmware version	Hardware version	
1.00	1.00	
1.10	1.01	
1.11	1.01	
1.12	1.01	
1.13	1.01	
1.14	1.01	

Table 10-1 The firmware version and hardware version relationship of VD2-0SA1G servo drive

Er.07 Clock abnormal

Fault

Troubleshooting

Reason	Troubleshooting methods	Handling
	Check for strong magnetic fields nearby	Eliminate nearby strong magnetic interference
External interference	Check whether there are sources of interference such as power supply inverter equipment nearby	Separate strong and weak power as much as possible, with good ground contact between motor and servo drive, and keep away from power cable wiring.
Servo drive fault	Factory reset the parameter (P10-02=1) and power on again. If the servo drive still alarms after multiple operations, it is faulty.	If there is still alarm after multiple power-on, contact the technician.

Er.19 Overcurrent

Fault

Servo drive pane	el display	Fault name
Er.	17	Software overcurrent

Poacon	Troubloshooting mothods	Handling
RedSUIT	Troubleshooting methods	Hallullig
The UVW phase	Chark whether the phase sequence of the	Connect correctly according to UN(M) on
sequence of motor	Check whether the phase sequence of the	
nower cable is	motor power cable on the servo drive side	the drive side and UVW on the motor
	and motor side corresponds to each other.	side
Incorrect		
Motor power cables	Check whether power cable UVW is	Replace motor power cable
are short-circuited	short-circuited to PE	
The motor power	Check whether the meter newer schle	Tichton the fiving errous of the meter
cable wiring port is	Check whether the motor power cable	righten the fixing screws of the motor
noorly contacted	connection port is connected reliably	power cable connection ports
	Internal brake resistance wiring error: check	Connect the short can or short wire
	whether C, D are connected to the short cap	between C and D reliably
Abnormal braking	and the contact is normal	
resistance	External braking resistor wiring error: Check	
	whether the external resistor is connected	External braking resistance is reliably
	reliably between P+ and C.	strung between P+ and C

Troubleshooting

	Short-circuit of the built-in brake resistance: Check whether the built-in brake resistance is short-circuited.	Remove the shorting cap between C and D, and reliably string the external braking resistor of equal resistance between P+ and C. Contact technician to replace the internal braking resistor
	The resistance value of the external braking resistor is too small: Test the resistance value of the external braking resistor actually selected and compare it with the recommended braking resistor to confirm whether the resistance value of the actual resistor is too small	Choose a suitable external braking resistor
	Check whether the cable port (CN1) of the	Tighten the fixing screws on the CN1
	encoder is properly connected	port
	Check whether the servo drive CN1 port jack	If the cable is deformed, replace the
Encoder wiring	is deformed	cable or its port
error; loose plug	Check whether both ends of the rectangular connector are reliably connected	Make sure that both ends of the rectangular connector are connected reliably; Replace it with an encoder cable with higher connection reliability.
	Check whether P03-02 (Load rigidity Level) is	Reduce the P03-02 (load stiffness level)
Unreasonable	set properly	setting value appropriately
parameter settings	Check whether the gain parameters are set properly, resulting in overshoot	Adjust gain parameters reasonably
Frequent acceleration and deceleration	Check whether the acceleration and deceleration motion is frequent or the acceleration and deceleration time is too small	Appropriately extend the acceleration and deceleration time
Internal servo drive fault	Cross-verification. Use the normal motor, encoder cable to connect to the servo drive, only connect the encoder cable. If the servo drive still alarm, it is failure.	Contact technician for repair

Er.20 Overcurrent

Fault

Servo drive panel display	Fault name
Er.20	Overcurrent

Troubleshooting

Reason	Troubleshooting methods	Handling
The UVW phase sequence of motor power cable is incorrect	Check whether the phase sequence of the motor power cable on the servo drive side and motor side corresponds to each other.	Connect correctly according to UVW on the drive side and UVW on the motor side

Motor power cables	Check whether power cable UVW is	Replace motor power cable
The motor newer		
cable wiring port is	Check whether the motor power cable	Tighten the fixing screws of the motor
cable winnig port is	connection port is connected reliably	power cable connection ports
	Internal brake resistance wiring errors sheek	
	internal brake resistance wiring error: check	Connect the short cap or short wire
	whether C, D are connected to the short cap	between C and D reliably
	and the contact is normal	
	External braking resistor wiring error: Check	External braking resistance is reliably
	whether the external resistor is connected	strung between P+ and C
	reliably between P+ and C.	
		Remove the shorting cap between C
	Short-circuit of the built-in brake resistance:	and D, and reliably string the external
Abnormal braking	Check whether the built-in brake resistance is	braking resistor of equal resistance
resistance	short-circuited.	between P+ and C.
		Contact technician to replace the
		internal braking resistor
	The resistance value of the external braking	
	resistor is too small: Test the resistance value	
	of the external braking resistor actually	Choose a suitable external braking
	selected and compare it with the	resister
	recommended braking resistor to confirm	
	whether the resistance value of the actual	
	resistor is too small	
	Check whether the cable port (CN1) of the	Tighten the fixing screws on the CN1
	encoder is properly connected	port
	Check whether the servo drive CN1 port jack	If the cable is deformed, replace the
Encoder wiring	is deformed	cable or its port
error; loose plug		Make sure that both ends of the
	Check whether both ends of the rectangular	rectangular connector are connected
	connector are reliably connected	reliably; Replace it with an encoder
		cable with higher connection reliability.
	Check whether P03-02 (Load rigidity Level) is	Reduce the P03-02 (load stiffness level)
Unreasonable	set properly	setting value appropriately
parameter settings	Check whether the gain parameters are set	
	properly, resulting in overshoot	Adjust gain parameters reasonably
	Check whether the acceleration and	
Frequent	deceleration motion is frequent or the	Appropriately extend the acceleration
acceleration and	acceleration and deceleration time is too	and deceleration time
deceleration	small	
	Cross-verification. Use the normal motor.	
Internal servo drive	encoder cable to connect to the servo drive.	
fault	only connect the encoder cable. If the servo	Contact technician for repair
	drive still alarm, it is failure.	

Er.21 Main power supply undervoltage

Fault

Servo drive panel display	Fault name
Er.21	Main power supply undervoltage

Reason: DC bus voltage is lower than the fault value.

- 220V drive: DC bus voltage normal value is 310V; DC bus voltage fault value is 200V.
- 380V drive: DC bus voltage normal value is 540V; DC bus voltage fault value is 420V.

Troubleshooting

Reason	Troubleshooting methods	Handling
Power-off when VD2A drive is enabled	Check whether the servo drive is Power off when logic is valid. and the S-ON function is enabled in the P06 "DIDO Function configuration parameter".	It belongs to servo internal software logic. When the indicator light on the servo drive panel goes out automatically, the alarm will be removed automatically.
The power supply is unstable or OFF.	Check whether the drive input power specifications meet the following specifications: 220V drive: Valid value is 198V to 242V. 380V drive: Valid value is 342V to 440V.	Use after the power supply is stable; Increase power supply capacity
The voltage drops during operation of the servo drive	Check whether the servo drive shares the same power supply with other high loads	Turn off other loads from the same main circuit power supply. Separate power supply for servo drives
Missing phase (3-phase power supply operating on single-phase power)	Check if the main circuit wiring is correct VD2A: single-phase 220V input connected to L1, L3. VD2 B: single-phase 220V input connected to L1, L3, and single-phase 220V input connected to L1C, L2C. VD2 B: three-phase 220V input connected to L1, L2, L3. VD2F: single-phase 220V input connected to L1, L2	Connect the main circuit wiring correctly
Internal servo drive fault	Observe whether the monitoring quantity U0-31 (bus voltage) is in the following range: 220V drive: U0-31 less than 200V; 380V drive: U0-31 less than 400V.	Contact technician for repair

Er.22 Main power supply undervoltage

Fault

Reason: DC bus voltage is lower than the fault value.

• 220V drive: DC bus voltage normal value is 310V; DC bus voltage fault value is 390V.

• 380V drive: DC bus voltage normal value is 540V; DC bus voltage fault value is 670V.

Troubleshooting

Reason	Troubleshooting methods	Handling
The input voltage is too high	Check whether the drive input power specifications meet the following specifications: 220V drive: Valid value is 198V to 242V. 380V drive: Valid value is 342V to 440V.	Replace or adjust power supply
The power supply is not stable or struck by lightning	Check whether the input power supply of the servo drive meets the specifications and monitor whether it has been struck by lightning.	used after the power supply is stable Connect to surge suppressor
	Internal brake resistance wiring error: check whether C, D are connected to the short cap and the contact is normal	Connect the short cap or short wire between C and D reliably
	External braking resistor wiring error: Check whether the external resistor is connected reliably between P+ and C.	External braking resistance is reliably strung between P+ and C
Abnormal braking resistance	Short-circuit of the built-in brake resistance: Check whether the built-in brake resistance is short-circuited.	Remove the shorting cap between C and D, and reliably string the external braking resistor of equal resistance between P+ and C. Contact technician to replace the internal braking resistor
	The resistance value of the external braking resistor is too large: Check the resistance value of the external braking resistor actually selected and compare it with the recommended braking resistor to confirm whether the resistance value of the actual resistor is too large.	Choose a suitable external braking resistor
The motor is in a state of rapid acceleration and deceleration motion	Monitor the servo drive monitoring quantity U0-31 (bus voltage) to confirm whether the voltage exceeds the fault value when the motor is in the deceleration section.	Ensure that the input voltage is within specification and increase acceleration and deceleration times
Internal servo drive fault	The servo drive is still faulty after power on again	Servo drive may be damaged. Contact technician for repair

Er.23 Braking resistor is not connected

Fault

Servo drive panel display	Fault name
Er.2]	Braking resistor is not connected

Troubleshooting

Reason Troubleshooting methods Handling

Internal brake resistance wiring error	Check whether C, D are connected to the short cap and the contact is normal	When using an internal braking resistor, reliably connect the shorting cap or shorting wire between C and D
External braking resistor wiring error	Check whether the external resistor is connected reliably between P+ and C.	When using an external braking resistor, the external resistor is reliably strung between P+ and C
Internal braking resistor damaged	The servo drive is powered off. Detects whether the resistance between P+ and D is 50Ω	Contact the technician to replace the internal braking resistor. Use an external braking resistor and change the relevant parameters of P00 "Basic Settings".

Er.24 Braking resistor turns on abnormally

Fault

Servo drive panel display	Fault name
Er.24	Braking resistor is not connected

Troubleshooting

Reason	Troubleshooting methods	Handling
Internal servo drive	The servo drive is still faulty after	Servo drive may be damaged. Contact
fault	power on again	technician for repair

Er.25 Braking resistor resistance is too large

Fault

Servo drive panel display	Fault name
Er.25	Braking resistor resistance is too large

Reason	Troubleshooting methods	Handling
	Check the resistance value of the external braking	
The resistance value of	resistor actually selected and compare it with the	Chappen a suitable suternal
the external braking	recommended braking resistor to confirm	choose a suitable external
resistor is too large	whether the resistance value of the actual resistor	braking resistor
	is too large.	
Unrosconsblo	Check whether the value of come drive POO 10	Reasonably set the P00-10
Unreasonable Check whether the value of se	(a taxad back a secieta sec) is set to a bick	(external braking resistor
parameter settings	(external brake resistance) is set too high	resistance) parameter value
		VD2-0xxSA1G model: Contact
	Check if the servo drive monitoring quantity	manufacturer to upgrade the
Servo drive firmware	U2-04 (firmware version) is in the following range.	firmware to V1.14 and above.
fault	VD2-0xxSA1G model: earlier than V1.14.	VD2F-0xxSA1P model: Contact
	VD2F-0xxSA1P model: earlier than V1.02	technician to upgrade the
		firmware to V1.02 and above.

Er.26 Braking resistor resistance is too large

Fault

Servo drive panel display	Fault name
Er.26	Braking resistor resistance is too large

Troubleshooting

Reason	Troubleshooting methods	Handling
Servo drives do not support this motor	Check whether the servo driver model supports the motor	Contact technical for suitable recommendations of servo drive model or motor model.
Wrong motor model	Check whether the Motor Code is consistent with the Motor nameplate	Contact technician to record the motor Motor Code

Er.27 Encoder disconnection

Fault

Servo drive panel display	Fault name
Er.27	Encoder disconnection

Troubleshooting

Reason	Troubleshooting methods	Handling
Poor contact on CN1 port	Check whether the cable port (CN1) of the encoder is properly connected	Tighten the fixing screws on the CN1 port
	Check whether the servo drive CN1 port jack is deformed	If the cable is deformed, replace the cable or its port
Poor contact on adapter port (Rectangular connection cable)	Check whether both ends of the rectangular connector are reliably connected	Make sure that both ends of the rectangular connector are connected reliably; Replace it with an encoder cable with higher connection reliability.
Wrong encoder cable wiring	Check whether the both ends of the encoder cable are correctly connected	Adjust wiring according to the corresponding relationship of pins; The standard encoder cable of the manufacturer is preferred.

Er.28 Encoder Z pulse lost

Fault

Servo drive panel display	Fault name
Er.28	Encoder Z pulse lost

Reason	Troubleshooting methods	Handling
Wrong motor model	Check whether the Motor Code is	Contact technician to record the motor
	consistent with the Motor nameplate	Motor Code

	Check for strong magnetic fields nearby	Eliminate nearby strong magnetic interference
External interference	Check whether there are sources of interference such as power supply inverter equipment nearby	Separate strong and weak power as much as possible, with good ground contact between motor and servo drive, and keep away from power cable wiring.
Encoder fault	Manually rotate the motor shaft counterclockwise or clockwise to observe whether the monitoring quantity U0-30 (electrical angle) changes regularly	If the value of U0-30 (electrical angle) changes abruptly or does not change, the encoder itself may have problems, please replace the motor or encoder.

Er.30 Encoder UVW signal error

Fault

Servo drive panel display	Fault name
Er.30	Encoder UVW signal error

Troubleshooting

Reason	Troubleshooting methods	Handling
External interference	Check that the motor and servo drive are	Motor and servo drive are well
	well grounded	grounded
Encodor coblo fault	Cross-verification. Use the normal motor,	Replace it with an encoder cable with
	encoder cable to connect to the servo drive.	higher connection reliability.
Comus drive foult	The servo drive is still faulty after power on	Servo drive may be damaged. Contact
Servo drive fault	again	technician for repair

Er.31 Power cable disconnection

Fault

Troubleshooting

Reason	Troubleshooting methods	Handling
The motor power cable wiring port is poorly contacted	Check whether the motor power cable connection port is connected reliably	Tighten the fixing screws of the motor power cable connection ports
The power cable is	Check the power cable for	Replace the power cable and power
disconnected	disconnections at both ends	on again.
		Make sure that both ends of the
Poor contact on adapter port	Check whether both ends of the	rectangular connector are connected
(Rectangular connection	rectangular connector are reliably	reliably; Replace it with an encoder
cable)	connected	cable with higher connection
		reliability.

Er.32 Exceeds motor maximum speed

Fault

Fault name

Exceeds motor maximum speed

Troubleshooting

Reason	Troubleshooting methods	Handling
The UVW phase	Check whether the phase sequence of the motor	Connect correctly according to
sequence of motor	power cable on the servo driver side and motor	UVW on the drive side and
power cable is incorrect	side corresponds to each other.	UVW on the motor side
	Check that the parameter value of P01-10	
	(maximum speed threshold) is less than the	
	maximum speed required for the actual	
	operation of the motor	
D01 10 parameter	Check whether the motor speed corresponding	Reset P01-10 (maximum speed
Sottings are incorrect	to the input instruction exceeds P01-10	threshold) according to
Settings are incorrect	(maximum speed threshold).	mechanical requirements
	Position mode, when the instruction is from a	
	pulse instruction (P01-06 = 0).	
	Motor speed (rpm) = input pulse frequency (Hz)	
	* 60 * electronic gear ratio / encoder resolution	
Servo drive fault	The servo drive is still faulty after power on again	Servo drive may be damaged. Please replace the servo drive.

Er.33 Power module is over temperature

Fault

Troubleshooting

Reason	Troubleshooting methods	Handling
Ambient temperature is too high	Measure the ambient temperature	Reduce the ambient temperature of the servo drive
The cooling fan is faulty	Check the servo drive fan for blockage or damage	Contact technician for fan repair or replacement
The servo drive is mounted in an unreasonable orientation or the spacing between the servo drives is unreasonable	Check whether the servo drive installation is reasonable	Contact technical to obtain the installation standard of the servo drive
Servo drive fault	Restarting after 10 minutes of power failure is still reported	Servo drive may be damaged. Please replace the servo drive.

Er.34 Motor overload protection

Fault

Wecon VD2 Series Servo Drives Manual (Full V2.4)

Er.]4

Motor overload protection

Froubleshooting		
Reason Troubleshooting methods		Handling
		Connect them according to the correct
Motor power cable, Check whether the motor power		connection method.
encoder cable wiring	cable and encoder cable wiring are	Priority is given to the use of motor power
error	correct.	cables and encoder cables as standard by
		manufacturers
		Reduce the load.
The load is too large	Check overload characteristics of	Contact technical to obtain the
	motor or servo drive	appropriate capacity drive and motor
		model.
	Check whether the acceleration and	
Frequent acceleration	deceleration motion is frequent or	Appropriately extend the acceleration and
and deceleration	the acceleration and deceleration	deceleration time
	time is too small	
Motor model and servo	Check the monitoring quantity U0-53	Contact technician to obtain the matching
driver do not match	(motor model code).	motor model.
	Use Wecon SCTools to obtain the	
	actual torque waveform and observe	Set the appropriate loop gain parameters
	whether overshoot is obvious	
Unreasonable	Observe whether the motor vibrates	
parameters	during operation	Set the appropriate rigidity level
	Check whether p10-04 (Motor	Increase P10-04 (motor overload
	overload protection time coefficient)	protection time factor) in the case of
	is reasonable	ensuring that the motor will not burn out.
Matar blackage	Check if the motor is blocked due to	Delegas the machanical is m
Motor blockage	mechanical jamming of the load.	Release the mechanical Jam.
	Check whether the brake device is	Check the legic of broke newer supply or
The brakes are not open	opened normally, and check whether	baska autout sizes
	the output voltage of the brake is 24V	prake output signal
Conversion for the	The servo drive is still faulty after	Servo drive may be damaged, please
Servo drive fault	power on again	contact technician for repair.

Er.35 Electronic gear ratio exceeds limit

Fault

Troubleshooting

Reason

The electropic goar	Check that the ratio of function codes P01-17/P01-18,	
ratio sotting is greater	P01-19/P01-20 is in the following range.	After modifying the
than the settable range	17bit absolute encoder upper limit value: 500.	corresponding function
than the settable range	23bit absolute encoder upper limit value: 32000	code according to the
The electronic gear	Check that the ratio of function codes P01-17/P01-18,	range, set P10-03 (fault
ratio setting is less	P01-19/P01-20 is in the following range.	clearance) to 1.
than the settable range	17bit absolute encoder lower limit value: 500.	

Er.36 Position deviation is too large

Fault

Servo drive panel display	Fault name
Er.]6	Position deviation is too large

Reason	Troubleshooting methods	Handling
	Check whether the phase sequence of the	Connect correctly according to UVW
	motor power cable on the servo driver side	on the drive side and UVW on the
Cable error	and motor side corresponds to each other.	motor side
	Check whether both ends of the power cable	Replace the power cable and power on
	are disconnected	again
	Check whether P03-02 (Load rigidity Level) is	Reduce the P03-02 (load stiffness
	set properly	level) setting value appropriately
	Check whether the gain parameters are set	
	properly, resulting in overshoot	Adjust gain parameters reasonably
Unreasonable	Check whether P00-25 (position deviation	Increase the value of P00-25 (position
parameter settings	threshold) is set properly	deviation threshold)
	Use Wecon SCTools to obtain the equivalent	Increase the setting values of P01-12
	speed of the position instruction and check	(forward speed threshold) and P01-13
	whether the speed is greater than the motor	(reverse speed threshold) according to
	speed limit	mechanical requirements
Motor blockage	Check if the motor is blocked due to	Poloase the machanical ism
Motor blockage	mechanical jamming of the load.	Release the mechanical jam.
The brakes are not	Check whether the brake device is opened	Check the logic of brake newer supply
	normally, and check whether the output	or brake output signal
open	voltage of the brake is 24V	
The input pulse	Position mode: when the instruction comes	
frequency is too	from the pulse instruction (P01-06=0), check	Reduce the input pulse frequency
high	whether the input pulse frequency is too high	
The equivalent		Property increases the acceleration and
velocity of position	Check if the position instruction changes too	deceloration time and reduce the rate
instruction changes	fast in the equivalent speed	of change of the speed
too fast		or change of the speed

Er.37 Torque saturation abnormal

Fault

Servo drive	banel display	Fault name
Er	, Î l	Torque saturation abnormal

Troubleshooting

Reason	Troubleshooting methods	Handling
Motor power cable	Check whether the phase sequence of the	Connect correctly according to UVW
cable UVW phase	motor power cable on the servo driver side	on the drive side and UVW on the
sequence error	and motor side corresponds to each other.	motor side
	Check whether P01-19 Torque saturation	Increase P01-19 Torque saturation
	timeout) is set properly	timeout) setting value appropriately
	Check whether P01-15 (forward torque	Increase the setting values of P01-15
Unroaconablo	limit) and P01-16 (reverse torque limit) are	(forward torque limit) and P01-16
Diffedsofiable	set reasonable	(reverse torque limit) appropriately
parameter settings	Check whether the gain parameters are set properly	Adjust gain parameters reasonably
	Check whether the gain parameters are set	Increase the acceleration and
	properly	deceleration time
The load is too heavy	Check whether the load is too heavy	Reduce the load
Motor blockage	Check whether the motor is blocked due to mechanical jamming of the load.	Release the mechanical jam.
	Check whether the brake device is opened	Check the logic of brake power supply
The brakes are not open	normally, and check whether the output voltage of the brake is 24V	or brake output signal
Limit switches are mounted outside the travel	Check whether the limit switch is installed outside the travel	Adjust the installation position of limit switch

Er.38 Main circuit electricity is lack of phase

Fault

Servo drive panel display	Fault name
Er.j8	Main circuit electricity is lack of phase

Troubleshooting

Reason	Troubleshooting methods	Handling
Cable error	Check whether the motor power cable connection port is connected reliably	Tighten the fixing screws of the motor power cable connection ports
Cable error	Check the power cable for disconnections at both ends	Replace the power cable and power on again.
Three-phase specification drives run on single-phase power supplies	Check whether the three-phase drive has a single-phase power supply	Connect a three-phase power supply according to the power supply specifications
The power supply is unstable or offCheck that the drive input power specifications meet the specifications: 220V drive valid value: 198V to 242V. 380V drive valid value: 342V to 418V		Use after the power supply is stable.
Servo drive fault	The servo drive is still faulty after power on again	Servo drive may be damaged, please contact technician for repair.

Er.39 Emergency stop

Servo drive panel display Fault name Emergency stop

Troubleshooting

Fault

Reason	Troubleshooting methods	Handling
	Check whether emergency stop protection is triggered manually	Power on the servo drive again
Servo drive receives emergency stop instructions	Check whether the servo drive has mistakenly triggered the emergency stop signal. Check whether function 08 (E-STOP) is configured in the P06 group "DIDO configuration" function code group "DI port function selection" and whether the DI port wiring is normal.	Properly wire the DI port

Er.40 Encoder battery failure

Fault

Servo drive panel display	Fault name
Er.40	Encoder battery failure

Troubleshooting

Reason	Troubleshooting methods	Handling
Multi-turn absolute encoder is not	Check if the encoder is connected	
connected to the battery during the	to the battery during the power off	Set P10-03 (Fault clearing) to 1
power off of the servo drive	of the servo	
The voltage of multi-turn absolute	Maasura hattari valtara	Contact technicians to replace
encoder battery is low	Weasure Dattery Voltage	with a new encoder battery

Er.41 Motor (encoder) over temperature

Fault

Servo drive panel display	Fault name
Er.41	Motor (encoder) over temperature

Troubleshooting

Reason	Troubleshooting methods	Handling
The motor is overloaded	Check whether the motor is overloaded	Reduce the load of the motor

Er.42 Encoder write fault fault

Fault

Servo drive panel display		Fault name
	Er.42	Encoder write faults

Reason	Troubleshooting methods	Handling
	Check whether the cable port (CN1) of	Tighten the fixing screws on the CN1
Poor contact of CN1 port	the encoder is properly connected	port
	Check whether the servo drive CN1 port	If the cable is deformed, replace the
	jack is deformed	cable or its port

Poor contact on adapter port (Rectangular connection cable)	Check whether both ends of the rectangular connector are reliably connected	Make sure that both ends of the rectangular connector are connected reliably; Replace it with an encoder cable with higher connection reliability.
	Check for strong magnetic fields nearby	Eliminate nearby strong magnetic interference
External interference	Check whether there are sources of interference such as power supply inverter equipment nearby	Separate strong and weak power as much as possible, with good ground contact between motor and servo drive, and keep away from power cable wiring.
Servo drive fault	The servo drive is still faulty after power on again	Servo drive may be damaged, please contact technician for repair.

Er.43 Drive overload fault

Fault phenomenon

Servo drive panel display	Fault name
	Drive overload fault

Troubleshooting

Reason	Troubleshooting	Handling
The average output power (U0-34) exceeds the limit power (overload 110%) for more than 20 minutes.	Whether the average output power (U0-34) often exceeds the limit (overload 110) Check whether the drive meets the requirements.	Observed whether the U0-34 is often greater than the servo limit power (overload 110%) during servo operation. When ER.43 alarm is found in the process of machine adjustment, please check whether the servo power is suitable. It is recommended to replace the driver model with higher power.
Servo drive fault	The servo drive is still faulty after power on again	Servo drive may be damaged, contact the manufacturer's technician for repair.

Er.45 Drive Stall Overtemperature Protection

(1) Fault phenomenon

(2) Troubleshooting

Reason	Troubleshooting	Treatment
Check whether U0-39		Observe maximum torque observes
load torque percentage		whether the load torque on the
exceeds the maximum	Check whether U0-39 load torque	waveform interface of SCTool
torque of the motor for 3	percentage exceeds the maximum	oscilloscope is greater than the
seconds or observe	torque of the motor, and observe	motor maximum torque or check
whether the load torque	whether the motor is stuck.	whether U0-39 load torque
at the waveform interface		percentage exceeds the motor
of the oscilloscope of		maximum torque for 3 seconds.

SCTool is greater than the maximum torque of the motor and the motor is stalled.

Drive Model	Rated Power/W	Limit Power/W (Overload 110%)
VD2-010SA1G/SA1H	400	440
VD2-014SA1G/SA1H	750	825
VD2-016SA1G/SA1H	1500	1650
VD2-019SA1G/SA1H	2300	2530
VD2-021SA1G/SA1H	2300	2530
VD2-025SA1G/SA1H	2600	2860
VD2-030SA1G/SA1H	2600	2860
VD2F-010SA1G	400	440
VD2F-014SA1G	750	825
VD2-021TA1G	3000	3300

Er.60 ADC conversion is not complete

Fault

Servo drive panel display	Fault name
Er.60	ADC conversion is not complete

Troubleshooting

Reason	Troubleshooting methods	Handling
	Check for strong magnetic fields nearby	Eliminate nearby strong magnetic interference
External interference	Check whether there are sources of interference such as power supply inverter equipment nearby	Separate strong and weak power as much as possible, with good ground contact between motor and servo drive, and keep away from power cable wiring.
Servo drive fault	Factory reset the parameter (P10-02=1) and power on again. If the servo drive still alarms after multiple operations, it is faulty.	If there is still alarm after multiple power-on, contact the technician.

Er.61 Internal software fault

Fault

Servo drive panel display	Fault name
Er.6	Internal software fault

Troubleshooting

Reason	Troubleshooting methods	Handling
Servo drive fault	Factory reset the parameter (P10-02=1) and power on again. If the servo drive still alarms after multiple operations, it is faulty.	If there is still alarm after multiple power-on, contact the technician.

Er.62 Internal software fault

Fault

Servo drive panel display Fault name

Troubleshooting

Reason	Troubleshooting methods	Handling
Servo drive fault	Factory reset the parameter (P10-02=1) and power on again. If the servo drive still alarms after multiple operations, it is faulty.	If there is still alarm after multiple power-on, contact the technician.

Er.63 Internal software fault

Fault

S	ervo drive panel display	Fault name
	Er.63	Internal software fault

Troubleshooting

Reason	Troubleshooting methods	Handling
Servo drive fault	Factory reset the parameter (P10-02=1) and power on again. If the servo drive still alarms after multiple operations, it is faulty.	If there is still alarm after multiple power-on, contact the technician.

Er.64 Internal software fault

Fault

Servo drive panel display	Fault name
Er.64	Internal software fault

Troubleshooting

Reason	Troubleshooting methods	Handling
Servo drive fault	Factory reset the parameter (P10-02=1) and power on again. If the servo drive still alarms after multiple operations, it is faulty.	If there is still alarm after multiple power-on, contact the technician.

Er.65 Internal software fault

Fault

Servo drive panel display	Fault name	
Er.65	Internal software fault	

Troubleshooting

Reason	Troubleshooting methods	Handling
Servo drive fault	Factory reset the parameter (P10-02=1) and power on again. If the servo drive still alarms after multiple operations, it is faulty.	If there is still alarm after multiple power-on, contact the technician.

A-80 Drive overpower warning

Fault

Servo drive panel display	Alarm name
	Drive overpower warning

(2) Troubleshooting

Reason	Troubleshooting	Handling
The average output power (U0-34) exceeds the limit power of the drive (overload 110%) for more than 5 seconds, the drive will have alarm.	Check whether the average output power (U0-34) exceeds the limit (overload 110) The average output power (U0-34) exceeds the limit power (overload 110%) for more than 5 minutes. Check whether the U0-34 exceeds 110% of the rated power of the driver.	Check whether the U0-34 exceeds 110% of the rated power of the driver. When A80 alarm is found in the process of machine adjustment, please check whether the servo power is suitable.

Drive Model	Rated Power/W	Limit Power/W (Overload 110%)
VD2-010SA1G/SA1H	400	440
VD2-014SA1G/SA1H	750	825
VD2-016SA1G/SA1H	1500	1650
VD2-019SA1G/SA1H	2300	2530
VD2-021SA1G/SA1H	2300	2530
VD2-025SA1G/SA1H	2600	2860
VD2-030SA1G/SA1H	2600	2860
VD2F-010SA1G	400	440
VD2F-014SA1G	750	825
VD2-021TA1G	3000	3300

A-81 Overspeed alarm

Fault

Servo drive panel display	Fault name
	Overspeed alarm

Troubleshooting **Troubleshooting methods** Handling Reason Motor power cable Check whether the phase sequence of the Connect correctly according to UVW on the drive side and UVW on the motor cable UVW phase motor power cable on the servo driver side sequence error and motor side corresponds to each other. side Check whether the value of P01-11 Reset P01-11 (warning speed P01-11 parameter (warning speed threshold) is less than the threshold) according to mechanical setting is not proper max speed required for the operation of requirements motor Check whether the motor speed Reduce the input speed instruction corresponding to the input command according to the mechanical Input speed command is too high exceeds P01-11 (maximum speed requirements; Reasonably increase threshold) P01-11 (warning speed threshold)

A-82 Overload

Fault

Troubleshooting			
Reason	Troubleshooting methods	ŀ	landling

Motor power cable, encoder cable wiring error	Check whether the motor power cable and encoder cable wiring are correct.	Connect them according to the correct connection method. Priority is given to the use of motor power cables and encoder cables as standard by manufacturers
The load is too large	Check overload characteristics of motor or servo drive	Reduce the load. Contact technical to obtain the appropriate capacity drive and motor model.
Frequent acceleration and deceleration	Check whether the acceleration and deceleration motion is frequent or the acceleration and deceleration time is too small	Appropriately extend the acceleration and deceleration time
Motor model and servo driver do not match	Perform inertia identification and check the inertia ratio.	Contact technician to obtain the matching motor model.
Motor model and servo driver do not match	Check the monitoring quantity U0-53 (motor model code).	Contact technician to obtain the matching motor model.
Unreasonable	Use Wecon SCTools to obtain the actual torque waveform and observe whether overshoot is obvious	Set the appropriate loop gain parameters
parameters	Observe whether the motor vibrates during operation	Set the appropriate rigidity level

A-83 Braking resistor is over temperature or overloaded

Fault

Fault name	
Braking resistor is over temperature or overloaded	d

Reason	Troubleshooting methods	Handling
Improper connection of internal braking resistor	Check whether C, D are connected to the short cap and the contact is normal	When using an internal braking resistor, reliably connect the shorting cap or shorting wire between C and D
Improper connection of external braking resistor	Remove the external braking resistor and measure whether the resistance value is " ∞ " (infinity)	Replace the new external braking resistor. After ensuring that the resistance value of the resistor is the same as the nominal value, connect it in series between P+ and C.
The resistance value of the external braking resistor is too large	Test the actual external braking resistor resistance and compare it with the recommended braking resistor to make sure the actual resistance is not too large.	Use a suitable external braking resistor.

Improper parameter setting	When using an external braking resistor, check the following parameters. Whether P00-09 (braking resistor setting) is reasonable. P00-10 (external braking resistor resistance value) is reasonable.	Reasonable setting of P00-09 (braking resistor setting): P00-09=1 (use external braking resistor and natural cooling) P00-09 = 3 (do not use the braking resistor, all by capacitor absorption) P00-10 (external braking resistor resistance value) parameter value and the actual actual use of external braking resistor are consistent.
-------------------------------	--	---

A-84 Parameter modification that needs to be powered on again

Fault

Servo drive panel display	Fault name
A - 84	Braking resistor is over temperature or overloaded

Troubleshooting

Reason	Troubleshooting methods	Handling
Modified the effective timing to "power on again" parameter.	Check whether the servo drive has modified the parameter with the effective time "power on again".	Power on again

A-85 Receive position pulse when servo is OFF

Fault

Servo drive panel display		Fault name
R	-85	Receive position pulse when servo is OFF

Troubleshooting

Reason	Troubleshooting methods	Handling
Servo received position pulse when it is OFF.	Check whether the servo drive is in the OFF state, and check whether the host computer is sending pulse instruction.	The host computer stops
Servo received pulse instruction in non-position mode Check whether the servo drive P00-0 mode) is in position mode; Check whether the host computer is pulse instructions		sending pulse instructions.

A-86 Input pulse frequency is too high

Fault

Servo drive panel display	Fault name
A - 86	Input pulse frequency is too high

nousieshooting		
Reason	Troubleshooting methods	Handling
The input pulse frequency is too high	Position mode; When the instruction source is pulse instructions (P01-06=0), check whether the input pulse frequency is too high	Reduce the input pulse frequency

Improper parameter	Check whether the parameter value of P01-16 (number of instruction pulses for one rotation of the motor) is greater than the actual demand value.	Reset P01-16 according to mechanical requirements (number of instruction pulses for one rotation of motor).
setting	Check whether the parameter value of P01-17 to P01-20 (electronic gear ratio) is greater than the actual demand value.	Reset parameter of values P01-17 to P01-20 (electronic gear ratio) according to mechanical requirements

A-88 Main circuit momentary power off

Fault

Troubleshooting

Reason	Troubleshooting methods	Handling
Power off	Check that the drive input power specifications meet the specifications: 220V drive valid value: 198V to 242V. 380V drive valid value: 342V to 418V	Use it after the power supply is stable
Servo drive fault	The servo drive is still faulty after power on again	Servo drive may be damaged, please contact technician for repair.

A-89 DI port configuration is duplicate

Fault

Servo drive panel display	Fault name
A-89	DI port configuration is duplicate

Troubleshooting

Reason	Troubleshooting methods	Handling
	Check whether the "DI port	Configuring each DI port for different DI functions
	function selection" of the "DIDO	and power on again.
fine same non-zero Di	Configuration" function code	Configure the function of the unwanted DI ports to
nunction is assigned to	group of the P06 group is	0 (off) and power on again.
	configured with the same DI	Factory reset the parameter P10-02=1, and power
	function	on again.

A-90 DI port configuration is duplicate

Fault

nousieshouting			
Reason	Troubleshooting methods	Handling	
The same non-zero DO function is assigned to multiple DO ports	Check whether the "DO port function selection" of the "DIDO Configuration" function code group of the P06 group is configured with the same DO function	Configuring each DO port for different DO functions and power on again. Configure the function of the unwanted DO ports to 0 (off) and power on again. Factory reset the parameter P10-02=1, and power on again.	

A-91 Parameter modification is too frequent

Fault

Servo drive panel display	Fault name
A-9 (Parameter modification is too frequent (modification frequency allowed of function code: 6 hours/150 times Note: 32-bit function code: recorded as 2 times)

Troubleshooting

Reason	Troubleshooting	Handling
EEPROM writing frequency is too high	Check whether the host computer frequently modifies the parameters (modification frequency allowed of function code: 6 hours/150 times Note: 32-bit function code: recorded as 2 times)	 (1) During machine adjustment, A91 warning (6 hours/150 times) caused by manual frequent modification of function codes can be cleared through P10-03. In other cases, please check the PLC program (2) If A91 warning appears in the normal working mode of the machine, please check whether the PLC program frequently modifies the function code. (3) When the function code needs to be modified frequently, it is recommended to close Modbus write to EEPROM (P12-4 is set to 0)
	Check for strong magnetic fields nearby	Eliminate nearby strong magnetic interference
external interference	Check whether there are sources of interference such as power supply inverter equipment nearby	Separate strong and weak power as much as possible, with good ground contact between motor and servo drive, and keep away from power cable wiring.
	Increase the abnormal threshold setting of PO-31 encoder read-write check.	Eliminate the A93 warning by increasing the exception threshold is suitable as a temporary solution. The disadvantage is that the motor may run in an unstable state.
Encoder fault	Manually rotate the motor shaft counterclockwise or clockwise to observe whether the monitoring quantity U0-30 (electrical angle) changes regularly	If the value of U0-30 (electrical angle) changes abruptly or does not change, the encoder itself may have problems, please replace the motor or encoder.
Servo drive fault	•Cross-verification. Use the normal motor, encoder cable to connect to the servo drive. If the servo drive still have alarm, it is servo fault.	Servo driver may be damaged, please contact the manufacturer's technician.

A-92 Low encoder battery voltage warning

Fault

Servo drive panel display

Low encoder battery voltage warning

Troubleshooting

Reason	Troubleshooting methods	Handling	
The encoder battery	Measure the encoder	Contact technician to replace a new encoder battery	
voltage is less than 3.1V	battery voltage		

A-93 Abnormal and frequency of encoder read and write check is too high

Fault

Servo drive panel display	Fault name
A-93	Abnormal and frequency of encoder read and write check is too high

Reason	Troubleshooting methods	Handling
	Check for strong magnetic fields nearby	Eliminate nearby strong magnetic interference
External interference	Check whether there are sources of interference such as power supply inverter equipment nearby	Separate strong and weak power as much as possible, with good ground contact between motor and servo drive, and keep away from power cable wiring.
Internal servo drive fault	Cross-verification. Use the normal motor, encoder cable to connect to the servo drive, only connect the encoder cable. If the servo drive still alarm, it is failure.	Contact technician for repair

11. Appendix

11.1 Lists of parameters

In order to facilitate your use, the VD2SA series provides monitoring display and setting display functions. The specification are as follows.

Number	Parameter group name	Parameter group	Range	
1	Basic settings	Group P00	P00-01 to P00-30	
2	Control parameters	Group P01	P01-01 to P01-33	
3	Gain adjustment Group P02		P02-01 to P02-12	
4	Self-adjustment parameters Group P03		P03-01 to P03-08	
5	Vibration suppression	Group P04	P04-01 to P04-10	
6	Signal input and output	Group P05	P05-01 to P05-21	
7	DI / DO configuration	Group P06	P06-02 to P06-33	
8	Multi-segment position	Group P07	P07-01 to P07-72	
9	Accessibility	Group P10	P10-01 to P10-06	
10	Communication parameters Group P12		P12-01 to P12-05	
11	Communication input and output	Group P13	P13-01 to P13-14	
12	Universal	Group U0	U0-01 to U0-56	
13	Warning	Group U1	U1-01 to U1-25	
14	Device	Group U2	U2-01 to U2-16	

Comments about the contents of the parameter table

(1) Parameter name

If a parameter name is "reserved", it is occupied by system. Please do not configure the parameter.

If a parameter name is "not supported", it means that the model does not support the parameter. For the difference of servo drive parameters of different models, please refer to the parameter table.

(2) Parameter unit

If a parameter unit is "-", it has no unit.

(3) The time when the modification takes effect

Some of parameters need to be powered on again to take effect. Please refer to the parameter table.

CAUTION

The following parameter table is described in terms of VD2-014SA1G model V1.13 firmware version. Some of the parameters are different from the old version.

Group P00 Basic settings

Function	Nome	Setting	Effective	Dofault	Banga	11	Modbus address		Data
code	Name	method	time	Delault	Kange	Onit	Hexadecimal	Decimal	type
<u>P00-01</u>	Control mode	Shutdown setting	Effective immediately	1	1 to 6	-	0x0001	1	16-bit
<u>P00-04</u>	Rotation direction	Shutdown setting	Effective immediately	0	0 to 1	-	0x0004	4	16-bit
<u>P00-05</u>	Servo OFF shutdown mode	Shutdown setting	Effective immediately	0	0 to 1	-	0x0005	5	16-bit
<u>P00-09</u>	Braking resistance setting	Operation setting	Effective immediately	0	0 to 3	-	0x0009	9	16-bit
<u>P00-10</u>	External braking resistor resistance	Operation setting	Effective immediately	50	0 to 65535	Ω	0x000A	10	16-bit
<u>P00-11</u>	External braking resistor power	Operation setting	Effective immediately	100	0 to 65535	W	0x000B	11	16-bit
<u>P00-12</u>	Position pulse type selection	Operation setting	Power-on again	0	0 to 5	-	0x000C	12	16-bit
<u>P00-13</u>	Maximum position pulse frequency	Shutdown setting	Effective immediately	300	1 to 500	kHz	0x000D	13	16-bit
<u>P00-14</u>	Position pulse anti-interference grade	Operation setting	Power-on again	2	0 to 9	-	0x000E	14	16-bit
<u>P00-16</u>	Number of instruction pulses when the motor rotates one circle	Shutdown setting	Effective immediately	10000	0 to 131072	Instruction pulse unit	0x0010	16	32-bit
<u>P00-17</u>	Electronic gear 1 numerator	Operation setting	Effective immediately	1	1 to 4294967294	-	0x0012	18	32-bit
<u>P00-18</u>	Electronic gear 1 denominator	Operation setting	Effective immediately	1	1 to 4294967294	-	0x0014	20	32-bit
<u>P00-19</u>	Electronic Gear 2 nominator	Operation setting	Effective immediately	1	1 to 4294967294	-	0x0016	22	32-bit
<u>P00-20</u>	Electronic gear 2 denominator	Operation setting	Effective immediately	1	1 to 4294967294	-	0x0018	24	32-bit
<u>P00-21</u>	Pulse frequency division output direction	Operation setting	Power-on again	0	0 to 1	-	0x001A	26	16-bit
<u>P00-22</u>	Number of output pulses when the motor rotates one circle	Operation setting	Power-on again	2500	0 to 2500	Pulse unit	0x001B	27	16-bit
<u>P00-23</u>	Z pulse output OZ polarity	Operation setting	Power-on again	0	0 to 1	-	0x001C	28	16-bit
P0-24	Z pulse output	Operation setting	Power-on again	3	0-200	ms	0x001D	29	16-bit
<u>P00-25</u>	Position deviation limit	Shutdown setting	Effective immediately	60000	0 to 2147483646	Equivalent pulse unit	0x001E	30	32-bit
<u>P00-27</u>	Pulse output frequency division numerator	Operation setting	Power-on again	1	1 to 2500	-	0x0021	33	16-bit
<u>P00-28</u>	Pulse output frequency division	Operation setting	Power-on again	1	1 to 2500	-	0x0022	34	16-bit

	denominator								
<u>P00-29</u>	Number of equivalent position unit in a circle	Shutdown setting	Effective immediately	10000	0 to 131072	-	0x0023	35	32-bit
<u>P00-30</u>	Shield multi-turn absolute encoder battery fault	Operation setting	Power-on again	0	0 to 1	-	0x0025	37	16-bit
<u>P00-31</u>	Encoder read-write verification exception threshold setting	Operation setting	Effective immediately	20	0 to 100	-	0x0026	38	16-bit

Group P01 Control parameter

Function	Norma	Setting	Effective times	Defeult	Devee	11	Modbus a	ddress	Data
code	Name	method	Effective time	Default	Range	Unit	Hexadecimal	Decimal	type
<u>P01-01</u>	Speed instruction source	Shutdown setting	Effective immediately	0	0 to 1	-	0x0101	257	16-bit
<u>P01-02</u>	Internal speed instruction 0	Operation setting	Effective immediately	0	-5000 to 5000	rpm	0x0102	258	16-bit
<u>P01-03</u>	Acceleration time	Operation setting	Effective immediately	50	0 to 65535	ms	0x0103	259	16-bit
<u>P01-04</u>	Deceleration time	Operation setting	Effective immediately	50	0 to 65535	ms	0x0104	260	16-bit
<u>P01-05</u>	Shutdown deceleration time	Shutdown setting	Effective immediately	50	0 to 65535	ms	0x0105	261	16-bit
<u>P01-06</u>	Position instruction source	Operation setting	Effective immediately	0	0 to 1	-	0x0106	262	16-bit
<u>P01-07</u>	Torque instruction source	Shutdown setting	Effective immediately	0	0 to 1	-	0x0107	263	16-bit
<u>P01-08</u>	Torque instruction keyboard setting value	Operation setting	Effective immediately	0	-3000 to 3000	0.1%	0x0108	264	16-bit
<u>P01-09</u>	Source of speed limit in torque mode	Shutdown setting	Effective immediately	0	0 to 1	-	0x0109	265	16-bit
<u>P01-10</u>	Maximum speed threshold	Operation setting	Effective immediately	3600	0 to 5000	rpm	0x010A	266	16-bit
<u>P01-11</u>	Warning speed threshold	Operation setting	Effective immediately	3300	0 to 5000	rpm	0x010B	267	16-bit
<u>P01-12</u>	Forward speed threshold	Operation setting	Effective immediately	3000	0 to 5000	rpm	0x010C	268	16-bit
<u>P01-13</u>	Reverse speed threshold	Operation setting	Effective immediately	3000	0 to 5000	rpm	0x010D	269	16-bit
<u>P01-14</u>	Torque limit source	Shutdown setting	Effective immediately	0	0 to 1	-	0x010E	270	16-bit
<u>P01-15</u>	Forward torque limit	Operation setting	Effective immediately	3000	0 to 3000	0.1%	0x010F	271	16-bit
<u>P01-16</u>	Reverse torque limit	Operation setting	Effective immediately	3000	0 to 3000	0.1%	0x0110	272	16-bit
<u>P01-17</u>	Forward torque limit in torque mode	Operation setting	Effective immediately	3000	0 to 5000	rpm	0x0111	273	16-bit
<u>P01-18</u>	Reverse torque limit in torque mode	Operation setting	Effective immediately	3000	0 to 5000	rpm	0x0112	274	16-bit

Wecon VD2 Series Servo Drives Manual (Full V2.4)

<u>P01-19</u>	Torque saturation timeout	Operation setting	Effective	3000	0 to	ms	0x0113	275	16-bit
<u>P01-21</u>	Zero-speed clamp function selection	Operation setting	Effective	3000	0 to 3	rpm	0x0112	277	16-bit
<u>P01-22</u>	Zero speed clamp speed threshold	Operation setting	Effective immediately	20	0 to 5000	ms	0x0113	278	16-bit
<u>P01-23</u>	Internal speed instruction 1	Operation setting	Effective immediately	0	0 to 3	-	0x0115	279	16-bit
<u>P01-24</u>	Internal speed instruction 2	Operation setting	Effective immediately	20	-5000 to 5000	rpm	0x0116	280	16-bit
<u>P01-25</u>	Internal speed instruction 3	Operation setting	Effective immediately	0	-5000 to 5000	rpm	0x0117	279	16-bit
<u>P01-26</u>	Internal speed instruction 4	Operation setting	Effective immediately	0	-5000 to 5000	rpm	0x0118	280	16-bit
<u>P01-27</u>	Internal speed instruction 5	Operation setting	Effective immediately	0	-5000 to 5000	rpm	0x0119	281	16-bit
<u>P01-28</u>	Internal speed instruction 6	Operation setting	Effective immediately	0	-5000 to 5000	rpm	0x011A	282	16-bit
<u>P01-29</u>	Internal speed instruction 7	Operation setting	Effective immediately	0	-5000 to 5000	rpm	0x011B	283	16-bit
<u>P01-30</u>	Delay from brake output ON to instruction reception	Operation setting	Effective immediately	0	0 to 500	ms	0x011C	284	16-bit
<u>P01-31</u>	In the static state, delay from the brake output is OFF to the motor is not energized.	Operation setting	Effective immediately	0	1 to 1000	ms	0x011D	285	16-bit
<u>P01-32</u>	Rotation state, when the brake output is OFF, the speed threshold	Operation setting	Effective immediately	250	0 to 3000	rpm	0x011E	286	16-bit
<u>P01-33</u>	Rotation status, delay from servo enable OFF to brake output OFF	Operation setting	Effective immediately	150	1 to 1000	ms	0x011F	287	16-bit

Group P02 Gain adjustment

Function	Namo	Setting	Effective time	Dofault	Panga	Unit	Modbus ad	ddress	Data
code	Name	method	Enective time	Delault	Kange	Unit	Hexadecimal	Decimal	type
<u>P02-01</u>	1st position loop gain	Operation setting	Effective immediately	400	0 to 6200	0.1Hz	0x0201	513	16-bit
<u>P02-02</u>	1st speed loop gain	Operation setting	Effective immediately	65	0 to 35000	0.1Hz	0x0202	514	16-bit
<u>P02-03</u>	1st speed loop integral time constant	Operation setting	Effective immediately	1000	100 to 65535	0.1ms	0x0203	515	16-bit
<u>P02-04</u>	2nd position loop gain	Operation setting	Effective immediately	35	0 to 6200	0.1Hz	0x0204	516	16-bit
<u>P02-05</u>	2nd speed loop gain	Operation setting	Effective immediately	65	0 to 35000	0.1Hz	0x0205	517	16-bit
<u>P02-06</u>	2nd speed loop integral time constant	Operation setting	Effective immediately	1000	0 to 65535	0.1ms	0x0206	518	16-bit
<u>P02-07</u>	2nd gain switching mode	Operation setting	Effective immediately	0	0 to 3	-	0x0207	519	16-bit
<u>P02-08</u>	Gain switching condition selection	Operation setting	Effective immediately	0	0 to 10		0x0208	520	16-bit
<u>P02-09</u>	Speed feedforward gain	Operation setting	Effective immediately	0	0 to 1000	0.1%	0x0209	521	16-bit
<u>P02-10</u>	Speed feedforward filter time constant	Operation setting	Effective immediately	50	0 to 10000	0.01ms	0x020A	522	16-bit
<u>P02-11</u>	Torque feedforward gain	Operation setting	Effective immediately	0	0 to 2000	0.1%	0x020B	523	16-bit
<u>P02-12</u>	Torque feedforward filter time constant	Operation setting	Effective immediately	50	0 to 10000	0.01ms	0x020C	524	16-bit
<u>P02-13</u>	Delay Time for Gain Switching	Operation setting	Effective immediately	20	0 to 10000	0.1ms	0x020D	525	16-bit
<u>P02-14</u>	Gain switching grade	Operation setting	Effective immediately	50	0 to 20000		0x020E	526	16-bit
<u>P02-15</u>	Gain switching hysteresis	Operation setting	Effective immediately	20	0 to 20000		0x020F	527	16-bit
<u>P02-16</u>	Position loop gain switching time	Operation setting	Effective immediately	30	0 to 10000	0.1ms	0x0210	528	16-bit
<u>P02-20</u>	Enable model tracking control function	Shutdown setting	Effective immediately	0	0 to 1		0x0214	532	16-bit
<u>P02-21</u>	Model tracking control gain	Shutdown setting	Effective immediately	1000	200 to 20000	0.1/s	0x0215	533	16-bit
<u>P02-22</u>	Model tracking control gain compensation	Shutdown setting	Effective immediately	1000	500 to 2000	0.10%	0x0216	534	16-bit
<u>P02-23</u>	Model tracking control forward rotation bias	Shutdown setting	Effective immediately	1000	0 to 10000	0.10%	0x0217	535	16-bit
<u>P02-24</u>	Model tracking control reverses rotation bias	Shutdown setting	Effective immediately	1000	0 to 10000	0.10%	0x0218	536	16-bit

	<u>P02-25</u>	Model tracking control speed feedforward compensation	Shutdown setting	Effective immediately	1000	0 to 10000	0.10%	0x0219	537	16-bit
--	---------------	--	---------------------	--------------------------	------	---------------	-------	--------	-----	--------

Group P03 Self-adjustment parameters

Function	Norma	Setting		Defeult	Danga	Linit	Modbus a	Data	
code	Name	method	Effective time	Default	капде	Unit	Hexadecimal	Decimal	type
<u>P03-01</u>	Load inertia ratio	Operation setting	Effective immediately	300	100 to 10000	0.01	0x0301	769	16-bit
<u>P03-02</u>	Load rigidity grade selection	Operation setting	Effective immediately	14	0 to 31	-	0x0302	770	16-bit
<u>P03-03</u>	Self-adjusting mode selection	Operation setting	Effective immediately	0	0 to 2	-	0x0303	771	16-bit
<u>P03-04</u>	Oncable inertia recognition sensitivity	Operation setting	Effective immediately	0	0 to 2	-	0x0304	772	16-bit
<u>P03-05</u>	Number of cycles of inertia recognition	Shutdown setting	Effective immediately	2	1 to 20	Circle	0x0305	773	16-bit
<u>P03-06</u>	Maximum speed of inertia recognition	Shutdown setting	Effective immediately	1000	300 to 2000	rpm	0x0306	774	16-bit
<u>P03-07</u>	Parameter identification of rotation direction	Shutdown setting	Effective immediately	0	0 to 2	-	0x0307	775	16-bit
<u>P03-08</u>	Parameter identification waiting time	Shutdown setting	Effective immediately	1000	300 to 10000	ms	0x0308	776	16-bit

Group P04 Vibration suppression

Function		Setting		De fault		11	Modbus ad	ddress	Data
code	Name	method	Effective time	Default	капде	Unit	Hexadecimal	Decimal	type
<u>P04-01</u>	Pulse instruction filtering method	Shutdown setting	Effective immediately	0	0 to 1	-	0x0401	1025	16-bit
<u>P04-02</u>	Position instruction first-order low-pass filtering time constant	Shutdown setting	Effective immediately	0	0 to 1000	ms	0x0402	1026	16-bit
<u>P04-03</u>	Position instruction average filter time constant	Shutdown setting	Effective immediately	0	0 to 128	ms	0x0403	1027	16-bit
<u>P04-04</u>	Torque filter time constant	Operation setting	Effective immediately	50	10 to 2500	0.01ms	0x0404	1028	16-bit
<u>P04-05</u>	1st notch filter frequency	Operation setting	Effective immediately	300	250 to 5000	Hz	0x0405	1029	16-bit
<u>P04-06</u>	1st notch filter depth	Operation setting	Effective immediately	100	0 to 100	-	0x0406	1030	16-bit
<u>P04-07</u>	1st notch filter width	Operation setting	Effective immediately	4	0 to 12	-	0x0407	1031	16-bit
<u>P04-08</u>	2nd notch filter frequency	Operation setting	Effective immediately	500	250 to 5000	Hz	0x0408	1032	16-bit
<u>P04-09</u>	2nd notch filter depth	Operation setting	Effective immediately	100	0 to 100	-	0x0409	1033	16-bit
<u>P04-10</u>	2nd notch filter width	Operation setting	Effective immediately	4	0 to 12	-	0x040A	1034	16-bit
<u>P04-11</u>	Enable low-frequency vibration suppression function	Operation setting	Effective immediately	4	0 to 1	-	0x040B	1035	16-bit
<u>P04-12</u>	Low-frequency vibration suppression frequency	Operation setting	Effective immediately	800	10 to 2000	0.1HZ	0x040C	1036	16-bit
<u>P04-14</u>	Shutdown vibration detection amplitude	Operation setting	Effective immediately	100	0 to 3000	0.001	0x040E	1038	16-bit
<u>P04-18</u>	Speed feedback filtering time	Operation setting	Effective immediately	40	20 to 1000	0.01ms	0x0412	1042	16-bit
<u>P04-19</u>	Enable the type A suppression function	Operation setting	Effective immediately	0	0 to 1	-	0x0413	1043	16-bit
<u>P04-20</u>	Type A suppression frequency	Operation setting	Effective immediately	1000	100 to 20000	0.1HZ	0x0414	1044	16-bit
<u>P04-21</u>	Type A suppression gain correction	Operation setting	Effective immediately	100	0 to 1000	0.01	0x0415	1045	16-bit
<u>P04-22</u>	Type A suppression damping gain	Operation setting	Effective immediately	0	0 to 500	0.01	0x0416	1046	16-bit
<u>P04-23</u>	Type A suppression phase correction	Operation setting	Effective immediately	200	0 to 900	0.1 degree	0x0417	1047	16-bit

Group P05 Signal input and output

Function	Namo	Setting	Effective time	Dofault	Pango	Unit	Modbus a	ddress	Data
code	Name	method		Delault	Nalige	Onit	Hexadecimal	Decimal	type
<u>P05-01</u>	AI_1 input bias	Operation setting	Effective immediately	0	-5000 to 5000	mV	0x0501	1281	16-bit
<u>P05-02</u>	AI_1 input filter time constant	Operation setting	Effective immediately	200	0 to 60000	0.01ms	0x0502	1282	16-bit
<u>P05-03</u>	AI_1 dead zone	Operation setting	Effective immediately	20	0 to 1000	mV	0x0503	1283	16-bit
<u>P05-04</u>	AI_1 zero drift	Operation setting	Effective immediately	0	-500 to 500	mV	0x0504	1284	16-bit
<u>P05-05</u>	AI_2 input bias	Operation setting	Effective immediately	0	-5000 to 5000	mV	0x0505	1285	16-bit
<u>P05-06</u>	AI_2 input filter	Operation setting	Effective	200	0 to	0.01ms	0x0506	1286	16-bit
<u>P05-07</u>	AI_2 dead zone	Operation setting	Effective	20	0 to	mV	0x0507	1287	16-bit
<u>P05-08</u>	AI_2 zero drift	Operation setting	Effective	0	-500 to	mV	0x0508	1288	16-bit
<u>P05-09</u>	Analog quantity 10V for speed value	Shutdown setting	Effective	3000	100 to 4500	rpm	0x0509	1289	16-bit
<u>P05-10</u>	Analog quantity 10V for torque value	Shutdown setting	Effective immediately	1000	0 to 3000	0.1%	0x050A	1290	16-bit
<u>P05-11</u>	Positioning is completed, positioning close condition setting	Operation setting	Effective immediately	0	0 to 3	-	0x050B	1291	16-bit
<u>P05-12</u>	Positioning completion threshold	Operation setting	Effective immediately	800	1 to 65535	Equivalent pulse unit	0x050C	1292	16-bit
<u>P05-13</u>	Positioning approach threshold	Operation setting	Effective immediately	5000	1 to 65535	Equivalent pulse unit	0x050D	1293	16-bit
<u>P05-14</u>	Position detection window time	Operation setting	Effective immediately	10	0 to 20000	ms	0x050E	1294	16-bit
<u>P05-15</u>	Positioning signal hold time	Operation setting	Effective immediately	100	0 to 20000	ms	0x050F	1295	16-bit
<u>P05-16</u>	Rotation detection speed threshold	Operation setting	Effective immediately	20	0 to 1000	rpm	0x0510	1296	16-bit
<u>P05-17</u>	Speed consistent signal threshold	Operation setting	Effective immediately	10	0 to 100	rpm	0x0511	1297	16-bit
<u>P05-18</u>	Speed approach signal threshold	Operation setting	Effective immediately	100	10 to 6000	rpm	0x0512	1298	16-bit
<u>P05-19</u>	Zero speed output signal threshold	Operation setting	Effective immediately	10	0 to 6000	rpm	0x0513	1299	16-bit
<u>P05-20</u>	Torque arrival threshold	Operation setting	Effective immediately	100	0 to 300	%	0x0514	1300	16-bit
<u>P05-21</u>	Torque arrival hysteresis value	Operation setting	Effective immediately	10	0 to 20	%	0x0515	1301	16-bit

Group P06 DIDO configuration

Function	Namo	Setting	Effective time	Dofault	Panga	Unit	Modbus a	ddress	Data
code	Name	method	Enective time	Delault	Kange	Unit	Hexadecimal	Decimal	type
<u>P06-02</u>	DI_1 channel function selection	Operation setting	Power-on again	1	0 to 32	-	0x0602	1538	16-bit
<u>P06-03</u>	DI_1 channel logic selection	Operation setting	Effective immediately	0	0 to 1	-	0x0603	1539	16-bit
<u>P06-04</u>	DI_1 input source selection	Operation setting	Effective immediately	0	0 to 1	-	0x0604	1540	16-bit
<u>P06-05</u>	DI_2 channel function selection	Operation setting	Power-on again	2	0 to 32	-	0x0605	1541	16-bit
<u>P06-06</u>	DI_2 channel logic selection	Operation setting	Effective immediately	0	0 to 1	-	0x0606	1542	16-bit
<u>P06-07</u>	DI_2 input source selection	Operation setting	Effective immediately	0	0 to 1	-	0x0607	1543	16-bit
<u>P06-08</u>	DI_3 channel function selection	Operation setting	Power-on again	3	0 to 32	-	0x0608	1544	16-bit
<u>P06-09</u>	DI_3 channel logic selection	Operation setting	Effective immediately	0	0 to 1	-	0x0609	1545	16-bit
<u>P06-10</u>	DI_3 input source selection	Operation setting	Effective immediately	0	0 to 1	-	0x060A	1546	16-bit
<u>P06-11</u>	DI_4 channel function selection	Operation setting	Power-on again	4	0 to 32	-	0x060B	1547	16-bit
<u>P06-12</u>	DI_4 channel logic selection	Operation setting	Effective immediately	0	0 to 1	-	0x060C	1548	16-bit
<u>P06-13</u>	DI_4 input source selection	Operation setting	Effective immediately	0	0 to 1	-	0x060D	1549	16-bit
<u>P06-14</u>	DI_5 channel function selection	Operation setting	Power-on again	7	0 to 32	-	0x060E	1550	16-bit
<u>P06-15</u>	DI_5 channel logic selection	Operation setting	Effective immediately	0	0 to 1	-	0x060F	1551	16-bit
<u>P06-16</u>	DI_5 input source selection	Operation setting	Effective immediately	0	0 to 1	-	0x0610	1552	16-bit
<u>P06-17</u>	DI_6 channel function selection	Operation setting	Power-on again	11	0 to 32	-	0x0611	1553	16-bit
<u>P06-18</u>	DI_6 channel logic selection	Operation setting	Effective immediately	0	0 to 1	-	0x0612	1554	16-bit
<u>P06-19</u>	DI_6 input source selection	Operation setting	Effective immediately	0	0 to 1	-	0x0613	1555	16-bit
<u>P06-20</u>	DI_7 channel function selection	Operation setting	Power-on again	0	0 to 32	-	0x0614	1556	16-bit
<u>P06-21</u>	DI_7 channel logic selection	Operation setting	Power-on again	0	0 to 1	-	0x0615	1557	16-bit
<u>P06-22</u>	DI_7 input source selection	Operation setting	Effective immediately	0	0 to 1	-	0x0616	1558	16-bit
<u>P06-23</u>	DI_8 channel function selection	Operation setting	Power-on again	0	0 to 32	-	0x0617	1559	16-bit
<u>P06-24</u>	DI_8 channel logic selection	Operation setting	Power-on again	0	0 to 1	-	0x0618	1560	16-bit
<u>P06-25</u>	DI_8 input source selection	Operation setting	Effective immediately	0	0 to 1	-	0x0619	1561	16-bit
<u>P06-26</u>	DO_1 channel	Operation	Effective	132	128 to	-	0x061A	1562	16-bit

Wecon VD2 Series Servo Drives Manual (Full V2.4)

	function selection	setting	immediately		148				
<u>P06-27</u>	DO_1 channel logic selection	Operation setting	Effective immediately	0	0 to 1	-	0x061B	1563	16-bit
<u>P06-28</u>	DO_2 channel function selection	Operation setting	Effective immediately	130	128 to 148	-	0x061C	1564	16-bit
<u>P06-29</u>	DO_2 channel logic selection	Operation setting	Effective immediately	0	0 to 1	-	0x061D	1565	16-bit
<u>P06-30</u>	DO_3 channel function selection	Operation setting	Effective immediately	129	128 to 148	-	0x061E	1566	16-bit
<u>P06-31</u>	DO_3 channel logic selection	Operation setting	Effective immediately	0	0 to 1	-	0x061F	1567	16-bit
<u>P06-32</u>	DO_4 channel function selection	Operation setting	Effective immediately	134	128 to 148	-	0x0620	1568	16-bit
<u>P06-33</u>	DO_4 channel logic selection	Operation setting	Effective immediately	0	0 to 1	-	0x0621	1569	16-bit

Group P07 multi-segment position

Function		Setting	Effective		_		Modbus ad	ddress	Data
code	Name	method	time	Default	Range	Unit	Hexadecimal	Decimal	type
<u>P07-01</u>	multi-segment position operation mode	Shutdown setting	Effective immediately	0	0 to 2	-	0x0701	1793	16-bit
<u>P07-02</u>	Starting position number	Shutdown setting	Effective immediately	1	1 to 16	-	0x0702	1794	16-bit
<u>P07-03</u>	End position number	Shutdown setting	Effective immediately	1	1 to 16	-	0x0703	1795	16-bit
<u>P07-04</u>	Margin processing method	Shutdown setting	Effective immediately	0	0 to 1	-	0x0704	1796	16-bit
<u>P07-05</u>	Displacement instruction type	Shutdown setting	Effective immediately	0	0 to 1	-	0x0705	1797	16-bit
<u>P07-06</u>	Waiting time unit	Shutdown setting	Effective immediately	0	0 to 1	-	0x0706	1798	16-bit
P07-07	Reserved	Shutdown setting	Effective immediately	0	0 0 to 63355		0x0707	1799	16-bit
P07-08	Reserved	Shutdown setting	Effective immediately	0	0 to 0	-	0x0708	1800	16-bit
<u>P07-09</u>	The 1st position displacement	Operation setting	Effective immediately	10000	-2147483647 to 2147483646	-	0x0709	1801	32-bit
<u>P07-10</u>	Maximum speed of the 1st position displacement	Operation setting	Effective immediately	100	1 to 5000	rpm	0x070B	1803	16-bit
<u>P07-11</u>	Acceleration and deceleration time of the 1st position displacement	Operation setting	Effective immediately	100	1 to 65535	ms	0x070C	1804	16-bit
<u>P07-12</u>	Waiting time after completion of the 1st position displacement	Operation setting	Effective immediately	100	1 to 65535	Set by P07-06	0x070D	1805	16-bit
<u>P07-13</u>	The 2nd position displacement	Operation setting	Effective immediately	10000	-2147483647 to 2147483646	-	0x070E	1806	32-bit
<u>P07-14</u>	Maximum speed of the 2nd position displacement	Operation setting	Effective immediately	100	1 to 5000	rpm	0x0710	1808	16-bit
<u>P07-15</u>	Acceleration and deceleration time of the 2nd position displacement	Operation setting	Effective immediately	100	1 to 65535	ms	0x0711	1809	16-bit
<u>P07-16</u>	Waiting time after completion of the 2nd position displacement	Operation setting	Effective immediately	100	1 to 65535	Set by P07-06	0x0712	1810	16-bit
<u>P07-17</u>	The 3rd position displacement	Operation setting	Effective immediately	10000	-2147483647 to 2147483646	-	0x0713	1811	32-bit

<u>P07-18</u>	Maximum speed of the 3rd position displacement	Operation setting	Effective immediately	100	1 to 5000	rpm	0x0715	1813	16-bit
<u>P07-19</u>	Acceleration and deceleration time of the 3rd position displacement	Operation setting	Effective immediately	100	1 to 65535	ms	0x0716	1814	16-bit
<u>P07-20</u>	Waiting time after completion of the 3rd position displacement	Operation setting	Effective immediately	100	1 to 65535	Set by P07-06	0x0717	1815	16-bit
<u>P07-21</u>	The 4th position displacement	Operation setting	Effective immediately	10000	-2147483647 to 2147483646	-	0x0718	1816	32-bit
<u>P07-22</u>	Maximum speed of the 4th position displacement	Operation setting	Effective immediately	100	1 to 5000	rpm	0x071A	1818	16-bit
<u>P07-23</u>	Acceleration and deceleration time of the 4th position displacement	Operation setting	Effective immediately	100	1 to 65535	ms	0x071B	1819	16-bit
<u>P07-24</u>	Waiting time after completion of the 4th position displacement	Operation setting	Effective immediately	100	1 to 65535	Set by P07-06	0x071C	1820	16-bit
<u>P07-25</u>	The 5th position displacement	Operation setting	Effective immediately	10000	-2147483647 to 2147483646	-	0x071D	1821	32-bit
<u>P07-26</u>	Maximum speed of the 5th position displacement	Operation setting	Effective immediately	100	1 to 5000	rpm	0x071F	1823	16-bit
<u>P07-27</u>	Acceleration and deceleration time of the 5th position displacement	Operation setting	Effective immediately	100	1 to 65535	ms	0x0720	1824	16-bit
<u>P07-28</u>	Waiting time after completion of the 5th position displacement	Operation setting	Effective immediately	100	1 to 65535	Set by P07-06	0x0721	1825	16-bit
<u>P07-29</u>	The 6th position displacement	Operation setting	Effective immediately	10000	-2147483647 to 2147483646	-	0x0722	1826	32-bit
<u>P07-30</u>	Maximum speed of the 6th position displacement	Operation setting	Effective immediately	100	1 to 5000	rpm	0x0724	1828	16-bit
<u>P07-31</u>	Acceleration and deceleration time of the 6th position displacement	Operation setting	Effective immediately	100	1 to 65535	ms	0x0725	1829	16-bit
<u>P07-32</u>	Waiting time after completion of the 6th position displacement	Operation setting	Effective immediately	100	1 to 65535	Set by P07-06	0x0726	1830	16-bit
<u>P07-33</u>	The 7th position displacement	Operation setting	Effective immediately	10000	-2147483647 to	-	0x0727	1831	32-bit

					2147483646				
<u>P07-34</u>	Maximum speed of the 7th position displacement	Operation setting	Effective immediately	100	1 to 5000	rpm	0x0729	1833	16-bit
<u>P07-35</u>	Acceleration and deceleration time of the 7th position displacement	Operation setting	Effective immediately	100	1 to 65535	ms	0x072A	1834	16-bit
<u>P07-36</u>	Waiting time after completion of the 7th position displacement	Operation setting	Effective immediately	100	1 to 65535	Set by P07-06	0x072B	1835	16-bit
<u>P07-37</u>	The 8th position displacement	Operation setting	Effective immediately	10000	-2147483647 to 2147483646	-	0x072C	1836	32-bit
<u>P07-38</u>	Maximum speed of the 8th position displacement	Operation setting	Effective immediately	100	1 to 5000	rpm	0x072E	1838	16-bit
<u>P07-39</u>	Acceleration and deceleration time of the 8th position displacement	Operation setting	Effective immediately	100	1 to 65535	ms	0x072F	1839	16-bit
<u>P07-40</u>	Waiting time after completion of the 8th position displacement	Operation setting	Effective immediately	100	1 to 65535	Set by P07-06	0x0730	1840	16-bit
<u>P07-41</u>	The 9th position displacement	Operation setting	Effective immediately	10000	-2147483647 to 2147483646	-	0x0731	1841	32-bit
<u>P07-42</u>	Maximum speed of the 9th position displacement	Operation setting	Effective immediately	100	1 to 5000	rpm	0x0733	1843	16-bit
<u>P07-43</u>	Acceleration and deceleration time of the 9th position displacement	Operation setting	Effective immediately	100	1 to 65535	ms	0x0734	1844	16-bit
<u>P07-44</u>	Waiting time after completion of the 9th position displacement	Operation setting	Effective immediately	100	1 to 65535	Set by P07-06	0x0735	1845	16-bit
<u>P07-45</u>	The 10th position displacement	Operation setting	Effective immediately	10000	-2147483647 to 2147483646	-	0x0736	1846	32-bit
<u>P07-46</u>	Maximum speed of the 10th position displacement	Operation setting	Effective immediately	100	1 to 5000	rpm	0x0738	1848	16-bit
<u>P07-47</u>	Acceleration and deceleration time of the 10th position displacement	Operation setting	Effective immediately	100	1 to 65535	ms	0x0739	1849	16-bit
<u>P07-48</u>	Waiting time after completion of the 10th position displacement	Operation setting	Effective immediately	100	1 to 65535	Set by P07-06	0x073A	1850	16-bit

Wecon VD2 Series Servo Drives Manual (Full V2.4)

<u>P07-49</u>	The 11th position displacement	Operation setting	Effective immediately	10000	-2147483647 to 2147483646	-	0x073B	1851	32-bit
<u>P07-50</u>	Maximum speed of the 11th position displacement	Operation setting	Effective immediately	100	1 to 5000	rpm	0x073D	1853	16-bit
<u>P07-51</u>	Acceleration and deceleration time of the 11th position displacement	Operation setting	Effective immediately	100	1 to 65535	ms	0x073E	1854	16-bit
<u>P07-52</u>	Waiting time after completion of the 11th position displacement	Operation setting	Effective immediately	100	1 to 65535	Set by P07-06	0x073F	1855	16-bit
<u>P07-53</u>	The 12th position displacement	Operation setting	Effective immediately	10000	-2147483647 to 2147483646	-	0x0740	1856	32-bit
<u>P07-54</u>	Maximum speed of the 12th position displacement	Operation setting	Effective immediately	100	1 to 5000	rpm	0x0742	1858	16-bit
<u>P07-55</u>	Acceleration and deceleration time of the 12th position displacement	Operation setting	Effective immediately	100	1 to 65535	ms	0x0743	1859	16-bit
<u>P07-56</u>	Waiting time after completion of the 12th position displacement	Operation setting	Effective immediately	100	1 to 65535	Set by P07-06	0x0744	1860	16-bit
<u>P07-57</u>	The 13th position displacement	Operation setting	Effective immediately	10000	-2147483647 to 2147483646	-	0x0745	1861	32-bit
<u>P07-58</u>	Maximum speed of the 13th position displacement	Operation setting	Effective immediately	100	1 to 5000	rpm	0x0747	1863	16-bit
<u>P07-59</u>	Acceleration and deceleration time of the 13th position displacement	Operation setting	Effective immediately	100	1 to 65535	ms	0x0748	1864	16-bit
<u>P07-60</u>	Waiting time after completion of the 13th position displacement	Operation setting	Effective immediately	100	1 to 65535	Set by P07-06	0x0749	1865	16-bit
<u>P07-61</u>	The 14th position displacement	Operation setting	Effective immediately	10000	-2147483647 to 2147483646	-	0x074A	1866	32-bit
<u>P07-62</u>	Maximum speed of the 14th position displacement	Operation setting	Effective immediately	100	1 to 5000	rpm	0x074C	1868	16-bit
<u>P07-63</u>	Acceleration and deceleration time of the 14th position displacement	Operation setting	Effective immediately	100	1 to 65535	ms	0x074D	1869	16-bit
<u>P07-64</u>	Waiting time after completion of the 14th position	Operation setting	Effective immediately	100	1 to 65535	Set by P07-06	0x074E	1870	16-bit

	displacement								
<u>P07-65</u>	The 15th position displacement	Operation setting	Effective immediately	10000	-2147483647 to 2147483646	-	0x074F	1871	32-bit
<u>P07-66</u>	Maximum speed of the 15th position displacement	Operation setting	Effective immediately	100	1 to 5000	rpm	0x0751	1873	16-bit
<u>P07-67</u>	Acceleration and deceleration time of the 15th position displacement	Operation setting	Effective immediately	100	1 to 65535	ms	0x0752	1874	16-bit
<u>P07-68</u>	Waiting time after completion of the 15th position displacement	Operation setting	Effective immediately	100	1 to 65535	Set by P07-06	0x0753	1875	16-bit
<u>P07-69</u>	The 16th position displacement	Operation setting	Effective immediately	10000	-2147483647 to 2147483646	-	0x0754	1876	32-bit
<u>P07-70</u>	Maximum speed of the 16th position displacement	Operation setting	Effective immediately	100	1 to 5000	rpm	0x0756	1878	16-bit
<u>P07-71</u>	Acceleration and deceleration time of the 16th position displacement	Operation setting	Effective immediately	100	1 to 65535	ms	0x0757	1879	16-bit
<u>P07-72</u>	Waiting time after completion of the 16th position displacement	Operation setting	Effective immediately	100	1 to 65535	Set by P07-06	0x0758	1880	16-bit

Group P10 Accessibility

Function	Name	Setting method Effective time Defa		Defeult	Dense	11	Modbus address		Data
code	Name	method	effective time	Default	Range	Unit	Hexadecimal	Decimal	type
<u>P10-01</u>	JOG speed	Operation setting	Effective immediately	100	0 to 3000	rpm	0x0A01	2561	16-bit
<u>P10-02</u>	Restore factory settings	Shutdown setting	Effective immediately	0	0 to 65535	-	0x0A02	2562	16-bit
<u>P10-03</u>	Fault clearing	Operation setting	Effective immediately	0	0 to 1	-	0x0A03	2563	16-bit
<u>P10-04</u>	Motor overload protection time factor	Operation setting	Effective immediately	100	1 to 800	%	0x0A04	2564	16-bit
<u>P10-05</u>	Motor model	Operation setting	Power-on again	0	0 to 65535	-	0x0A05	2565	16-bit
<u>P10-06</u>	Multi-turn absolute encoder reset	Shutdown setting	Effective immediately	0	0 to 1	-	0x0A06	2566	16-bit
<u>P10-07</u>	Set machine code manually	Operation setting	Power-on again	0	0 to 1	-	0x0A07	2567	16-bit
<u>P10-08</u>	Multi-turn absolute encoder origin offset	Operation setting	Effective immediately	0	-2147483647 to 2147483646	-	0x0A08	2568	32-bit

Wecon VD2 Series Servo Drives Manual (Full V2.4)

	compensation								
P10-11	Motor stall over-temperature enable	Operation setting	Effective immediately	0	0 to 1	-	0x0A0C	2572	16-bit

Group P12 Communication parameters

Function	Name	Setting		Default	t Range		Modbus ad	ddress	Data
code	Name	method	Effective time	Default	капде	Unit	Hexadecimal	Decimal	type
<u>P12-01</u>	Servo address	Operation setting	Effective immediately	1	1 to 247	-	0x0C01	3073	16-bit
<u>P12-02</u>	Baud rate	Operation setting	Effective immediately	2	0 to 6	-	0x0C02	3074	16-bit
<u>P12-03</u>	Serial data format	Operation setting	Effective immediately	0	0 to 3	-	0x0C03	3075	16-bit
<u>P12-04</u>	Modbus communication data is written into EEPROM	Operation setting	Effective immediately	0	0 to 1	-	0x0C04	3076	16-bit
<u>P12-05</u>	RS422/RS485 function selection	Operation setting	Effective immediately	0	0 to 1	-	0x0C05	3077	16-bit
<u>P12-06</u>	Modbus 32-bit variable high and low byte order	Operation setting	Effective immediately	0	0 to 1		0x0C06	3078	16-bit

Group P13 Virtual input terminal

Function		Setting					Modbus ad	ddress	Data
code	Name	method	Effective time	Default	Range	Unit	Hexadecimal	Decimal	type
<u>P13-01</u>	Virtual VDI_1 input value	Operation setting	Effective immediately	0	0 to 1	-	0x0D01	3329	16-bit
<u>P13-02</u>	Virtual VDI_2 input value	Operation setting	Effective immediately	0	0 to 1	-	0x0D02	3330	16-bit
<u>P13-03</u>	Virtual VDI_3 input value	Operation setting	Effective immediately	0	0 to 1	-	0x0D03	3331	16-bit
<u>P13-04</u>	Virtual VDI_4 input value	Operation setting	Effective immediately	0	0 to 1	-	0x0D04	3332	16-bit
<u>P13-05</u>	Virtual VDI_5 input value	Operation setting	Effective immediately	0	0 to 1	-	0x0D05	3333	16-bit
<u>P13-06</u>	Virtual VDI_6 input value	Operation setting	Effective immediately	0	0 to 1	-	0x0D06	3334	16-bit
<u>P13-07</u>	Virtual VDI_7 input value	Operation setting	Effective immediately	0	0 to 1	-	0x0D07	3335	16-bit
<u>P13-08</u>	Virtual VDI_8 input value	Operation setting	Effective immediately	0	0 to 1	-	0x0D08	3336	16-bit
<u>P13-11</u>	Virtual VDO_1 input value	Operation setting	Effective immediately	0	0 to 1	-	0x0D0B	3339	16-bit
<u>P13-12</u>	Virtual VDO_2 input value	Operation setting	Effective immediately	0	0 to 1	-	0x0D0C	3340	16-bit
<u>P13-13</u>	Virtual VDO_3 input value	Operation setting	Effective immediately	0	0 to 1	-	0x0D0D	3341	16-bit
<u>P13-14</u>	Virtual VDO_4 input value	Operation setting	Effective immediately	0	0 to 1	-	0x0D0E	3342	16-bit

DI/DO channel function definition

	DI channel function definition					
No.	Name	Function name	Content			
0		Off (not used)	-			
	6.01		Invalid DI port logic: Servo motor enable prohibited			
1	S-ON	Servo enable	Valid DI port logic: Servo motor is enabled			
2			Invalid DI port logic: No reset fault or warning			
2	A-CLR	-ault and warning clear	Valid DI port logic: Reset fault or warning			
2	DOT	Forward drive prohibition	Invalid DI port logic: Forward drive allowed			
3	POT		Valid DI port logic: Forward drive Prohibited			
4	NOT	Reverse drive prohibition	Invalid DI port logic: Reverse drive allowed			
			Valid DI port logic: Reverse drive Prohibited			
5	ZCLAMP	Zero-speed clamp	Invalid DI port logic: Zero-speed clamp prohibited			
			Valid DI port logic: Zero-speed clamp enabled			
6	CL	Clear deviation counter	Invalid DI port logic: Position deviation is not clear			
0			Valid DI port logic: Position deviation is clear			
7	C-SIGN	Instruction is reversed	Invalid DI port logic: default instruction direction			
			Valid DI port logic: Reverse direction of instruction			
8	F-STOP	Emergency stop	Invalid DI port logic: Position lock after zero speed stop			
	L STOP		Valid DI port logic: Current running status is not affected			
9	GFAR-SEI	Electronic Gear Switch 1	Invalid DI port logic: electronic Gear Switch 1			
	OLAN-SEL		Valid DI port logic: electronic Gear Switch 2			
10	GAIN-SEL	Gain switch	-			
11	INH	Instruction pulse input	Invalid DI port logic: Instruction pulse input allowed			
		prohibited	Valid DI port logic: Instruction pulse input prohibited			
12	VSSEL	Vibration control input	_			
		switching				
13	INSPD1	Internal speed instruction	Constitutes an internal multi-segment speed running			
	-	selection 1	segment number			
14	INSPD2	Internal speed instruction	Constitutes an internal multi-segment speed running			
		selection 2	segment number			
15	INSPD3	Internal speed instruction	Constitutes an internal multi-segment speed running			
		selection 3	segment number			
16	J-SEL	Inertia ratio switch	-			
		(not implemented yet)				
17	MixModeSel		Invalid Di port logic: Current running is not affected			
10	Nene	Nere	Valid DI port logic: Servo motor is in mix control mode			
10	None	None	-			
19	None	None	-			
20	ENINPOS	Internal multi-segment enable signal	Valid DI port logic: Current running is not affected			
20			position			
	INPOS1 INPOS2	Internal multi segment	Constitutos an internal multi segment position running			
21		nosition selection 1	constitutes an internal multi-segment position running			
			Constitutes an internal multi-segment position running			
22		nosition selection 2	segment number			
		Internal multi-segment	Constitutes an internal multi-segment position running			
23	INPOS3	nosition selection 3	segment number			
		Internal multi-segment	Constitutes an internal multi-segment position running			
24	INPOS4	position selection 4	segment number			

No.	Nar	ne	Function name	Content
128			OFF (not used)	-
				Servo is ready, and could receive S-ON signal.
129	RD	γ	Servo is ready	Invalid DO port logic: Servo is not ready
				Valid DO port logic: Servo is ready
130	ALI	М	Fault signal	Valid when the fault is detected
131	WA	RN	Warning signal	Valid when warning signals are output
		Ì		When the absolute value of servo motor speed is higher than
132	TGC	ON	Rotation	P05-16 set value:
			detection	Invalid DO port logic: invalid motor rotation detection signal
				Valid DU port logic: Valid motor rotation detection signal
102	ZSP		Zero speed signal	The signal output by the servo motor when it stops:
133				Invalid DO port logic: Invalid motor zero-speed signal
				Valid DO port logic. Valid motor zero-speed signal
134	P-CC	JIN	complete	complete
			Positioning	Output this signal indicates that the servo drive positioning is
135	P-NE	AR	annroach	annroach
			арргоаст	In speed mode, when the absolute value of the difference
136	V-CC	אור	Consistent	hetween motor speed and speed instruction is less than the set
			speed	value of P05-17. the signal is valid
				Invalid DO port logic: The absolute value of motor speed feedback
107				after filtering is greater than the set value of P05-18
137	V-NEAR		Speed approach	Valid DO port logic: The absolute value of motor speed feedback
				after filtering is less than the set value of P05-18
				Invalid DO port logic: The absolute value of torque instruction is
120	Т-СС	ואור	Torquo arrival	greater than the set value.
120	1-00	JIN	lorque arrival	Valid DO port logic: The absolute value of torque instruction
				reaches the set value.
				The confirmation signal of torque limit.
139	T-LIMIT		Torque limit	Invalid DO port logic: The torque of motor is not limited
				Valid DO port logic: The torque of motor is limited
	V-LIMIT		Speed limited	The confirmation signal of speed limit in torque mode.
140				Invalid DO port logic: The motor speed is not limited
				Valid DO port logic: The motor speed is limited
4 4 4			Duality and the	Output brake signal
141	BKK-	OFF	вгаке оцтрит	Invalid DO port logic: The brake device does not operate
			Sonvo on stato	Valid DO port logic: The brake device operates
142	SRV	-ST	Servo on state	Invalid DO port logic: Serve motor is not operate
			υτρατ	
1/13		None	-	-
145	VD2B	07	7 nulse outnut	The output signal indicates that servo drive rotates 1 turn
144	Nor	ne	-	
	None		Communication	
145	COM_VDO1		VDO1 output	Use communication VDO
	COM_VDO2		Communication	
146			VDO2 output	Use communication VDO
	COM_VDO3		Communication	
147			VDO3 output	Use communication VDO
1 4 0	COM_VDO4		Communication	
148			VDO4 output	

Group U0 Monitoring parameters

Function				Modbus address		Data	
code	Name	Name Category Unit		Hexadecimal	Decimal	mal type	
<u>U0-01</u>	Servo Status	Universal	-	0x1E01	7681	16-bit	
<u>U0-02</u>	Servo motor speed	Universal	rpm	0x1E02	7682	16-bit	
U0-03	Input speed instruction	Universal	rpm	0x1E03	7683	16-bit	
<u>U0-04</u>	Corresponding speed of position instruction	Universal	rpm	0x1E04	7684	16-bit	
<u>U0-05</u>	Pulse deviation	Universal	Equivalent pulse unit	0x1E05	7685	32-bit	
U0-06	Reserved	Universal	-	0x1E07	7687	16-bit	
U0-07	Reserved	Universal	-	0x1E08	7688	16-bit	
U0-08	Input instruction pulse frequency	Universal	kHz	0x1E09	7689	16-bit	
<u>U0-09</u>	Input instruction pulse number (lower 32 bits)	Universal	Instruction unit	0x1E0A	7690	32-bit	
U0-10	Reserved	Universal	Instruction unit	0x1E0C	7692	16-bit	
U0-11	Reserved	Universal	Instruction unit	0x1E0D	7693	32-bit	
U0-12	Real-time torque monitoring	Universal	0.1%	0x1E0F	7695	16-bit	
<u>U0-13</u>	Encoder cumulative position (lower 32 bits)	Universal	Encoder unit	0x1E10	7696	32-bit	
U0-14	Reserved	Universal	Encoder unit	0x1E12	7698	16-bit	
<u>U0-15</u>	Encoder cumulative position (high 32 bits)	Universal	Encoder unit	0x1E13	7699	32-bit	
U0-16	Reserved	Universal	Encoder unit	0x1E15	7701	16-bit	
<u>U0-17</u>	DI input signal status	Universal	-	0x1E16	7702	16-bit	
U0-18	Reserved	Universal	-	0x1E17	7703	16-bit	
<u>U0-19</u>	DO output signal status	Universal	-	0x1E18	7704	16-bit	
<u>U0-20</u>	Real-time load inertia ratio	Universal	%	0x1E19	7705	16-bit	
<u>U0-21</u>	Al1 input voltage value Reserved*	Universal	v	0x1E1A	7706	16-bit	
<u>U0-22</u>	AI2 input voltage value Reserved*	Universal	v	Ox1E1B	7707	16-bit	
U0-23	Vibration Frequency	Universal	Hz	0x1E1C	7708	16-bit	
U0-24	Vibration Amplitude	Universal	rpm	0x1E1D	7709	16-bit	
U0-25	Forward torque limit value	Universal	%	Ox1E1E	7710	16-bit	
<u>U0-26</u>	Reverse torque limit value	Universal	%	Ox1E1F	7711	16-bit	
<u>U0-27</u>	Forward speed limit value	Universal	rpm	0x1E20	7712	16-bit	
<u>U0-28</u>	Reverse speed limit value	Universal	rpm	0x1E21	7713	16-bit	
<u>U0-29</u>	Mechanical angle	Universal	0	0x1E22	7714	16-bit	
<u>U0-30</u>	Electrical angle	Universal	0	0x1E23	7715	16-bit	
<u>U0-31</u>	Bus voltage	Universal	V	0x1E24	7716	16-bit	
<u>U0-32</u>	Radiator temperature	Universal	°C	0x1E25	7717	16-bit	
<u>U0-33</u>	Instantaneous output power	Universal	W	0x1E26	7718	16-bit	
<u>U0-34</u>	Average output power	Universal	W	0x1E27	7719	16-bit	
<u>U0-35</u>	Total operation time (hour)	Universal	h	0x1E28	7720	16-bit	
U0-36	Reserved	Universal	-	0x1E29	7721	16-bit	
<u>U0-37</u>	Total operation time (minute)	Universal	min	0x1E2A	7722	16-bit	
<u>U0-38</u>	Total operation time (second)	Universal	S	Ox1E2B	7723	16-bit	
<u>U0-39</u>	Load torque percentage	Universal	%	0x1E2C	7724	16-bit	

<u>U0-40</u>	Current operation time (hour)	Universal	h	0x1E2D	7725	16-bit
U0-41	Reserved	-	-	0x1E2E	7726	16-bit
<u>U0-42</u>	Current operation time (minute)	Universal	min	0x1E2F	7727	16-bit
<u>U0-43</u>	Current operation time (second)	Universal	S	0x1E30	7728	16-bit
<u>U0-44</u>	Instantaneous braking resistor power	Universal	W	0x1E31	7729	16-bit
U0-45	Reserved	-	-	0x1E32	7730	16-bit
<u>U0-46</u>	Average braking resistor power	Universal	W	0x1E33	7731	16-bit
U0-47	Reserved	Universal	-	0x1E34	7732	16-bit
<u>U0-48</u>	Power-on times	Universal	Times	0x1E35	7733	16-bit
U0-49	Reserved	-	-	0x1E36	7734	16-bit
<u>U0-50</u>	Motor cumulative number of turns (low 32 bits)	Universal	Circle	0x1E37	7735	32-bit
<u>U0-51</u>	Motor cumulative number of turns (high 32 bits)	Universal	Circle	0x1E39	7737	32-bit
U0-52	Reserved	Universal	-	Ox1E3B	7739	16-bit
<u>U0-53</u>	Motor model code	Universal	-	0x1E3C	7740	16-bit
<u>U0-54</u>	Absolute encoder position in 1 circle	Universal	Encoder unit	0x1E3D	7741	32-bit
<u>U0-55</u>	Circle numbers of multi-turn absolute encoder	Universal	Circle	0x1E3F	7743	16-bit
<u>U0-56</u>	Current position of the multi-turn absolute encoder	Universal	Instruction unit	0x1E41	7745	32-bit

Group U1 Warning monitoring

Function				Modbus ad	Data	
code	Name	Category	Unit	Hexadecimal	Decimal	type
<u>U1-01</u>	Current fault code	Warning	-	0x1F01	7937	16-bit
<u>U1-02</u>	Current warning code	Warning	-	0x1F02	7938	16-bit
<u>U1-03</u>	U phase current when faults occur	Warning	А	0x1F03	7939	16-bit
<u>U1-04</u>	V phase current when faults occur	Warning	А	0x1F04	7940	16-bit
<u>U1-05</u>	Bus voltage when faults occur	Warning	V	0x1F05	7941	16-bit
<u>U1-06</u>	IGBT temperature when faults occur	Warning	°C	0x1F06	7942	16-bit
<u>U1-07</u>	Torque component when faults occur	Warning	%	0x1F07	7943	16-bit
<u>U1-08</u>	Excitation component when faults occur	Warning	%	0x1F08	7944	16-bit
<u>U1-09</u>	Position deviation when faults occur	Warning	Encoder unit	0x1F09	7945	32-bit
<u>U1-10</u>	Speed value when faults occur	Warning	rpm	0x1F0B	7947	16-bit
<u>U1-11</u>	Time when the fault occurred	Warning	S	0x1F0C	7948	16-bit
<u>U1-12</u>	Number of faults in this operation	Warning	-	0x1F0D	7949	16-bit
<u>U1-13</u>	Number of warnings in this operation	Warning	-	0x1F0E	7950	16-bit
<u>U1-14</u>	Total number of historical faults	Warning	-	0x1F0F	7951	16-bit
<u>U1-15</u>	Total number of historical warnings	Warning	-	0x1F10	7952	16-bit
<u>U1-16</u>	The 1st fault code of the most recent	Warning	-	0x1F11	7953	16-bit
<u>U1-17</u>	The 2nd fault code of the most recent	Warning	-	0x1F12	7954	16-bit
<u>U1-18</u>	The 3rd fault code of the most recent	Warning	-	0x1F13	7955	16-bit
<u>U1-19</u>	The 4th fault code of the most recent	Warning	-	0x1F14	7956	16-bit
<u>U1-20</u>	The 5th fault code of the most recent	Warning	-	0x1F15	7957	16-bit
<u>U1-21</u>	The 1st warning code of the most recent	Warning	-	0x1F16	7958	16-bit
<u>U1-22</u>	The 2nd warning code of the most recent	Warning	-	0x1F17	7959	16-bit
<u>U1-23</u>	The 3rd warning code of the most recent	Warning	-	0x1F18	7960	16-bit
<u>U1-24</u>	The 4th warning code of the most recent	Warning	-	0x1F19	7961	16-bit
<u>U1-25</u>	The 5th warning code of the most recent	Warning	-	0x1F1A	7962	16-bit

Group U2 Device monitoring

Function				Modbus address		
code	Name Category	Unit	Hexadecimal	Decimal	Data type	
<u>U2-01</u>	Product Series	Device	-	0x2001	8193	16-bit
<u>U2-02</u>	Model	Device	-	0x2002	8194	16-bit
<u>U2-03</u>	Model	Device	-	0x2003	8195	16-bit
<u>U2-04</u>	Firmware version	Device	-	0x2004	8196	16-bit
<u>U2-05</u>	FPGA version	Device	-	0x2005	8197	16-bit
<u>U2-06</u>	Firmware day (year)	Device	Year	0x2006	8198	16-bit
<u>U2-07</u>	Firmware day (month)	Device	Month	0x2007	8199	16-bit
<u>U2-08</u>	Firmware day (day)	Device	Day	0x2008	8200	16-bit
<u>U2-09</u>	Device serial number 1	Device	-	0x2009	8201	16-bit
<u>U2-10</u>	Device serial number 2	Device	-	0x200A	8202	16-bit
<u>U2-11</u>	Device serial number 3	Device	-	0x200B	8203	16-bit
<u>U2-12</u>	Device serial number 4	Device	-	0x200C	8204	16-bit
<u>U2-13</u>	Device serial number 5	Device	-	0x200D	8205	16-bit
<u>U2-14</u>	Device serial number 6	Device	-	0x200E	8206	16-bit
<u>U2-15</u>	Device serial number 7	Device	-	0x200F	8207	16-bit
<u>U2-16</u>	Device serial number 8	Device	-	0x2010	8208	16-bit

11.2 List of fault and warning codes

Code	Content	Clearable	Stop immediately
Er.01	Parameter damage		0
Er.02	Parameter storage error		0
Er.03	ADC reference source error		0
Er.04	AD current sampling conversion error		0
Er.05	FPGA communication exception		0
Er.06	FPGA incorrect program version		0
Er.07	Clock exception		0
Er.20	Overcurrent		0
Er.21	Main power supply is undervoltage	\checkmark	0
Er.22	Main power supply is overvoltage	\checkmark	0
Er.23	Braking resistor is not connected	\checkmark	0
Er.24	Braking resistor is abnormal		0
Er.25	Braking resistor resistance is too large	\checkmark	0
Er.26	Wrong motor model		0
Er.27	Encoder is disconnected	\checkmark	0
Er.28	Encoder Z pulse is lost		0
Er.29	The incremental encoder AB count does not equal to the number of encoder cables multiply by 4		0
Er.30	Encoder UVW signal error		0
Er.31	The power cable is disconnected	\checkmark	0
Er.32	Exceeding the maximum speed of motor		0
Er.33	The power module is over temperature	\checkmark	0
Er.34	Motor overload protection	\checkmark	0
Er.35	Electronic gear ratio exceeds the limit	\checkmark	0
Er.36	Position deviation is too large	\checkmark	0
Er.37	Torque saturation is abnormal	\checkmark	0

Er.38	The main circuit is electrically deficient	\checkmark	0
Er.39	Emergency stop	\checkmark	0
Er.40	Encoder battery failure	\checkmark	0
Er.41	Motor (encoder) over temperature	\checkmark	0
Er.42	Encoder write failure	\checkmark	0
Er.60	ADC conversion is incomplete		0
Er.61	Internal software fault		0
Er.62	Internal software fault		0
Er.63	Internal software fault		0
Er.64	Internal software fault		0
Er.65	Internal software fault		0
A-81	Over speed alarm	\checkmark	
A-82	Overload	\checkmark	
A-83	Braking resistor is over temperature or overload	\checkmark	
A-84	Parameter modification that needs to be powered on again	\checkmark	
A-85	Receive position pulse when servo is OFF	\checkmark	
A-86	Input pulse frequency is too high	\checkmark	
A-88	Main circuit momentary is power off	\checkmark	
A-89	DI port configuration is duplicate	\checkmark	
A-90	DO port configuration is duplicate	\checkmark	
A-91	Parameter modification is too frequent	\checkmark	
A-92	low encoder battery voltage warning	\checkmark	
A-93	Encoder read and write check abnormal and frequency is too high	\checkmark	

Clearable: The panel can be stopped displaying the status by giving a "clear signal" Stop immediately: The control action state stops immediately.

11.3 Wire

Wire model	Wire length	
P-Z3O1-R4M-3MX4	3m	
P-Z3O1-R4M-5MX4	5m	Label
P-Z3O1-R4M-10MX4	10m	Suitable for VD2A drive connecting 60/80 flange lead wire motor
P-U3O1-R4M-3MX4	3m	
P-U3O1-R4M-5MX4	5m	Label
P-U3O1-R4M-10MX4	10m	Suitable for VD2B drive connecting 80 flange lead wire motor

P-Z4-R4M-3MX4	3m	
P-Z4-R4M-5MX4	5m	Label
P-Z4-R4M-10MX4	10m	Suitable for VD2F drive connecting 40/60/80 flange lead wire motor
P-Z3O1-H28J4M-3MX4	3m	
P-Z3O1-H28J4M-5MX4	5m	
P-Z3O1-H28J4M-10MX4	10m	Suitable for VD2A drive connecting 110/130 flange lead wire motor
P-U3O1-H28J4M-3MX4	3m	
P-U3O1-H28J4M-5MX4	5m	Label
P-U3O1-H28J4M-10MX4	10m	Suitable for VD2B drive connecting 110/130 flange lead wire motor
P-Z4-H28J4M-3MX4	3m	
P-Z4-H28J4M-5MX4	5m	Label
P-Z4-H28J4M-10MX4	10m	Suitable for VD2F drive connecting 110/130 flange lead wire motor
P-Z3O1-MC4S-3MX4	3m	
P-Z3O1-MC4S-5MX4	5m	Label
P-Z3O1-MC4S-10MX4	10m	Suitable for VD2A drive connecting 60/80 flange lead wire motor
P-Z4-MC4S-3MX4	3m	
P-Z4-MC4S-5MX4	5m	Label
P-Z4-MC4S-10MX4	10m	Suitable for VD2F drive connecting 60/80 flange lead wire motor

Table 11-1 Servo motor power cable exterior diagram

Wire model	Wire length	
E-J1394-R9M-3MX5-A	3m	
E-J1394-R9M-5MX5-A	5m	Label
E-J1394-R9M-10MX5-A	10m	Suitable for VD2/VD2F drives connecting 40/60/80 flange lead wire motor (single-turn encoder)

E-J1394-R9M-3MX7-A1	3m	
E-J1394-R9M-5MX7-A1	5m	Label
E-J1394-R9M-10MX7-A1	10m	Suitable for VD2/VD2F drives connecting 40/60/80 flange lead wire motor (multi-turn encoder)
E-J1394-MC7S-3MX5-A	3m	
E-J1394-MC7S-5MX5-A	5m	Label
E-J1394-MC7S-10MX5-A	10m	Suitable for VD2/VD2F drives connecting 60/80 flange lead wire motor (single-turn encoder)
E-J1394-MC7S-3MX7-A1	3m	
E-J1394-MC7S-5MX7-A1	5m	Label
E-J1394-MC7S-10MX7-A1	10m	Suitable for VD2/VD2F drives connecting 60/80 flange lead wire motor (multi-turn encoder)
E-J1394-H28K7M-3MX5-A	3m	
E-J1394-H28K7M-5MX5-A	5m	Label
E-J1394-H28K7M-10MX5-A	10m	Suitable for VD2/VD2F drives connecting 110/130 flange lead wire motor (single-turn encoder)
E-J1394-H28K7M-3MX7-A1	3m	
E-J1394-H28K7M-5MX7-A1	5m	Label
E-J1394-H28K7M-10MX7-A1	10m	Suitable for VD2/VD2F drives connecting 110/130 flange lead wire motor (multi-turn encoder)

Table 11-2 Servo encoder power cable exterior diagram